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Unusual radiating Josephson vortex

© A.S. Malishevskii, S.A. Uryupin

Lebedev Physical Institute, Russian Academy of Sciences,

119991 Moscow, Russia

e-mail: malish@lebedev.ru

Received April 2, 2024

Revised June 13, 2024

Accepted July 31, 2024

Traveling vortices in a Josephson junction embedded in a decelerating media are studied. It is shown that in

such a system, in addition to the usual Josephson vortices whose velocity is limited by the Swihart velocity, there

can exist unusual vortices having a large limiting velocity. The conditions for the parameters of the Josephson

junction and the external medium where these vortices can radiate electromagnetic waves into the medium due

to the Vavilov−Cherenkov effect have been established. The characteristic frequencies of these waves fall in the

terahertz region and are smoothly tunable, which is interesting for the use of unusual vortices in the design of

compact superconductor devices.
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Introduction

Terahertz radiation in a general sense is now commonly

associated with the frequency range of electromagnetic

waves extending from ∼ 0.1 to ∼ 10 THz [1,2]. The search

for sources, detectors, amplifiers, and filters to be used in

this range has been ongoing for several decades. Solid-

state terahertz physics is an important research direction

in this field [3,4]. Devices utilizing the Josephson effect

(specifically, flux-flow oscillators [5–9] and devices with

synchronized arrays of Josephson junctions [10] or those

serving as flexible waveguides for redirecting or split-

ting electromagnetic waves [11]) may be of interest in low-

temperature applications.

Traveling vortices in long Josephson junctions, which

emit electromagnetic waves due to the Vavilov−Cherenkov

effect, are a promising terahertz radiation source. For exam-

ple, Cherenkov radiation of vortices in a system consisting

of two Josephson junctions was examined in [12–13], and
Cherenkov radiation in the tail of a vortex traveling along a

junction formed by bulk superconductors was characterized

in [14].
An enquiry into the possibility of emission of Cherenkov

radiation into the external medium from a junction in the

sandwich geometry is a natural evolution of the idea of

Cherenkov radiation of Josephson vortices. The intensity of

this radiation may exceed the one inside the junction [15].
For this to be feasible, the velocity of a Josephson vortex

should exceed the speed of light in the surrounding medium.

It is not easy to fulfill such a condition for usual vortices.

It is demonstrated below that an unusual Josephson vortex

may exist in the sandwich geometry. The maximum velocity

of this unusual vortex may exceed significantly the Swihart

velocity in a sandwich, relaxing the requirements to the

speed of light in a decelerating medium surrounding the

sandwich.

1. Main equations

Let us consider a long Josephson sandwich sur-

rounded by a decelerating medium with permittiv-

ity ǫm (see the figure). A sandwich is formed

by planar superconducting electrodes occupying regions

−d − L < x < −d and d < x < d + L, which are sepa-

rated by a thin tunnel layer with width 2d . Let us

assume that the magnetic field has only one component

(H = Hey ), while the electric field has two components:

E = Exex + Ez ez . It is assumed that the fields and phase

difference ϕ(z , t) of the superconducting order parameter

across the Josephson junction are independent of coordi-

nate y .
Having solved Maxwell’s equations in all five regions of

the structure with account for the boundary conditions at

x = ±d and ±d ± L, one may write an integro-differential

equation characterizing the evolution of the phase differ-

ence. It takes the following form for a vortex traveling with

velocity v > 0 [16]:

ω2
J sinψ(ζ ) + v2ψ′′(ζ ) = v2S

d
dζ

∫

dζ ′q(ζ − ζ ′)
dψ(ζ ′)

dζ ′
,

(1)

where ωJ is the Josephson plasma frequency,

ψ(ζ ) = ϕ(z , t), ζ ≡ z − vt, and vS is the Swihart

velocity in the case of bulk electrodes when L = ∞. The

Fourier transform of the q(ζ ) kernel is written as

q(k) ≡ th

(

L
λ

)

R(k) − cth (L/λ)
R(k) − th (L/λ)

, (2)

where λ is the London penetration depth of the magnetic

field into superconducting electrodes, R(k)≡c2
mκ/λv

2k2,

cm ≡ c/
√
ǫm is the speed of light in the external dielectric,

κ ≡
√

|1− v2/c2
m| |k| [θ(cm − v) − i θ(v − cm)sgn k] ,
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Transverse section of a Josephson sandwich in the xOz plane.

An elementary vortex (shown schematically as an ellipse) travels

along axis Oz with velocity vez . The magnetic field is oriented

along the Oy axis. Cherenkov waves propagating from the side

surfaces into the external dielectric medium are shown outside of

the sandwich. Arrows indicate the direction of radiation energy

flux density S.

and θ(·) is the Heaviside function. Relationship (2) is

written in the limit

λ|k| ≪ 1, (3)

which corresponds to the examination of vortices with their

characteristic spatial scale of variation along axis Oz being

significantly greater than λ.

If the phase difference corresponding to a specific

vortex is known, one may determine the structure of the

electromagnetic field in the entire system. Specifically, the

magnetic field inside the tunnel layer induced by a traveling

vortex has the following form:

HJ(ζ ) = − φ0

4πλ

∫

dζ ′ q(ζ − ζ ′)
dψ(ζ ′)

dζ ′
,

where φ0 is the magnetic flux quantum. At x = ±d ± L
(i.e., the outer sandwich boundaries), the magnetic field is

Hs(ζ ) =

∫

dζ ′ h(ζ − ζ ′)HJ(ζ
′), (4)

and the Fourier transform of the h kernel is given by

h(k) ≡ 1

sh (L/λ)
1

cth (L/λ) − R(k)
. (5)

Outside the sandwich, the Fourier components of

fields depend on coordinate x as exp[−κ(|x |−x s )], where

x s ≡ d + L. Owing to this, the fields of subluminal vortices

with v < cm and κ is real decrease with distance as one

moves deeper into the dielectric. In turn, the fields of

superluminal vortices with v > cm and κ being purely

imaginary take the form of waves propagating from the

sandwich.

2. Non-radiating unusual Josephson
vortex

Let us first consider subluminal vortices with velocities

lower than cm. In the R(k) ≫ cth (L/λ) limit, we then

obtain q(ζ ) ≃ th(L/λ) δ(ζ ), and Eq. (1) characterizes a

usual Josephson vortex in the case of electrodes of a finite

thickness:

ψ = 4 arctg (exp(−kJζ )) , (6)

where kJ ≡ ωJ/

√

V 2
S − v2 and VS ≡ vSth

1/2(L/λ) [17,18].

Note that the above constraint on R(k) and inequality (3)
require that the vortex velocity not be too close to cm

and VS . In accordance with (4) and (5), the magnetic field

at the sandwich boundary is ∼ R(kJ) sh(L/λ) ≫ 1 times

weaker than the field inside the tunnel layer.

The other limit with R(k) being small (namely,

R(k) ≪ th (L/λ)) may also be examined.

In this case, q(ζ ) ≃ cth(L/λ) δ(ζ ) and Eq. (1) character-

izes an unusual Josephson vortex. The shape of this vortex

is also governed by expression (6), which, however, features

quantity KJ ≡ ωJ/

√

U2
S − v2, where US ≡ vS cth

1/2(L/λ),

instead of kJ . The degree of accuracy of expression (6) as

applied to an unusual vortex is discussed in the Appendix.

It follows from the analysis of conditions λKJ ≪ 1 and

R(KJ) ≪ th (L/λ) that an unusual vortex may travel with

velocities up to cm at cm < US . If cm = US , the vortex

velocity may reach vR = US
[

1− O((λ/λJ)
2)
]

. When cm

increases to a certain limit value, the vortex velocity is also

limited from above by vR . If the cm value exceeds this limit,

it becomes impossible to fulfill both inequality (3) and the

condition of smallness of R(k); i.e., an unusual vortex is

infeasible.

Thus, an unusual vortex may travel with velocities as

high as cm. The maximum unusual vortex velocity is ≃ US ,

which is US/VS = cth(L/λ) > 1 times higher than VS . This

difference is especially noticeable in the case of relatively

thin electrodes.

Another important property of an unusual vortex is the

ratio of magnetic fields inside the Josephson junction and

at the sandwich boundaries: HS ≃ HJ ch
−1(L/λ). Contrary

to the case of a usual vortex, the decay of the field inside

the electrodes is governed by a factor that may be on the

order of unity (if the electrodes are thin). The energy of the

electromagnetic field is distributed mostly in the external

dielectric, and it can be said that a strong coupling is

established between the fields inside the Josephson junction

and outside the sandwich. Note that the indicated ratio

of magnetic fields translates into the fact that, similar to a

usual vortex in a Josephson junction with bulk electrodes,

the considered unusual vortex carries a single magnetic flux

quantum.
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3. Radiating unusual Josephson vortex

The possibility of Cherenkov radiation of Josephson

vortices has long been studied both theoretically and

experimentally. The motion of the unusual Josephson vortex

characterized above may also induce Cherenkov radiation if

its velocity exceeds cm. If, as before, the value of R(k) is

considered to be small

|R(k)| ≪ th (L/λ) , (7)

the kernel q(k) may be presented as a sum of cth(L/λ)
and an imaginary term proportional to |R(k)|. This term

characterizes the field of Cherenkov radiation produced by

the vortex.

If the following condition is satisfied

|R(k)| ≪ sh(2L/λ)(1 − v2/U2
S )/2, (8)

the reverse effect of radiation on the vortex may be

neglected. As a first approximation, we then assume that

the radiating unusual vortex has the same shape (see (6)) as

before with characteristic spatial scale K−1
J . Inequality (3),

the condition of smallness of R (7), and the condition of

smallness of radiation losses (8) may always be fulfilled

simultaneously at vortex velocities close to cm.

If magnetic field Hs (4) induced by the vortex on the

sandwich surface is known, one may determine the field

of a Cherenkov wave in the surrounding dielectric from

Maxwell’s equations:

H(x , ζ ) = Hs

(

ζ +

√

v2

c2
m
− 1(|x | − x s )

)

=
φ0KJ

2πλ sh(L/λ)

× sch

(

KJ

(

ζ +

√

v2

c2
m
− 1(|x | − x s)

))

, |x | > x s . (9)

The radiation power (per unit length along axis Oy)
corresponding to such a wave is equal to the integral along

axis Oz of the x -component of the energy flux density

calculated over both side surfaces of the sandwich:

P =
φ2
0ωJ

4π3λ2
P, (10)

where

P ≡ cm

√

v2 − c2
m

/

sh2(L/λ)v
√

U2
S − v2

is a dimensionless parameter specified by the elec-

trode thickness and the proximity of the vortex velocity

to cm and US . Factor (U2
S − v2)−1/2 emerges in the

expression for power due to the fact that, by virtue

of (9), all areas of the sandwich surfaces corresponding to

characteristic size ∼ K−1
J of the unusual vortex contribute

to the radiation flux.

With a slight excess over the speed of light in the external

dielectric, the power depends on velocity as ∝ √
v − cm,

and radiation is directed at small angle ≃
√

2(v − cm)/cm to

the sandwich surface. The power grows monotonically with

increasing unusual vortex velocity, while radiation deviates

more and more from the electrode surfaces and the radiation

pattern expands.

Conclusion

Let us summarize briefly the properties of an unusual

Josephson vortex.

First, an unusual Josephson vortex may be detected

experimentally in the
”
standard“ Josephson sandwich geom-

etry. It is assumed that a planar superconducting sandwich

of this kind is surrounded by a decelerating dielectric

medium. Depending on the ratio between the vortex

velocity and the speed of light in the external medium, this

vortex may be either non-radiating or radiating.

Second, the shape of an unusual Josephson vortex is

similar to the shape of a usual Josephson vortex (2π-kink).
Their important difference is in the characteristic spatial

scales: ∼
√

U2
S − v2/ωJ and ∼

√

V 2
S − v2/ωJ , respectively.

These scales are governed by different limit velocities of

unusual and usual Josephson vortices: US and VS . In the

case of thin electrodes (L ≪ λ), these velocities may differ

greatly: US is cth(L/λ) ≫ 1 times higher than VS .

Third, an unusual vortex makes it easier to experiment

with the emission of electromagnetic waves into the external

medium induced by the Vavilov–Cherenkov effect. This

radiation is produced when the vortex velocity exceeds the

speed of light in the external medium. The velocity of

an unusual vortex is limited from above by the US value;

therefore, the prerequisite for the emergence of Cherenkov

radiation is written as US > cm, which is equivalent to

ǫm > ǫ(λ/d)th(L/λ), where ǫ is the permittivity of the

tunnel layer. In typical Josephson junctions with a tunnel

layer width of several nanometers, ǫ of several units, and

λ ∼ 100 nm, this condition for electrodes with thickness & λ

is fulfilled at ǫm ∼ 100. The ǫm requirement may be relaxed

in the case of thin electrodes when the inequality is satisfied

at significantly lower values of ǫm. Specifically, ǫm > 32 at

ǫ = 4, d = λ/25, and L = λ/3.

Fourth, the characteristic radiation frequencies of an

unusual Josephson vortex may be estimated as vKJ .

Since typical Josephson plasma frequencies are on the

order of hundreds of gigahertz, radiation frequencies

∼ ωJ/
√

(US/v)2 − 1 of an unusual vortex fall into the

terahertz range. Note that the radiation frequency depends

on the vortex velocity and may be adjusted smoothly.

In conclusion, let us estimate the power of Cherenkov

radiation of an unusual vortex. The following power of

radiation from the entire height Ly of a sandwich along axis

Oy is derived from (10) at the values of ǫ = 4, d = λ/25,

and λ = 100 nm used above: PLy ≃ P(Ly/λJ)10
−3 W,

where λJ ≡ ωJvs is the Josephson length. The condition of

smallness of vortex radiation losses (8) yields the following

upper estimate: P ≪ (λ/λJ) cth
1/2(L/λ). Since typical
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values λJ ∼ 100λ, these estimates indicate that the radiation

power is within the microwatt range. To estimate the value

of P, we assume that L = λ/3, US = 1.2cm, λ/λJ = 0.01,

and the vortex velocity is sufficiently close to the Cherenkov

radiation threshold, namely (v/cm) − 1 = 6 · 10−7. The

obtained estimate is P ≃ 0.014; therefore, the radiation

power is ≃ 14µW for a sandwich with height Ly = λJ .

These characteristics of an unusual vortex indicate that it

may serve as the basis for a compact solid-state source of

terahertz radiation with tunable frequency.

Appendix

To determine the correction to the phase difference

of an unusual vortex in the R(k) ≪ th (L/λ) limit, we

present the Fourier transform of the q(ζ ) kernel as

q(k) = cth(L/λ) + δq(k), where

δq(k) ≡ sh−2(L/λ)
[

R−1(k) − cth(L/λ)
]−1

.

Zero denominator of the δq(k) answers to a subluminal

surface wave. The introduction of a slight attenua-

tion of this wave provides an opportunity to calculate

the contribution from the pole. We seek the phase

difference across the Josephson junction in the form

ψ(ζ ) ≃ 4 arctg (exp(−KJζ )) + δψ(ζ ),, where δψ(ζ ) is the

first-order correction in δq(ζ ). It then follows from Eq. (1)
that

δψ̃′′(ξ)−
(

1− 2

ch2 ξ

)

δψ̃(ξ)=− 4v2SK2
J R(KJ)

πω2
J sh

2(L/λ)
I

(

2ξ

π
, p

)

,

(A1)
where δψ̃(ξ) ≡ δψ(ζ ), ξ ≡ KJζ , p ≡ R(KJ) cth(L/λ)/2,
I(b, p) ≡ I1(b, p) + I2(b, p),

I1(b, p) ≡ v.p.

∞
∫

0

du
u

u − πp
sin(bu)

ch u
,

I2(b, p) ≡ −π2p
cos(πpb)

ch(πp)
. (A2)

The maximum absolute values of I1(b, p) are on the order

of unity, and the I2(b, p) contribution from the pole is much

lower than unity, since p ≪ 1.

The contribution to the solution of Eq. (A1) associated

with term I1 on the right-hand side has the form

2v2SK2
J R(KJ)

πω2
J sh

2(L/λ)

[

f 1(ξ)

ξ
∫

0

dξ ′I1

(

2ξ ′

π
, p

)

f 2(ξ
′)

+ f 2(ξ)

∞
∫

ξ

dξ ′I1

(

2ξ ′

π
, p

)

f 1(ξ
′)

]

, (A3)

where f 1(ξ) ≡ sechξ , f 2(ξ) ≡ shξ + ξsechξ . The maxi-

mum absolute values of the quantity in square brackets are

on the order of unity. Since there is a small parameter in

front of the square bracket, the corresponding contribution

to (A3) provides a small correction to the phase difference

of an unusual vortex.

The contribution from the pole associated with function

I2(b, p) yields an even smaller correction to the expression

for δψ̃(ξ) ∝ R2(KJ) cos(2pξ). The smallness of this correc-

tion part indicates that the surface wave does not exert a

significant influence on an unusual vortex.

Expression (2) is written in limit (3); i.e., it characterizes
such distributions of the phase difference that vary on scales

larger than λ. A more general expression for the kernel with

account for the so-called spatial nonlocality may be written.

To obtain such a kernel, one needs to make a consistent

allowance for the term containing the second derivative of

the magnetic field with respect to coordinate z when solving

the London equation in superconducting electrodes. The

resulting expression is [19]

q(k) ≡ λ(k)

λ
th

(

L
λ(k)

)

λ(k)R(k)/λ − cth (L/λ(k))

λ(k)R(k)/λ − th (L/λ(k))
, (A4)

where λ(k) ≡ λ/
√
1 + λ2k2. In the case of R(k) ≪ th(L/λ),

the corrections to the kernel associated with both R and

spatial nonlocality may be taken into account additively. The

effect of the first correction was discussed above. Let us

examine the influence of terms ∝ λ2k2 on an unusual vortex.

To do this, we write the following approximate equality:

q(k) ≃ cth

(

L
λ

)

− λ2k2

2
cth

(

L
λ

)[

1 +
2L

λ sh(2L/λ)

]

.

(A5)

It can be seen that the introduction of spatial nonlocality

leads tentatively to the emergence of a small negative

quadratic correction to the Fourier transform of the kernel.

It is known that the introduction of such a correction has

two corollaries [14,15]. First, the shape of a soliton obtained

by solving the sine-Gordon equation is deformed weakly.

This change is ∝ λ2 and vanishes at infinity. Second, a

Swihart wave, which also has a small amplitude (∝ λ2),
emerges at the tail of a vortex. If the study of Cherenkov

radiation of a Swihart wave is not the goal, one may assume

that spatial nonlocality has little effect on an unusual vortex

in the λKJ ≪ 1 limit.

The corrections to the phase difference mentioned above

indicate that Eq. (1) may have unusual solutions that can be

sought by abandoning the use of approximate expressions

for kernel (2) or its modifications. The search for such

solutions is a separate topic of interest for advancing the

electrodynamics of Josephson junctions.
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