
Technical Physics, 2024, Vol. 69, No. 10

01

The distribution function of the electrical strength of a dielectric layer

with randomly located air inclusions
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A layer of a solid-state polymer dielectric with inclusions randomly located in it with low density, when they have

random sizes, is under consideration. The electrical strength of the inclusions is less than the electrical strength

of the material. If layer thickness is sufficiently small due to random distribution of inclusions, the electrical

strength is heterogeneous along the surface of the sample and takes random values in its various parts. Based on

the previously constructed macroscopic statistical model of the electrical breakdown development in the described

physical situation, the presence of an additional maximum of the distribution density of the specified random

variable is established.
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Introduction

Statistical data on the electrical strength of multilayer

polymer films with defects in the form of air bubbles,

which form in the process of film synthesis, are available

in literature [1]. Air inclusions are distributed randomly

in the film matrix (on average, uniformly along its plane)
and have random sizes. The shape of such inclusions is

hemispherical, which, again, is attributable to the specifics

of the process of synthesis by application of each successive

thin (∝ 1−2mm) layer in the form of a polymer solution.

Owing to the presence of randomly distributed air inclusions

with their electrical strength being lower than the one of

the polymer film material, the electrical breakdown voltage

varies from one region of the film surface to the other

(i.e., has a nonzero statistical dispersion) if the density of

such inclusions is low. The electrical strength of the film

may then be considered as a random variable, and the

corresponding statistical data are presented in the form of

histograms. The histograms presented in [1] indicate the

presence of a peculiar effect in the form of non-unimodality

of the distribution of the electrical strength. At first glance,

this effect seems rather strange, since the emergence of

several maxima in the probability distribution should be

induced by a certain physical mechanism. It was noted in [2]
that, at the level of general concepts of probability theory,

this effect is anything but unusual, since the distribution

density of random electrical strength may be represented as

a probability distribution of the sums of a small number of

independent, random, and identically distributed quantities:

radii r̃ of air inclusions. Here an elsewhere, quantities

marked with a tilde are assumed to be random. These

sums are represented as terms in a sequence of independent

trials, the state space of which is the set of their random

values. However, the analysis of a specific theoretical

model with a special type of probability distribution of

random variables r̃ in [3–5] revealed that, owing to the

peculiarities of available statistical data on the electrical

strength of multilayer films, such a conclusion requires

additional justification (specifically, physical justification)
obtained as a result of examination of various physically

admissible unimodal probability distributions of random

inclusion sizes.

The analysis carried out in the present study demonstrates

that the effect of non-unimodality of the distribution of

electrical strength is, generally speaking, not necessarily

associated with the multi-layer nature of a dielectric film

if, owing to the application of a special technology for layer

deposition, a maximum of one inclusion may appear in each

layer. A similar effect may occur in any sufficiently thin

dielectric film. It is assumed in the analyzed model that

all inclusions have a spherical shape due to the isotropy of

pressure in the air inclusion bubble. For the same physical

reason, the probability distribution of random bubble radii r̃
is such that very small values are unlikely. At the same time,

the proposed theoretical model assumes that the probability

distribution for the r̃ values is not localized around a certain

average bubble size; instead, it is spread within a certain

[0, r∗] interval with a dispersion comparable to this average

value. This assumption enables the calculation of the

distribution density of electrical strength in the asymptotic

limit (where it is almost uniform). We have demonstrated

that a peak additional to the one found at zero inclusions

emerges in this case in the distribution of electrical strength.
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It is also significant that, owing to the low density of

inclusions, electrical breakdown in our model is assumed to

be generated, in most cases, by a single electron avalanche

originating at the terminal that supplies electrical voltage to

the dielectric layer. This holds true if the average distance

between inclusions is much greater than the typical size

of terminals. Naturally, electron avalanches may form as a

result of fluctuations of electrical strength of the material

at any depth within it, but we are only interested in the

scenario with an electrical breakdown all the way through

the film.

1. Phenomenological representation of
electrical breakdown of a dielectric
layer

Our study relies on a simple statistical model that was

constructed based on the most general qualitative physical

macroscopic concepts regarding the phenomenology of

electrical breakdown of a dielectric layer and foregoes

microscopic-level analysis involving complex derivations

within physical kinetics. The model builds on a simple

physical notion that the deviation of the electrical strength

of a film from its value in a defect-free material is, on

average, proportional to the fraction of the film thickness

that contains air inclusions in its cross section. It is this

concept that was used in [1,3–5].
Electrical breakdown is caused by impact ionization,

which is accompanied by the breaking of bonds between

dielectric atoms under the direct influence of an electric

field. Electrical strength ust of solid dielectrics against

electrical breakdown is the ratio of breakdown voltage U
of the layer to its thickness d in the direction of the

applied voltage. The values of electrical strength of

polymer materials fall within the (200−400) · 103 V/cm
range (polyethylene, polystyrene, etc.) [6]. Regarding the

properties of dielectrics in strong electric fields, see [7,8].
If air inclusions of random sizes are distributed randomly

in a dielectric material, the breakdown voltage is, generally

speaking, a random variable (Ũ) if the site of its application

to the opposite planes of the layer is fixed. Therefore, the

electrical strength measured at this site is also a random

variable. This is attributable to the fact that the electrical

strength of air is significantly lower than the electrical

strength of the dielectric material. Randomness of the

specified type is insignificant if the statistical distribution

of Ũ has a small dispersion due to the smallness of

ratio r̃/d . In the contrary case when the dispersion of this

distribution differs noticeably from zero, the histograms of

random variable Ũ should represent the statistical spread of

breakdown voltages and, consequently, electrical strength.

The number of air inclusions through which the break-

down electron avalanche propagates is random. With a

low density of inclusions, this number is not very high.

Therefore, it may be assumed that, as was rightly noted

in [2], the statistical distribution of electrical strength

should have several maxima if the probability distribution

of random bubble sizes is localized near their fixed average

value. The number of such maxima is equal in order of

magnitude to the average number of air inclusions through

which the electrical breakdown propagates. An analysis of

the mathematical model proposed below reveals that if this

distribution is not localized, the distribution of electrical

strength is indeed non-unimodal at an arbitrarily low density

of inclusions: a peak additional to the one corresponding to

the case of zero inclusions is always present.

One consequence in the proposed theory is that such

an effect is not necessarily associated with the multilayer

nature of the polymer material examined in experiments

mentioned in the cited review. The effect of non-unimodality

of the distribution of electrical strength may manifest

itself in dielectric films containing air inclusions with a

unimodal distribution of their sizes with a large mean-square

deviation σ comparable to their average value r0: σ ∝ r0.
We also assume that the density of air inclusions is so low

that size l of the terminals through which voltage is applied

to the planes of the layer is much smaller than average

distance l0 between the air inclusions, l ≪ l0. This makes it

fair to assume that the electrical breakdown of the layer is

caused by a single electron avalanche originating from the

surface of the terminal with electrical voltage applied to it.

2. Construction of the theoretical model

Let us consider a dielectric layer with thickness d . The

electrical strength of the material is denoted as u so that ud
is the corresponding electrical breakdown voltage. Let

air inclusions be distributed randomly and, on average,

uniformly within the layer volume. We assume that they

have a spherical shape, which is due to the influence

of surface tension of an air bubble inside the layer of a

polymer material that was in the process of solidifying from

a liquid state. The geometric state of each individual random

inclusion is then characterized completely by a single

positive random variable r̃ (bubble radius). To construct

a probabilistic model, we introduce set {x̃k ; k = 1−N} of

centers of spherical air inclusions, where N ≫ 1 is the

number of inclusions in a certain finite part of the layer.

Points x̃k ; k = 1−N are random three-dimensional vectors.

In mathematical terms, set {x̃k ; k = 1−N} is a realization of

a point random field (see, e.g., [9]). It is also assumed that

average density ρ ∝ l−3
0 of inclusions is low (i.e., average

distance l0 between them is much greater than their average

radius r0). This smallness of the average density makes it

fair to assume that the inclusions do not exert any influence

on each other (i.e., are statistically independent). Owing to

the on-average uniformity of the distribution of inclusions

inside the layer, {x̃k ; k = 1−N} may be regarded as a

uniform Poisson random field with density ρ within the

dielectric volume. Random points x̃k , k = 1−N are in a one-

to-one relation with random variables r̃k , which are the radii

of inclusions with centers at the corresponding points x̃k ,
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Figure 1. Dark spots in this schematic diagram represent air

inclusions. A chain of M = 3 inclusions is highlighted, and arrows

indicate the propagation of the breakdown electron avalanche.

k = 1, 2, 3, . . . , N. They form a set of identically distributed

positive continuous random variables. Let us denote their

aggregate distribution density as h(r). Moreover, since

the centers of inclusions are statistically independent in

aggregate, it may be assumed that all random variables

r̃k , k = 1, 2, 3, . . . are also statistically independent in

aggregate.

Let electrical voltage U be applied to the planes of the

layer. When the value of U exceeds a certain (fairly high

and, generally speaking, random) level Ũ , an electrical

breakdown occurs. It proceeds by means of an electron

avalanche between the planes of the layer surface, which

leads to degradation of the material. Since the electrical

strength of air is significantly lower than the electrical

strength of the dielectric material, it is natural to assume

that the electron avalanche tends to choose the path of least

resistance through certain air inclusions within the layer

volume. It is assumed in the present study that the density

of inclusions is so low that electrical breakdown is induced

by just a single avalanche; in other words, it is unlikely that

two or more avalanches propagate simultaneously between

the terminals supplying electrical voltage.

The propagation of this electron avalanche is represented

by a broken line with straight segments connecting a series

of centers of inclusions. Start x̃0 and end x̃M+1 points of

this broken line, which are located on the layer surface,

should be covered by the terminals supplying electrical

voltage to the polymer layer. To simplify further analysis,

we assume that these terminals have a square shape with

side length l . The centers of these squares are positioned

opposite to each other on opposite planes so that these

squares may be combined by parallel translation in the

direction perpendicular to the layer.

Let u0 be the electrical strength of air. When the electron

avalanche propagates along the broken line segment (Fig. 1)
drawn from inclusion center xkm , which is the mth to be

passed in the course of breakdown, to center xkm+1
of the

next (m + 1) inclusion, the breakdown voltage is the sum of

breakdown voltage of the mth air bubble, which is equal to

2u0r̃km , and the breakdown voltage of the polymer material

along this broken line segment; i.e., it is written as

[2u0r̃km + u(|x̃(m)
km

− x̃
(m+1)
km+1

| − 2r̃m)].

The electrical breakdown voltage in the case of propagation

of the breakdown avalanche along the considered randomly

chosen broken line is then equal to

Ũ =

M∑

m=0

[

2u0r̃m + u(|x̃(m)
km

− x̃
(m+1)
km+1

| − 2r̃m)
]

. (1)

Here, k1, . . . , kM are the numbers of points of a random

field and x̃k0
, x̃kM+1

are points on the exterior planes.

Note that formula (1) is not related in any way to

the kinetics of generation of an electron avalanche at

the microscopic level. It provides a general physical

description of the trajectory of propagation of an already

formed avalanche that penetrates through the entire film.

This is exactly the kind of propagation that leads to

subsequent degradation of the film material, making it ill-

suited for the role of an electrical insulating element. Thus,

formula 1) does not provide a comprehensive description

of the phenomenon of electrical breakdown; it serves

just to solve the problem that is analyzed in the present

study. A microscopic theory of electrical breakdown is

needed to obtain a detailed description of the process of

avalanche initiation and its evolution through the liberation

of electrons from the outer shells of atoms of the material

and their consequent ionization. In our view, such a theory

will provide nothing fundamentally new in the context of

characterizing the statistics of trajectories of the breakdown

electron avalanche.

It is assumed below that l ≪ l0. The size of the terminals

may be neglected in this case, and it may be assumed that

points x1 and xM+1 are positioned precisely at the centers of

the terminals in a way that makes them non-random. Thus,

electrical breakdown voltage Ũ , the randomness of which is

associated with the random arrangement of inclusions and

their random sizes, is given by formula (1). It is obvious

that an avalanche must evolve in such a way that the centers

of inclusions through which it propagates do not deviate

greatly from each other in the direction transverse to the

axis vertical with respect to the surface planes. This implies

that the avalanche trajectory is almost straight. Average

radius r0 of an inclusion is mush smaller than average

distance l0 between the inclusions, which, in turn, is much

smaller than layer thickness d; therefore, r0 + l0 ≪ d . The
difference between the length of each segment of a broken

line and its projection onto the mentioned vertical axis may

be neglected in this case.

Let us introduce probability density function f (U) of

random variable (1) at fixed density ρ of positioning of

points of a random field {x̃k ; k = 1−N} and distribution

density h(r) under the condition that average inclusion

radius r0 =
∞∫

0

rh(r)dr is much smaller than l0. With
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these assumptions, the sum in (1) may be presented as

u0s̃ + u(d−s̃), where random distance

s̃ =

M∑

m=1

r̃m

is the total length of all M air inclusions through which the

electron avalanche propagates. In terms of random variable

s̃ , formula (1) is written as Ũ = ud − 2(u − u0)s̃ .
Let us denote the doubled difference between the

electrical strengths of the dielectric material and air as

ν = 2(u−u0). The basic formula specifying the random

value of electrical breakdown voltage Ũ within the consid-

ered probabilistic model then takes the form (cf. [2–4])

Ũ = ud − ν s̃,

where random variable s̃ is the sum of independent random

variables distributed identically with density h(r).
Let us assume that an electrical breakdown occurs when

random variable Ũ exceeds electrical voltage U applied

at a specific spot on the dielectric layer surface. Let

us set s = (ud−U)/ν . Since inequality U > ud − ν s̃
is equivalent to s < s̃ , probability distribution function

F(U) = Pr{Ũ < U} of occurrence of an electrical break-

down is given by

F(U) = Pr{Ũ < U} = 1− Pr{s̃ < s},

due to the continuity of the probability distribution of

random variable s̃ at s > 0 or, what is the same, at U < ud .
Let us introduce distribution density

g(s) =
d

ds
Pr{s̃ < s}.

Therefore, density f (U) of the distribution of random

variable Ũ is

f (U) =
d

dU
Pr{Ũ < U} = ν−1g(s)

∣
∣
s=(ud−U)/ν

,

since ds/dU = −ν−1.

Probability Pr{s̃ < s} is the sum of probabilities of

random events {s̃ < s, m̃ = m} over all possible values

m = 0, 1, 2, . . . of random variable m̃ < M, where m̃ is

the random number of air inclusions through which the

electron avalanche propagates when an electrical breakdown

occurs. Number M cannot exceed a level inherently lower

than d/2r0, since d ≫ l0 + r0. A stronger statement may

also be made. Owing to the smallness of density ρ,

maximum value M of random variable m̃ cannot be large

in the event of breakdown. Since the inclusions are

distributed independently of each other, the propagation of

an avalanche through different inclusions should also be

considered as a sequence of random events independent

in aggregate. Therefore, probability distribution Pr{m̃ = m}
of the random number of inclusions through which an

avalanche propagates at a fixed value of M is determined

by a sequence of independent trials (see, e.g., [9])

Pr{m̃ = m} =

(
M
m

)

vm(1− v)M−m, (2)

where
”
success“ probability v > 0 is proportional to ρ1/3.

Thus, if Mv is very small, then, according to the Poisson

distribution, probability λM exp(−λ)/M !, λ = Mv of occur-

rence of large values m of random variable m̃ is very low.

This is the reason why one may allow this random variable

to vary from zero to infinity and may replace its probability

distribution (2) with the Poisson distribution

Pr{m̃ = m} =
λm

m!
exp(−λ). (3)

Density g(s) should then be assumed independent of M .

Since {s̃ < s, m̃ = m} is a product of random events

{s̃ < s} and {m̃ = m}, it follows with (3) taken into account

that

Pr{s̃ < s, m̃ = m} =
λm

m!
exp(−λ)Pr{s̃ < s |m̃ = m}.

At m = 0, conditional probability Pr{s̃ < s |m = 0} is the

same as Heaviside step function θ(s), since s̃ = 0 in this

case. Therefore, the formula of overall probability [9] yields
the following expression:

Pr{s̃ < s} = θ(s) exp(−λ) +

∞∑

m=1

Pr{s̃ < s, m̃ = m}. (4)

Thus, the distribution function of random variable s̃ is

determined completely by the probability distribution of

random variable s̃ . At a fixed value of m, the latter is the

probability distribution of a sum of m independent random

variables distributed identically in accordance with density

h(r). Therefore (see, e.g., [9]), it is equal to

Pr{s̃ ≤ s |m̃=m 6=0}=

s∫

−0

(h ∗ . . . ∗ h)
︸ ︷︷ ︸

m

(r)dr ≡
s∫

−0

(hm
∗ )(r)dr,

(5)
where

h(r) =
d
dr

Pr{r̃ < r},
d∫

0

h(r)dr = 1

and symbol ∗ denotes the binary operation of convolution of

probability distribution densities [9], so that the reapplication

of this operation to density h(r) is represented as

(hm+1
∗ )(r) =

r∫

0+

(hm
∗ )(r ′)h(r − r ′)dr ′.

According to (4), (5), the g(s) distribution density is written

as

g(s) = exp(−λ)

[

δ(s) +
∞∑

l=1

λl

l!
hl
∗(s)

]

, (6)
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where it was taken into account that dθ(s)/ds = δ(s) is the
Dirac function.

The δ-function singularity in the g(s) distribution density

at point s = 0 translates into a δ-function singularity in

the f (U) distribution density at point U = ud . The

corresponding maximum, which is proportional to exp(−λ),
is distinguishable in the histograms of experimental data

only at small values of λ (i.e., at very low values of inclusion

density ρ).

3. Distribution density of the electrical
strength

In practice, the form of density h(r) and the value

of parameter λ are unknown. Therefore, mathematical

analysis of the model described above requires choosing

a certain class of densities h(r), comparing the obtained

predictions with statistical data, and selecting a specific

density model h(r) and parameter λ that provide the best

fit to experimental data.

In the present study, we analyze the behavior of density

f (U) in the case of model densities h(r) that are unimodal

with a nonzero maximum rmax at r∗ > r > 0, but are not

localized in the vicinity of this maximum with a small

dispersion; on the contrary, the mean-square deviation

corresponding to this density is comparable in order of

magnitude to r0. It is assumed that r∗ ≪ d .
Let us introduce dimensionless variable x = r/r∗ and

set h(r) = w(x , η)/r∗, where each density w(x , η) is

concentrated on [0, 1]. Parameter η > 0 here charac-

terizes the delocalization of density on the definition

interval. Let one-parameter family of densities w(x , η)
be such that w(x , η) = w(x) + 0(η) at η → +0, where

w(x) = θ(x)θ(1 − x). An example of such a family is

w(x , η) = Zη

[
1− exp

(
−v(x)/η

)]
,

where function v(x) > 0 is defined on (0, 1), has one

minimum, and lim
x→+0

v(x) = lim
x→1−

v(x) = ∞; Zη > 0 is the

normalization constant.

In the present study, we analyze the behavior of the

probability distribution of electrical strength in the case

suitable for any one-parameter family of densities w(x , η)
of the specified type in the η → +0 limit. As was already

noted, inequality l0 ≪ d is satisfied in order of magnitude;

therefore, λ ≪ 1.

Let us write formula (6) in the leading approximation at

η → 0 in terms of dimensionless variable x :

g(s) =
1

r∗
exp(−λ)

[

δ(x) +

∞∑

l=1

λl

l!
w l

∗(x)

]

.

It follows from Theorem 3, which is proven in the

Appendix, that functions wm
∗ (x) are localized on [0, m],

respectively. They are continuous and differentiable at

m ≥ 2 (see the Appendix, formula (A4)). The w(x)

function is evidently discontinuous and localized on [0, 1].
It is also proven in the Appendix that when parameter λ

satisfies inequality

∞∑

l=2

λl−1

(l!)2
< 1, (7)

which is fulfilled at small values of λ, the function

represented by the sum in square brackets has, at x > 1, a

single maximum at point x∗ = 1, which is accompanied by

a jump in density at this point to the right of the maximum.

The discontinuity of this type is purely model in nature.

It is manifested only in the η → +0 limit so that density

g(s) is continuous and has a maximum at point x∗ = 1 at

finite values of parameter η > 0 for the considered class of

densities w(x ; η). Thus, with the specified relations between

the physical parameters of the model in the analyzed case

where the unimodal model h(r) distribution density is

”
smeared“ over segment [0, r∗] of its definition, density

g(s) always has two peaks, which coincide with s = 0

and s = r∗. Therefore, distribution density f (U) of the elec-
trical breakdown voltage of the dielectric layer also features

two peaks under such conditions. One of them matches

breakdown voltage ud of the defect-free material, and the

second one corresponds to (ud − r∗ν) = u(d − r∗) + r∗u0.

An additional peak emerges in the g(s) distribution density

(Fig. 2) at λ values violating condition (7).

Conclusion

A statistical model of evolution of an electrical breakdown

avalanche in a polymer material layer with randomly

distributed air inclusions, which have mesoscopic random

sizes, was constructed on the basis of general physical

concepts and analyzed. It was demonstrated that exactly

two peaks should form in the experimental histograms of

electrical strength under the conditions of smallness of

average size r0 of an air defect in the dielectric material

layer in comparison with its thickness d and smallness of

the defect density. One of these peaks coincides with the

electrical breakdown voltage of the defect-free material, and

the second one matches electrical voltage u(d − r∗) + r∗u0,

where u and u0 are the electrical strengths of the material

and air, respectively, and r∗ is the characteristic size of

air inclusions. This should be observed with physical

characteristics of the dielectric varying within fairly wide

ranges.

It would be instructive to clarify the physical cause of

violation of the unimodality of density f (U) at U < ud in

future studies by examining its behavior within the proposed

model with the considered type of model distribution

densities h(r) of random inclusion sizes in the case when

density ρ of the distribution of air defects in the material is

not very low. In addition, it is important to investigate the

model of electrical breakdown development with another

class of unimodal h(r) densities considered in [3].

4 Technical Physics, 2024, Vol. 69, No. 10
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Figure 2. Plots of density g(x): a) — satisfying condition (7), λ = 1; b) — violating this condition, λ = 3. The jump at x = 1 is due to

the fact that calculations were performed in limit case η → ∞.
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Appendix

The operation of convolution of two distribution densities

f 1(x) and f 2(x) concentrated on [0,∞) is given by

( f 1 ∗ f 2)(x) =

∞∫

−0

f 1(y) f 2(x − y)dy. (A1)

It may be viewed as commutative multiplication on the set

of all such densities. From a mathematical point of view, a

set of densities fitted with such an operation is a semigroup

with a unit, which is density δ(x). With this definition

of multiplication, the corresponding mth degree ( f m
∗ )(x) of

arbitrary density f (x) on [0,∞) is specified by recurrence

relation

( f m
∗ )(x) =

∞∫

−0

( f m−1
∗ )(y) f (x − y)dy.

Let us examine the qualitative behavior of degrees wm
∗ (x)

of model distribution density w(x) = θ(x)θ(1 − x). First of
all, let us prove the following theorem.

Theorem 1. The following formula is valid for densities

wm
∗ (x):

wm
∗ (x) = wm

∗ (m − x). (A2)

Let us define

ū j(k) =

∞∫

−∞

u j(x)eikx dx , j ∈ {1, 2}

Fourier transforms of densities u1(x) and u2(x). According
to (A1),

(u1 ∗ u2)(k) =

∞∫

−∞

eikx(u1 ∗ u2)(x)dx =

∞∫

−∞

eikx

×
( ∞∫

−∞

u1(y)u2(x − y)dy

)

dx =

∞∫

−∞

eiky u1(y)

×
( ∞∫

−∞

eik(x−y)u2(x − y)dx

)

dy = ū1(k)ū2(k).

Therefore, the Fourier transform of the mth degree of

density u(x)

(um
∗ )(k) =

∞∫

−∞

(um
∗ )(x)eikx dx , m = 1, 2, 3, . . .

satisfies relation (um
∗ )(k) = (um−1

∗ )(k)ū(k) and, conse-

quently,

(um
∗ )(k) = ūm(k). (A3)

Equality w(x) = w(1− x) holds true for density w(x).
Therefore, the following equalities are valid for its Fourier

transform:

w̄(k) =

∞∫

−∞

eikxw(x)dx =

∞∫

−∞

eikxw(1− x)dx

= eik

∞∫

−∞

eik(x−1)w(1− x)dx = eikw̄(−k),

i.e.,

w̄(k) = eikw̄(−k).

It follows from this equality and (A3) that

w̄m(k) = eikmw̄m(−k).
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Applying the inverse Fourier transform to both sides of the

last equality, we find

wm
∗ (x) =

1

2π

∫

e−ikx w̄m(k)dk =
1

2π

∫

e−ik(x−m)

× w̄m(−k)dk = wm
∗ (m − x).

Corollary 1. The maximum of function wm
∗ (x) is at point

x = m/2.

This follows from (A2).

The next statement is a refinement of the well-known

Ibragimov theorem (see [10,11]) on the so-called strictly

unimodal functions as applied to density w(x).

Theorem 2. If the maximum point of non-negative con-

tinuous function u(x) on [0,∞) is unique and function u(x)
has no constancy intervals, the maximum point of function

(w ∗ u)(x) is also unique and this function has no constancy

intervals.

Since function

(w ∗ u)(x) =

x∫

max{0,x−1}

u(y)dy

is continuously differentiable, each of its extremum

points x∗, which are characterized by the vanishing of its

derivative, may only be found at x > 1 and should satisfy

equation

d
dx

(w ∗ u)(x) = u(x) − u(x − 1) = 0. (A4)

Let us assume the contrary: function (w ∗ u)(x) has two

maximum points x j , j ∈ {1, 2} (x1 < x2) on (0,∞). They
are the solutions of Eq. (A4). Since the maximum point

of function x∗ is unique, x j ≥ x∗, j ∈ {1, 2}. Equality is

impossible here, since it would imply that point x∗ is not

unique. It is also evident that x j − 1 < x∗, j ∈ {1, 2}. If

u(x2) = u(x1), function u(x) has constancy interval (x1, x2),
which contradicts the hypothesis of theorem. Thus, the only

possibility is that u(x2) < u(x1). Following the same line of

reasoning, we find that u(x2 − 1) > u(x1 − 1). Subtracting
equalities u(x j) = u(x j − 1) from each other, we arrive at

a contradiction: u(x2) − u(x1) < 0 and, at the same time,

u(x2) − u(x1) = u(x2 − 1) − u(x1 − 1) > 0.

Corollary 2. Functions wm
∗ (x) at m ≥ 2 have a unique

maximum point.

Function w2
∗(x) explicitly has a unique maximum point

at x = 1. The general statement is derived from Theorem 2

via induction on m > 2.

Sequential calculation of the degrees of the w(x) density

convolution operation is performed in accordance with

formula

wm+1
∗ (x) =

x∫

0

w(x − y)wm
∗ (y)dy =

x∫

0

θ(x − y)

× θ(1 − x + y)wm
∗ (y)dy. (A5)

It is evident that wm
∗ (x) = θ(x)wm

∗ (x); moreover, the

following may be proven based on formula (A5) via

induction on m.

Theorem 3. Each density wm
∗ (x) is concentrated on [0, m],

m = 1, 2, 3, . . .; i.e., formula wm
∗ (x) = θ(m − x)wm

∗ (x) is

valid.

Let us substitute, in accordance with the induc-

tion hypothesis, density wm
∗ (y) in the integration term

with wm
∗ (y)θ(m − y). At x>m+1 and y<m, 1+y>x ,

1 + m > 1 + y > x > m + 1 should hold true, but this

is impossible; i.e., θ(m − y)θ(1 − x + y)θ(x − m − 1) = 0.

Therefore, the integral in (A5) is proportional to

θ(m + 1− x).

Taking (A4) and the fact that wm+1
∗ (x) is concentrated

on [0, m + 1] into account, we write the following expres-

sion for it on this interval:

wm+1
∗ (x) =

x∫

0

θ(x − y)θ(1 − x + y)wm
∗ (y)dy

=

x∫

0

wm
∗ (y)dy + θ(x − 1)

x∫

x−1

wm
∗ (y)dy. (A6)

It follows from (A4) via induction on m that functions

wm
∗ (x) are continuous from m = 2 onward and differentiable

at m > 2.

Let us use formula (A6) to prove the following assertion.

Theorem 4. The degrees of wm
∗ (x) may be presented as

wm
∗ (x) =

m−1∑

k=0

θ(x − k)θ(k + 1− x)Pm,k(x), (A7)

where polynomials Pm,k(x), k = 0, 1, . . . , m − 1,

m = 1, 2, 3, . . . satisfy recurrence relations

Pm+1,0(x) =

x∫

0

Pm,0(y)dy, x ∈ [0, 1), (A8)

Pm+1,m(x) =

m∫

x−1

Pm,m−1(y)dy, x ∈ [m, m + 1), (A9)

Pm+1,k(x) =

k∫

x−1

Pm,k−1(y)dy +

x∫

k

Pm,k(y)dy,

x ∈ [1, m), k = 1− m − 1. (A10)
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Expression (A7) is valid at m = 1 with P1,0(x) = 1. Let

us construct the induction step from m to m + 1. Insert-

ing (A7) at m + 1 into the right-hand part of formula (A7)

at x ∈ [0, m + 1], we obtain equality

wm+1
∗ (x) = θ(1−x)

x∫

0

Pm,0(y) + θ(x−1)

×
m−1∑

k=0

x∫

x−1

θ(y−k)θ(k + 1− y)Pm,k(y)dy, (A11)

where it is taken into account that only the term with

polynomial Pm,0(y) produces a nonzero contribution to

the first integral. Let us present the last integral at

k = 0, 1, 2, . . . in the form

x∫

x−1

θ(y − k)θ(k + 1− y)Pm,k(y)dy = θ(x−k)θ(k + 2−x)

×
x∫

x−1

θ(y − k)θ(k + 1− y)Pm,k(y)dy,

since it is zero at x − 1 > k + 1 and x < k .

At k < m, k < x − 1 < k + 1 if k + 1 < x < k + 2. In

this case,

x∫

x−1

θ(y − k)θ(k + 1− y)Pm,k(y)dy =

k+1∫

x−1

Pm,k(y)dy ;

if k < x < k + 1, x − 1 < k and

x∫

x−1

θ(y − k)θ(k + 1− y)Pm,k(y)dy =

x∫

k

Pm,k(y)dy.

Therefore,

x∫

x−1

θ(y − k)θ(k + 1− y)Pm,k(y)dy = θ(x − k − 1)

× θ(k + 2− x)

k+1∫

x−1

Pm,k(y)dy + θkθ(x − k)θ(k + 1− x)

×
x∫

k

Pm,k(y)dy,

where θk = 1− δk,0 . Inserting the obtained expressions for

integrals into (A11), we find that

wm+1
∗ (x) = θ(x)θ(1 − x)

x∫

0

Pm,0(y) +

m−1∑

k=0

[

θkθ(x − k)

× θ(k + 1− x)

x∫

k

Pm,k(y)dy + θ(x − k − 1)θ(k + 2− x)

×
k+1∫

x−1

Pm,k(y)dy

]

=

m−1∑

k=1

θ(x−k)θ(k+1−x)

[ x∫

k

Pm,k(y)dy

+

k∫

x−1

Pm,k−1(y)dy

]

+ θ(x)θ(1 − x)

x∫

0

Pm,0(y)dy

+ θ(x − m)θ(m + 1− x)

m∫

x−1

Pm,m−1(y)dy.

Defining functions Pm+1,0(x), Pm+1,m(x), and Pm+1,k ,

k = 1−m − 1, in accordance with (A8), (A9), and (A10),
we obtain the sought-for representation of density wm+1

∗ (x),

wm+1
∗ (x) =

m∑

k=0

θ(x − k)θ(k + 1− x)Pm+1,k(x).

Corollary 3. Polynomials Pm+1,k(x), k = 0, 1, . . . , m − 1

satisfy equalities

Pm,k(x) = Pm,m−1−k(m − x). (A12)

Inserting expansions (A7) for functions wm
∗ (x) and

wm
∗ (m − x) into equality (A2), we find that the following

must be satisfied:

m−1∑

k=0

θ(x − k)θ(k + 1− x)Pm,k(x) =

m−1∑

k=0

θ(m − x − k)

× θ(k + 1− m + x)Pm,k(m − x).

Substituting summation variable m − 1− k with k in the

sum in the right-hand part of the equality, we arrive at

equality

m−1∑

k=0

θ(x − k)θ(k + 1− x)Pm,k(x) =
m−1∑

k=0

θ(x − k)

× θ(k + 1− x)Pm,−1−k(m − x),

which demonstrates that (A12) is valid at x ∈ [k, k + 1].

The following assertion is an addition to Theorem 2 in the

case when function u(x) has a peak that is accompanied by

a discontinuity of the first kind.
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Lemma. Let u(x) be a left-continuous distribution density

on [0,∞) with a unique maximum point x∗ = 1 that

is a point of discontinuity of the first kind. Then, if

u(x∗ + 0) ≤ u(0), the (w ∗ u)(x) distribution density has a

single maximum at point x∗.

Density (w ∗ u)(x) has peak z . It necessarily satisfies

inequality z ≥ x∗ . In the proof of Theorem 2, the continuity

of function u(x) was used only to obtain an equation for the

maximum point of density (w ∗ u)(x). Therefore, if z > 1,

u(z ) = u(z − 1) should be true for this point. However,

since u(x∗ + 0) ≤ u(0) and point x∗ is the only peak

of density u(x), u(z ) < u(x∗ + 0) < u(x∗ − 1) < u(z − 1)
and the indicated equality is infeasible. The only possible

location x∗ = 1 then remains for the (w ∗ u)(x) density

peak.

Let us now apply this statement to the analysis of function

W (x) =

∞∑

l=1

λl

l!
w l

∗(x),

which is, up to normalization, the distribution density and

has a discontinuity of the first kind at point x∗ = 1 generated

by the term with l = 1.

Theorem 5. If positive number λ is such that

I0(2
√
λ) ≤ 1 + 2λ, where I0 is the modified zero-order

Bessel function, function W (x) is unimodal and its peak

is located at point x∗ = 1.

It follows from the restriction on parameter λ in the

formulation of the theorem that

∞∑

l=2

λl

(l!)2
≤ λ.

In particular, λ < 4. Let us introduce functions

W (m)
N (x) =

N∑

l=1

λl+m

(l + m)!
w l

∗(x), m = 0, 1, 2, . . . .

Since density w2
∗(x) concentrated on [0, 2] is unimodal with

peak at x∗, all functions W (m)
2 (x) = λm+1w(x)/(m + 1)! +

+λm+2w2
∗(x)/(m + 2)!, m = 0, 1, 2, . . . are unimodal, and

their peaks are located at x∗ = 1. Each of these functions

has a discontinuity of the first kind at this point.

Since P l,1(x∗) =
∫ 1

0
P l,0(y)dy according to (A9) and

P l,0(x) = x l−1/(l − 1)! according to (A7) at P1,0(x) = 1,

P l,1(1) = 1/l! and, consequently,

W (x∗ + 0) =

∞∑

l=2

λl

l!
w l

∗(x∗) =

∞∑

l=2

λl

l!
P l,1(1) =

∞∑

l=2

λl

(l!)2
.

Under the hypothesis of Theorem 5, λ ≤ 4;

therefore, λ/2(m + 2) ≤ 1, m = 0, 1, 2, . . .. Then,

W (m)
2 (x∗ + 0) < W (m)

2 (0) = λm+1/(m + 1)! and, according

to the statement of Lemma, each function (w ∗W (m)
2 )(x),

m ∈ N is continuous and unimodal with a peak at

point x∗ = 1. Therefore, since each of these functions

increases within the (0, 1) interval, each function

λmw(x)/m! + (w ∗W (m)
2 )(x) = W (m−1)

3 (x), m = 1, 2, 3, . . .,

has the same feature (specifically, at m ≥ 2).

Assume that all functions W (m)
N (x), m = 0, 1, 2, . . . are

unimodal, have a unique peak at point x∗ = 1, and have a

discontinuity of the first kind at this point at certain fixed

N. Let us construct the induction step from N to N + 1.

According to the above assumption and the hypothesis of

the theorem, the following equality should hold:

W (m)
N (x∗ + 0) =

N∑

l=2

λl+mw l
∗(1)

(l + m)!
=

N∑

l=2

λl+m

(l + m)!l!

<

N∑

l=2

λl+m

(l!)2(m + 1)!
<

λm+1

(m + 1)!
= W (m)

N (0),

since inequality (l + m)! > l!(m + 1)! is valid at l ≥ 2. It

follows from the statement of Lemma that each function

(w ∗W (m)
N )(x), m = 0, 1, 2, . . ., is continuous and unimodal

with a peak at point x∗ = 1. Since all of them increase

within interval (0, 1), each function θ(1 − x)λmw(x)/m!

+ (w ∗W (m)
N )(x) = W (m−1)

N+1 (x), m = 1, 2, 3, . . ., has the

same feature. Thus, according to the induction step, we

may conclude that all functions W (m)
N (x) are unimodal

with a peak at point x∗ = 1 at arbitrary N = 2, 3, 4, . . .

and m = 0, 1, 2, . . .. In particular, this is true at m = 0.

Passing to the N → ∞ limit, we find that limit function

W (x) = lim
N→∞

W (0)
N (x) is unimodal with a peak at point

x∗ = 1, since the limit of unimodal functions is a unimodal

function [10].
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