07,10,13 Критерий плавления для классических и квантовых кристаллов

© М.Н. Магомедов

Институт проблем геотермии и возобновляемой энергетики — филиал ФБГУН объединенного института высоких температур РАН, Махачкала, Россия

E-mail: mahmag4@mail.ru

Поступила в Редакцию 19 июля 2024 г. В окончательной редакции 2 октября 2024 г. Принята к публикации 3 октября 2024 г.

Показано, что из делокализационного критерия плавления можно рассчитать отношение Линдеманна (L) для классических кристаллов, т.е. у которых температура плавления (T_m) больше температуры Дебая (Θ): $T_m/\Theta > 1.5$. При этом, для классических однокомпонентных кристаллов величина L определяется только структурой кристалла. Расчеты для различных структур классических кристаллов показали хорошее согласие с оценками других авторов. Получено обобщение отношения Линдеманна на случай квантовых однокомпонентных кристалла, что для квантовых кристаллов, т.е. для которых $T_m/\Theta < 0.4$. Показано, что для квантовых кристаллов отношение Линдеманна определяется не только структурой кристалла, но и функцией Θ/T_m . Поэтому при переходе из классической в квантовую область функция $T_m(\Theta)$ изменяет свою функциональную зависимость, а величина L становится зависимой от давления и от размера в случае нанокристалла. Показано, что для квантовых кристаллов величина L уменьшается с ростом давления вдоль линии плавления. Для квантовых нанокристаллов величина L возрастает при изобарном уменьшении размера нанокристалла. При этом размерное увеличение отношения Линдеманна тем больше, чем заметнее форма квантового нанокристалла отклонена от энергетически оптимальной формы. Получено обобщение делокализационного критерия плавления на случай квантовых однокомпонентных кристаллов.

Ключевые слова: плавление, делокализация, температура Дебая, квантовый кристалл, нанокристал, водород, гелий.

DOI: 10.61011/FTT.2024.11.59334.200

1. Введение

В связи с тем, что теории фазового перехода (ФП) кристалл-жидкость (К-Ж) пока нет (как нет и теории жидкого состояния), то для расчета свойств кристалла при плавлении используются различные феноменологические критерии [1-3]. Наиболее используемым из них является критерий плавления Линдеманна (the Lindemann melting criterion), который утверждает [4,5] следующее: среднеквадратичное отклонение атома $\langle u^2 \rangle^{1/2}$ в кристалле отнесенное к расстоянию между центрами ближайших атомов (c) при температуре плавления (T_m) однокомпонентного кристалла есть величина постоянная.

Линдеманн полагал, что при T_m отношение $\langle u^2 \rangle^{1/2} / c$ постоянно для всех однокомпонентных кристаллов. Однако Гилварри (Gilvarry) на основе теории Дебая– Валлера (Debye–Waller theory) показал, что отношение Линдеманна (Lindemann ratio) является постоянным только для кристаллов с одинаковой структурой [5]. По оценкам Гилварри для металлов с гранецентрированной кубической (ГЦК, fcc), гексагональной плотноупакованной (ГПУ, hcp), и объемно-центрированной кубической (ОЦК, bcc) структурой отношение Линдеманна при низком давлении (P = 0) равно [6]:

$$L = \left(\frac{\langle u^2 \rangle^{1/2}}{c}\right)_{T_m} = 0.11(fcc), \, 0.09(hcp), \, 0.13(bcc). \quad (1)$$

После Гилварри были предложены различные методы для оценки величины *L*. В работах различных авторов были получены величины *L*, которые несколько отличаются от значений (1). Результаты некоторых работ по оценке величины *L* представлены в табл. 1, где в первом столбце указан автор-год и метод расчета, а в последнем столбце указана ссылка на статью этого автора.

Недавно в работе [10], используя экспериментальные данные для отношения T_m/Θ^2 , была изучена зависимость величины L от положения металла в группе Периодической Таблицы элементов (Periodic table of elements). Здесь Θ — температура Дебая. В работе [10] было получено среднее значение L для 12 групп металлов. Оно находится в интервале:

Таким образом, в зависимости от используемого метода расчета величины $\langle u^2 \rangle$, значение *L* для металлов может изменяться в широких пределах: от 0.07 до 0.183.

Для четырех ГЦК кристаллов инертных газов отношение Линдеманна изучалось во многих работах различными методами. Это связано с тем, что атомы инертных газов имеют заполненную внешнюю электронную оболочку, т.е. являются электронейтральными и сферически симметричными. Значения *L* из работ [11–16]

Authors—year Method	fcc	hc p	bcc	Ref.
Shapiro–1970 Lattice dynamics method	0.071		0.113	[7]
Cho–1982 Method of harmonic atoms vibration	0.09659-0.1183	0.06886-0.08433	0.1210-0.1483	[8]
Matsuura et al. – 2010 Nearly free electron model	0.172		0.183	[9]

Таблица 1. Отношение Линдеманна при $T_m(P=0)$ для металлов из работ [7-9]

Таблица 2. Отношение Линдеманна при $T_m(P=0)$ для ГЦК кристаллов Ne, Ar, Kr, и Xe

Crystal	Goldma [1	an—1969 1]	Gupta-1973 [12]	Crawford-1977 [13]	Singh & Neb-1984 [14]	Mohazzabi & Behroozi–1987 [15]	Batsanov-2009 [16]
Ne Ar Kr Xe	0.156-0.155 0.130-0.128 0.127-0.126 0.125-0.122	$\begin{array}{c} 0.109 {-} 0.105 \\ 0.101 {-} 0.097 \\ 0.100 {-} 0.096 \\ 0.099 {-} 0.095 \end{array}$	0.1446 0.1149 0.1129 0.0992	0.127 0.113 0.115 0.114	0.202 0.151 0.142 0.142	0.148 0.122 0.110 0.106	$\begin{array}{c} 0.113 - 0.114 \\ 0.103 - 0.132 \\ 0.103 - 0.125 \\ 0.102 - 0.133 \end{array}$
Method	Quasi- harmonic (b = 12)-(b = 13)	Anharmonic (b = 12) - (b = 13)	Quasi- harmonic approximation	From entropy data	With account three-body interactions	By Einstein model and potential $a = 6 \mu b = 12$	By thermodynamic data and own model

представлены в табл. 2. В первой строке указан авторгод и ссылка на статью, а в нижней строке указан метод расчета величины *L*.

В работе [11] был использован метод динамики решетки для атомов, взаимодействующих посредством парного 4-х параметрического потенциала Ми–Леннард-Джонса, который имеет вид:

$$\phi(r) = \frac{D}{(b-a)} \left[a \left(\frac{r_0}{r}\right)^b - b \left(\frac{r_0}{r}\right)^a \right],\tag{2}$$

где D и r_0 — глубина и координата минимума потенциала, b > a > 1 — параметры.

Для расчетов величины $\langle u^2 \rangle$ в работе [11] было использовано приближения "взаимодействия только ближайших соседей", а расчеты были проведены как в квазигармоническом приближении (первый столбец), так и с учетом ангармонизма колебаний атомов (второй столбец). При этом степени потенциала (2) брали следующие: a = 6, b = 12 (первое значение в строке) и a = 6, b = 13 (второе значение в строке). В работе [12] использовалось квазигармоническое приближение, межатомный потенциал брали в виде функции Букингема (Buckingham), и учитывали взаимодействие до 12-й координационной сферы. В статье [14] был проведен учет трехчастичного взаимодействия атомов. В работе [15] величина $\langle u^2 \rangle$ была рассчитана из формы потенциала (2) с степенями a = 6 и b = 12, а колебания атомов учитывали по модели Эйнштейна. В статье [16] для расчета величины $\langle u^2 \rangle$ был разработан свой термодинамический метод. Как видно из табл. 2 во всех методах расчета из работ [11–18] величина *L* возрастает при уменьшении массы атома, т. е. при усилении квантовых эффектов в энергетике кристалла, как это и отмечалось в статьях [17,18].

Заметим, что критерий (1) был первоначально применен в работах [4-6] для классических однокомпонентных кристаллов (металлов и полупроводников), т.е. у которых температура плавления много больше температуры Дебая: *T_m* > Θ . Именно при изучении плавления классических кристаллов критерий Линдеманна (1) показал хорошие результаты для веществ с различной структурой, при различных давлениях (Р), как для макро-, так и для нанокристаллов [1-3]. Однако для плавления квантовых кристаллов, у которых $T_m < \Theta$, критерий Линдеманна (1) оказался не применим, как на это было указано в работах [16-20]. Поэтому в данной работе получено сравнительно простое выражение для отношения Линдеманна, которое применимо как для классических (типа металлов), так и для квантовых кристаллов (типа ⁴Не и ³Не) при различных давлениях.

Метод расчета

В наших работах [21,22] был предложен делокализационный критерий ФП К-Ж, согласно которому ФП К-Ж (в прямом, и в обратном направлении) начинается, когда доля делокализованных атомов (N_d) достигнет определенной величины от общего числа атомов в системе (N):

$$x_d(s-l) = \frac{N_d(s-l)}{N} \cong 10^{-2}.$$
 (3)

Здесь s - l означает, что данная величина относится к области перехода твердое (s)-жидкое (l), как в прямом, так и в обратном направлении. В работах [21,22] было показано, что делокализационный критерий ФП К-Ж (3) применим как к плавлению, так и к кристаллизации, а в работах [23,24] было показано, что критерий (3) также применим и к переходу жидкостьстекло.

Для определения функции $x_d(P, T)$ допустим, что атомы в системе могут находиться в двух состояниях: в локализованном и в делокализованном. В локализованном состоянии атом локализован в ячейке, образованной ближайшими соседями, и имеет только колебательные степени свободы. В делокализованном состоянии атому доступен весь объем системы V, и атом имеет только трансляционные степени свободы. Как было показано в работах [21,22,25], доля делокализованных атомов, при данных температуре (T) и удельном объеме (v = V/N) описывается выражением:

$$x_d(v,T) = \frac{N_d(v,T)}{N} = \frac{2}{\pi^{1/2}} \int_{E_d/(k_{\rm B}T)}^{\infty} t^{1/2} \exp(-t) dt, \quad (4)$$

где E_d — это энергия необходимая для перехода атома из локализованного в делокализованное состояние, $k_{\rm B}$ постоянная Больцмана.

Формула (4) есть следствие того, что число делокализованных атомов имеющих кинетическую энергию из определенного интервала значений подчиняется распределению Максвелла-Больцмана, которое справедливо не только для газа, но и для жидкой, аморфной и кристаллической фазы [26,27].

Используя для колебательного спектра кристалла модель Эйнштейна, для энергии делокализации атома было получено следующее выражение [21,22,25]:

$$E_d = \left(\frac{3}{8\pi^2}\right) m \left(\frac{3ck_B\Theta}{4\hbar k_p^{1/3}}\right)^2 f_y(y_w).$$
(5)

Здесь \hbar — постоянная Планка, m — масса атома, $c = [6k_p V/(\pi N)]^{1/3}$ — расстояние между центрами ближайших ячеек, Θ — температура Дебая, k_p — коэффициент упаковки структуры из N сферических ячеек.

Функция $f_{y}(y_{w})$ появляется в (5) из-за учета квантовых эффектов, и для кристалла с колебательным спектром по модели Эйнштейна она имеет вид [25]:

$$f_{y}(y_{w}) = \frac{2}{y_{w}} \frac{[1 - \exp(-y_{w})]}{[1 + \exp(-y_{w})]}, \quad y_{w} = \frac{3\Theta}{4T}.$$
 (6)

Отметим, что если мы будем использовать модель Дебая, то вместо функции (6) будет функция вида [25]:

$$f_{yD}(y_D) = \left[\frac{y_D}{4} + D_{n=1}(y_D)\right]^{-1}, \quad y_D = \frac{\Theta}{T},$$

Рис. 1. Зависимость функций f_v (сплошная линия) и f_{vD} (пунктирная линия) от относительной температуры T/Θ .

где *п*-мерная функция Дебая определена выражением:

$$D_n(y_D) = \frac{n}{y_D^n} \int_0^{y_D} \frac{t^n}{\exp(t) - 1} dt$$

На рис. 1 показана зависимость функций f_y (сплошная линия) и f_{vD} (пунктирная линия), от относительной температуры $T/\Theta = 3/(4y_w)$. В связи с тем, что при получении функции E_d из (5) мы использовали модель Эйнштейна, то далее мы будем использовать формулу (6). Легко видеть, что при $T/\Theta > 1.5$ можно принять: $f_v(T/\Theta > 1.5) \cong 1$. Эту область температур мы будем называть классической. При $T/\Theta < 0.4$ для функции $f_{y}(y_{w})$ можно принять линейную зависимость: $f_{\nu}(T/\theta < 0.4) \cong 8T/(3\Theta)$. Эту область температур мы далее будем называть квантовой.

Так как делокализационный критерий ФП К-Ж (3) был получен в работах [21,22] для классических кристаллов (для которых $f_v(T_m/\Theta > 1.5) \cong 1$), то из (3)-(5) следует, что при плавлении классического кристалла выполняется:

$$\frac{E_d}{k_B T_m} = \left(\frac{3}{8\pi^2}\right) \frac{k_B m}{T_m} \left(\frac{3c\Theta}{4\hbar k_p^{1/3}}\right)^2 \cong 5.672.$$
(7)

Из формулы (7) следует соотношение, которое функционально согласуется с зависимостью, получаемой из критерия Линдеманна:

$$T_m = \left(\frac{3}{8\pi^2}\right) \frac{k_{\rm B}m}{5.672} \left(\frac{3c\Theta}{4\hbar k_p^{1/3}}\right)^2 = L_E^2 k_{\rm B} \frac{m}{3} \left(\frac{3c\Theta}{4\pi}\right)^2.$$
 (8)

Из (8) видно, что согласно критерию (3) отношение Линдеманна для классических кристаллов (у которых *T_m* > 1.5Θ) с колебательным спектром по модели Эйнштейна определяется выражением:

$$L_E(T_m > 1.5\Theta) = \left(\frac{9}{8\pi^2 5.672}\right)^{1/2} \frac{1}{k_p^{1/3}} = \frac{0.1418}{k_p^{1/3}}.$$
 (9)

Физика твердого тела, 2024, том 66, вып. 11

Из (9) видно, что для классических кристаллов значение L_E определяется только структурой кристалла и не зависит от давления или от размера нанокристалла.

Для обобщения (9) на случай квантового кристалла сопоставим формулы для энергии (ε) и среднеквадратичного смещения классического и квантового *n*-мерного гармонического осциллятора:

$$\varepsilon_{cl} = \varepsilon_{qn}(T_m > 1.5\Theta) = nk_{\rm B}T_m, \ \varepsilon_{qn} = \frac{\varepsilon_{cl}}{f_y(y_w)},$$
$$\langle u^2 \rangle_{cl} = \langle u^2 \rangle_{qn}(T_m > 1.5\Theta), \ \langle u^2 \rangle_{qn} = \frac{\langle u^2 \rangle_{cl}}{f_y(y_w)}.$$
(10)

Из формул (10) видно, что для обобщения формулы (9) на случай квантового кристалла можно принять выражение вида:

$$L_E(T_m) = \frac{0.1418}{k_p^{1/3} [f_y(y_w)]^{1/2}}.$$
(11)

Исходя из (11), формулы для делокализационного критерия ФП К-Ж (4) и (7) и для температуры плавления (8) можно обобщить на случай произвольного значения T_m/Θ в следующем виде:

$$\begin{aligned} x_d(v, T_m) &= \frac{N_d(v, T_m)}{N} = \frac{2}{\pi^{1/2}} \int_{5.672[f_y(y_w)]^2}^{\infty} t^{1/2} \exp(-t) dt, \\ \frac{E_d}{k_{\rm B} T_m} &= \left(\frac{3}{8\pi^2}\right) \frac{k_{\rm B} m}{T_m} \left(\frac{3c\Theta}{4\hbar k_p^{1/3}}\right)^2 f_y(y_w) \cong 5.672[f_y(y_w)]^2, \\ T_m &= \left(\frac{3}{8\pi^2}\right) \frac{k_{\rm B} m}{5.672 f_y(y_w)} \left(\frac{3c\Theta}{4\hbar k_p^{1/3}}\right)^2 \\ &= 0.003768 \frac{k_{\rm B} m}{f_y(y_w)} \left(\frac{c\Theta}{\hbar k_p^{1/3}}\right)^2. \end{aligned}$$
(12)

В квантовой области, т.е. при $T_m < 0.4\Theta$, где выполняется: $f_y(T_m/\Theta < 0.4) \cong 8T_m/(3\Theta)$, формулы (12) можно упростить к виду:

$$x_d(v, T_m) = \frac{N_d(v, T_m)}{N} = \frac{2}{\pi^{1/2}} \int_{40.334(T_m/\Theta)^2}^{\infty} t^{1/2} \exp(-t) dt,$$

$$\frac{E_d}{k_B T_m} \cong 5.672 \left(\frac{8T_m}{3\Theta}\right)^2 = 40.334 \left(\frac{T_m}{\Theta}\right)^2, \qquad (13)$$

$$\begin{split} L_E(T_m < 0.4\Theta) &\cong \frac{0.1418}{k_p^{1/3}} \Big(\frac{3\Theta}{8T_m}\Big)^{1/2} = \frac{0.0868}{k_p^{1/3}} \Big(\frac{\Theta}{T_m}\Big)^{1/2},\\ T_m &= \left[\Big(\frac{3}{8\pi^2}\Big)\frac{k_{\rm B}m}{5.672}\Big(\frac{3c\Theta}{4\hbar k_p^{1/3}}\Big)^2\frac{3\Theta}{8}\right]^{1/2}\\ &= 0.03759\,\frac{c\Theta}{\hbar k_p^{1/3}}\,(mk_{\rm B}\Theta)^{1/2}. \end{split}$$

Из формул (11)-(13) можно сделать следующие выводы.

1) Для квантовых кристаллов величина $L_E(T_m < 0.4\Theta)$ определяется не только структурой кристалла, но также зависит от отношения Θ/T_m .

2) При переходе из классической в квантовую область функция T_m изменяет свою функциональную зависимость: при $T_m > 1.5\Theta$ выполняется $T_m \sim (c\Theta)^2$, при $T_m < 0.4\Theta$ выполняется $T_m \sim c\Theta^{3/2}$.

3) Если выполняется: $T_m/\Theta = 0$, то все атомы квантового кристалла при температуре плавления находятся в делокализованном состоянии.

Как было показано в работах [28,29] функция Θ уменьшаются при изобарном уменьшении размера нанокристалла тем больше, чем заметнее форма нанокристалла отклонена от энергетически оптимальной формы. Поэтому функция $T_m/\Theta \sim c \Theta^{1/2}$ также будет уменьшаться при уменьшении размера квантового нанокристалла. Таким образом из (13) следует, что для квантовых кристаллов величина L_E возрастает при изобарном уменьшении размера нанокристалла тем больше, чем заметнее форма нанокристалла отклонена от энергетически оптимальной формы. Это согласуется с результатами работы [18], в которой диффузионным методом Монте Карло было показано, что отношение Линдеманна возрастает при уменьшении размера наночастицы. Заметим, что в работе [30] нами было показано, что делокализационный критерий ФП К-Ж (3) справедлив и для наночастицы: и для плавления нанокристалла, и для кристаллизации нанокапли. Поэтому полученные на основе критерий (3) формулы применимы и к нанокристаллу.

Для оценки корректности полученных для L_E формул (11) и (13) мы рассчитали значение $L_E(T_m)$ как для классических, так и для квантовых кристаллов и сопоставили результаты с оценками других авторов.

2. Результаты расчетов

2.1. Классические кристаллы

В табл. 3 показаны рассчитанные по формуле (9) значения отношения Линдеманна для классических кристаллов с колебательным спектром по модели Эйнштейна. Расчеты проведены для следующих структур:

1) гранецентрированная кубическая (ГЦК, face-centered-cubic, fcc) и гексагональная плотноупакованная (ГПУ, hexagonal-closed-packed, hcp) структуры,

2) объемно-центрированная кубическая (ОЦК, bodycentered-cubic, *bcc*) структура,

3) простая кубическая структура (ПКС, simple cubic structure, scs),

4) алмазная кубическая структура (АКС, diamond cubic structure, dcs).

5) для двух аморфных упаковок: плотной (АПУ, dense amorphous packing, dap) и рыхлой (АРУ, loose amorphous packing, lap). Параметры для АПУ и АРУ структур были определены нами в работе [31]. Как

Таблица 3. Значения отношения Линдеманна для классических кристаллов: k_n и k_p — первое координационное число и коэффициент упаковки структуры

Structure	<i>k</i> _n	k_p	L_E
ГЦК (fcc) и ГПУ (hcp) структуры	12	0.7405	0.1567
ОЦК структура (bcc)	8	0.6802	0.1612
Плотная аморфная упаковка (dap)	6.2793	0.62370	0.1660
Простая кубическая структура (scs)	6	0.5236	0.1759
Рыхлая аморфная упаковка (lap)	6.2793	0.45556	0.1843
Алмазная кубическая структура (dcs)	4	0.3401	0.2031

было показано в [31], в области: $5.855 \le k_n \le 6.2793$ и $0.4 \le k_p \le 0.6237$, одному значению первого координационного числа k_n соответствуют два или три значения коэффициента упаковки k_p . Поэтому эта структурная область была определена в работе [31], как область "случайной упаковки" (the "random packing" area).

Из табл. З видно, что полученные нами значения L_E для ГЦК и ОЦК структур несколько больше результатов из работ [6-8], и меньше результатов работы [9], которые представлены в табл. 1. Результаты расчетов представленные в табл. З хорошо согласуются с оценками для ГЦК, ГПУ и ОЦК металлов, которые были получены в работе [16]. Наши расчеты величины L_E для алмазной структуры хорошо согласуются с расчетами отношения Линдеманна для кремния (Si) и германия (Ge), полученными методом теории возмущения с локальным псевдопотенциалом Гейне-Абаренкова (Heine-Abarenkov pseudopotential) в работе [32]: $L(Si) = 0.272 \pm 0.03$, $L(Ge) = 0.249 \pm 0.03$. Также наши результаты согласуются с результатами, полученными для нанокристаллов кремния методом молекулярной динамики:

L (Si with Stillinger-Weber potential) = 0.19 [33],

L (Si with Stillinger-Weber potential) = 0.35-0.39 for the heating rates of $(5.625-5.113) \cdot 10^{11}$ K/s [34],

Рис. 2. Зависимость функции $L_E(T_m/\Theta)$ для структур из табл. 3.

L (Si with Tersoff-Agrawal-Raff-Komanduri potential) = = 0.2 [35].

Наши расчеты L_E для плотной аморфной упаковки (dap) также согласуются с оценками параметра Линдеманна для размягчения неорганических стекол, которые были получены в работе [24]: L(Glass-Liquids) = 0.11-0.15.

Изменение функции $L_E(T_m/\Theta)$ для классической и квантовой области температур было рассчитано по формуле (11). Результат расчета для различных структур из табл. 3 показано на рис. 2. Видно, что для классической ($T_m/\Theta > 1.5$), и для квантовой (при $T_m/\Theta < 0.4$) области температур функция L_E имеет различные зависимости, для которых можно использовать следующие асимптотические выражения:

$$L_E(T_m) = \frac{0.1418}{k_p^{1/3} [f_y(y_w)]^{1/2}}$$
$$\cong \frac{0.1418}{k_p^{1/3}} \begin{cases} 1 - \frac{y_m}{4} = 1 - \frac{3\Theta}{16T_m}, \text{ for } \frac{T_m}{\Theta} > 1.5\\ \left(\frac{y_m}{2}\right)^{1/2} = \left(\frac{3\Theta}{8T_m}\right)^{1/2}, \text{ for } \frac{T_m}{\Theta} < 0.4 \end{cases}$$

2.2. Кристаллы инертных газов

В группе ГЦК-кристаллов инертных газов осуществляется переход от кристалла классического типа (Kr and Xe) к кристаллу квантового типа (Ne). Поэтому величину L_E для этих кристаллов мы рассчитывали по формуле (11). В табл. 4 представлены экспериментально определенные для кристаллов инертных газов при атмосферном давлении (P = 1 bar) температура плавления и температура Дебая, а также рассчитанные по ним с помощью формулы (11) значения отношения Линдеманна для кристаллов с колебательным спектром по модели Эйнштейна. В каждой строке верхние значения взяты из работы [36], а нижние из статьи [37].

Из табл. 4 видно, что наши расчеты хорошо согласуются с результатами из работы [14], но несколько превышают оценки других авторов, которые представлены в табл. 2.

Таблица 4. Экспериментальные данные для ГЦК-кристаллов инертных газов при P = 1 bar и рассчитанные по ним и по формуле (11) значения отношения Линдеманна

Crystal	<i>m</i> , a.m.u.	T_m, K	Θ, Κ	Ref.	T_m/Θ	L_E
Ne	20.18	24.56 24.57	66.6 74.6	[36] [37]	0.369 0.329	0.1802 0.1854
Ar	39.95	83.81 83.78	93.3 93.3	[36] [37]	0.8983 0.8980	0.1611 0.1611
Kr	83.30	115.78 115.95	71.7 71.7	[36] [37]	1.615 1.617	0.1581 0.1581
Xe	131.3	161.37 161.36	55.0 64.0	[36] [37]	2.934 2.521	0.1571 0.1573

Таблица 5. Экспериментальные данные определенные при различных давлениях для ГПУ-кристаллов изотопов водорода и рассчитанные по ним и по формуле (11) значения отношения Линдеманна

Crystal	P, bar	T_m, \mathbf{K}	Θ, Κ	T_m/Θ	L_E
p-H ₂	1 400	13.96 [37] 25 [39,40]	118.0 [38] 122.9 [39] 151.1 [40]	0.1183 0.2034 0.1655	0.2795 0.2182 0.2384
o-D ₂	1 200	18.72 [33] 25 [35,36]	114.0 [38] 91.2 [39] 109.0 [40]	0.1642 0.2741 0.2294	0.2393 0.1956 0.2081

2.3. Кристаллы из молекул изотопов водорода

В табл. 5 представлены экспериментально определенные при различных давлениях температура плавления и температура Дебая для молекулярных ГПУ-кристаллов изотопов водорода: пара-водорода (para-hydrogen, p-H₂, m = 2.016 a.m.u.) и орто-дейтерия (ortho-deuterium, o-D₂, m = 4.028 a.m.u.). По этим данным с помощью формулы (11) были рассчитаны отношения Линдеманна для кристаллов с колебательным спектром по модели Эйнштейна. Из табл. 5 видно, что наши расчеты хорошо согласуются с теоретическими и экспериментальными оценками из работ [17–40,41,42], где было получено: $L(p-H_2) \cong 0.2$.

В работе [40] были получены аппроксимации экспериментальных барических зависимостей (до 19 kbar) для температуры плавления и температуры Дебая в виде уравнений следующего вида (здесь T_m и Θ в K, P в kbar): для p-H₂

$$T_m = \left(\frac{P + 0.2442}{2.858 \cdot 10^{-3}}\right)^{1/1.724},\tag{14}$$

$$\Theta = 85.389 - 0.729P_m + 98.832P_m^{0.481}$$

для о-D₂

$$T_m = \left(\frac{P + 0.5431}{3.66 \cdot 10^{-3}}\right)^{1/1.677},$$

$$\Theta = 74.65 + 65.298 P_m^{0.476}.$$
(15)

Используя зависимости (14) и (15), мы рассчитали барическую зависимость функций T_m/Θ и L_E , которые представлены на рис. 3. Из данных зависимостей видно, что с ростом давления отношение Линдеманна для молекулярных ГПУ-кристаллов изотопов водорода уменьшается.

2.4. Кристаллы изотопов гелия

Гелий имеет два стабильных изотопа ³Не (m = 3.016 a.m.u.) и ⁴Не (m = 4.0026 a.m.u.). Экспериментальные данные для кристаллов изотопов гелия с ОЦК и ГПУ структурой из статей [43,44] представлены в табл. 6, где V — это молярный объем кристалла,

Рис. 3. Барическая зависимость отношения T_m/Θ (пунктирные линии, правая шкала) и функции L_E (сплошные линии, левая шкала). Нижняя сплошная кривая для L_E и верхняя пунктирная кривая для T_m/Θ относятся к D₂.

 $T_m(1)$ и $T_m(2)$ это верхняя и нижняя температура кристаллизации, Θ — температура Дебая при T = 0 К. Используя эти значения и формулу (13) были рассчитаны отношения Линдеманна для кристаллов с колебательным спектром по модели Эйнштейна, которые представлены в табл. 6.

В теоретических работах других авторов было показано, что для квантовых систем, таких как гелий электронный вигнеровский кристалл, И Линдеманна должно быть отношение не менее: 0.3 [19], $0.267 \pm 0.0026 = 0.2644 - 0.2696$ [45], $L(bcc^{-3}\text{He}) = 0.368$ И $L(bcc^{-4}\text{He}) = 0.292$ [46]. В работе [41] методом Quantum Monte Carlo simulations для ОЦК структур ³Не при $T_m = 0.65$ К и ⁴Не при $T_m = 1.6 \text{ K}$ было получено: $L(bcc^{-3}\text{He}) = 0.344$, $L(bcc^{-4}\text{He}) = 0.291$. В статье [47] было экспериментально измерено среднеквадратичное смещение атома в ГПУ кристалле ⁴Не при $T = 0.7 \pm 0.05$. В работе [47] было получено: $L(hc p^{-4} \text{He}) = 0.262 \pm 0.006$. Из табл. 6 видно, что рассчитанная величина L_E согласуется с оценками из работ [19,41,45-47]. При уменьшении молярного объема ОЦК или ГПУ кристалла гелия (т.е. с ростом давления) величина отношения Линдеманна уменьшается. Из табл. 6 также видно, что при верхней температуре кристаллизации величина L_E больше, чем при нижней.

Многие авторы (например, в работах [17,18,36,37,46,48]) указывали на связь отношения Линдеманна с параметром де Бура [49] (Л), который характеризует роль квантовых эффектов в энергетике кристалла, и который имеет вид:

$$\Lambda = \frac{2\pi\hbar}{\sigma(mD)^{1/2}}.$$
(16)

Здесь σ — расстояние между атомами, при котором парный межатомный потенциал (2) становится равным нулю: $\varphi(\sigma) = 0$.

Кристалл	$V, \mathrm{cm}^3/\mathrm{mol}$	$T_m(1), \mathbf{K}$	$T_m(2), \mathbf{K}$	Θ, Κ	Ref.	$T_m(1)/\Theta$	$L_E(1)$	$T_m(2)/\Theta$	$L_E(2)$
<i>bcc</i> - ³ He	23.80	1.276	0.898	20.10	[43]	0.0635	0.3917	0.0447	0.4668
	20.18	2.874	2.417	28.99	[43]	0.0991	0.3135	0.0834	0.3418
<i>hc p</i> - ³ He	19.05	2.983	2.790	39.20	[43]	0.0761	0.3478	0.0712	0.3596
	11.42	19.33	11.42	128.19	[43]	0.1508	0.2471	0.0891	0.3214
<i>hc p</i> - ⁴ He	12.23	16.78	14.23	95.50	[43]	0.1757	0.2289	0.1490	0.2486
	12.21	14.12	16.85	84.0	[44]	0.1681	0.2340	0.2006	0.2143
	21.04	2.27	1.45	24.2	[44]	0.0938	0.3133	0.0599	0.3920

Таблица 6. Экспериментальные данные для кристаллов изотопов гелия с ОЦК и ГПУ структурой из статей [43,44] и рассчитанные по ним значения *L*_E

Таблица 7. Рассчитанное отношение Линдеманна (из табл. 4 и 5) и параметр де Бура из работ [18,47,49]

Crystal	<i>m</i> , a.m.u.	$L_E(ext{calc})$	Λ_B [49] de Boer–1948	Λ_Z [47] Zucker–1961	Λ_G [18] Guardiola–2011
³ He	3.0160		3.04*	3.09	0.491*
⁴ He	4.0026		2.64	2.68	0.426
H_2	2.016	0.2795	1.73	1.73	0.293
D_2	4.028	0.2393	1.22	1.22	0.207
Ne	20.18	0.1802-0.1854	0.591	0.574	0.094
Ar	39.95	0.1611	0.187	0.184	0.029
Kr	83.3	0.1581	0.102	0.102	0.016
Xe	131.3	0.1571-0.1573	0.0636	0.062	0.010

Примечание. * Рассчитано по формуле: $\Lambda(^{3}\text{He}) = \Lambda(^{4}\text{He})[m(^{4}\text{He})/m(^{3}\text{He})]^{1/2} = 1.152\Lambda(^{4}\text{He}).$

На рис. 4 показаны зависимости рассчитанного для кристаллов изотопов водорода и инертных газов отношения Линдеманна от параметра де Бура из работ [18,47,49], которые представлены в табл. 7. Из-за использования различных значений функций, входящих в (16), величина параметра де Бура в более поздних работах отличается от той величины (Λ_B), что была представлена в работе [49]. Поэтому в табл. 7 наряду с Λ_B представлены значения параметра де Бура из [47] (Λ_Z), и из [18] (Λ_G).

Как видно из рис. 4 зависимость $L_E(\Lambda_i)$ для кристаллов изотопов водорода и инертных газов с большим коэффициентом корреляции (R) аппроксимируются линейной функцией следующего вида:

$$L_E = 0.14829 + 0.07326\Lambda_B, \quad R = 0.98323,$$

 $L_E = 0.14856 + 0.07336\Lambda_Z, \quad R = 0.98606,$
 $L_E = 0.14928 + 0.43162\Lambda_G, \quad R = 0.98866.$ (17)

Расчеты по линейным аппроксимациям (7) для кристаллов из изотопов гелия показали следующее: из Λ_B получено:

$$L_E({}^{3}\text{He}) = 0.3710, \quad L_E({}^{4}\text{He}) = 0.3417,$$

из Λ_Z получено:

$$L_E({}^{3}\text{He}) = 0.3752, \quad L_E({}^{4}\text{He}) = 0.3452,$$

Рис. 4. Зависимость рассчитанного отношения Линдеманна от параметра де Бура из работ [18,47,49].

из Λ_G получено:

$$L_E({}^{3}\text{He}) = 0.3612, \quad L_E({}^{4}\text{He}) = 0.3332.$$

Эти результаты подтверждают корректность как результатов наших расчетов для кристаллов гелия из табл. 6, так и корректность используемых формул (11) и (13).

В заключение отметим, что влияние ангармонизма колебаний атомов в кристалле на параметры плавления

как классических [3,50–52], так и квантовых [20,53] кристаллов незначительное. Именно поэтому использование в данной работе модели независимых гармонических осцилляторов Эйнштейна показало хорошие результаты. Как было нами показано, плавление обусловлено делокализацией определенной доли атомов как макро- [21,22], так и нанокристалла [29,30].

3. Заключение

Исходя из делокализационного критерия ФП К–Ж и модели кристалла Эйнштейна предложен сравнительно простой метод расчета отношения Линдеманна, который может быть применим как к классическим, так и к квантовым кристаллам.

Показано, что для однокомпонентных классических кристаллов (у которых $T_m/\Theta > 1.5$) отношение Линдеманна определяется только структурой кристалла. Расчеты для различных структур классических кристаллов показали хорошее согласие с оценками других авторов.

Показано, что для квантовых однокомпонентных кристаллов (у которых $T_m/\Theta < 0.4$) отношение Линдеманна определяется как структурой кристалла, так и функцией Θ/T_m . Это приводит к тому, что для квантовых кристаллов отношение Линдеманна уменьшается с ростом давления вдоль линии плавления. Для квантовых нанокристаллов отношение Линдеманна возрастает при изобарном уменьшении размера нанокристалла тем больше, чем заметнее форма нанокристалла отклонена от энергетически оптимальной формы.

При переходе из классической в квантовую область функция $T_m(c, \Theta)$ изменяет свою функциональную зависимость. Поэтому использование критерия Линдеманна для изучения плавления квантовых кристаллов (как это пытались сделать в работе [20] при изучении плавления атомарного металлического водорода) показало некорректные результаты.

Получено обобщение делокализационного критерия плавления на случай квантовых однокомпонентных кристаллов. Показано, что если выполняется: $T_m/\Theta = 0$, то все атомы квантового кристалла при температуре плавления находятся в делокализованном состоянии.

Благодарности

Автор выражает благодарность С.П. Крамынину, К.Н. Магомедову, Н.Ш. Газановой, З.М. Сурхаевой и М.М. Гаджиевой за плодотворные дискуссии и помощь в работе.

Конфликт интересов

Автор заявляет об отсутствии конфликта интересов.

Список литературы

J.H. Bilgram. Phys. Rep. 153, 1, 1–89 (1987).
 DOI: 10.1016/0370-1573(87)90047-0

- [2] Q.S. Mei, K. Lu. Prog. Mater Sci. 52, 8, 1175–1262 (2007).
 DOI: 10.1016/j.pmatsci.2007.01.001
- [3] G. de With. Chem. Rev. 123, 23, 13713–13795 (2023).
 DOI: 10.1021/acs.chemrev.3c00489
- [4] F.A. Lindemann. Phys. Z. 11, 14, 609–612 (1910).
- [5] J.J. Gilvarry. Phys. Rev. 102, 2, 308–316 (1956).
 DOI: 10.1103/PhysRev.102.308
- [6] J.J. Gilvarry. Phys. Rev. 103, 6, 1700–1704 (1956). DOI: 10.1103/PhysRev.103.1700
- [7] J.N. Shapiro. Phys. Rev. B 1, 10, 3982–3989 (1970).
 DOI: 10.1103/PhysRevB.1.3982
- [8] S.A. Cho. J. Phys. F. Met. Phys. 12, 6, 1069–1083 (1982).
 DOI: 10.1088/0305-4608/12/6/008
- [9] T. Matsuura, H. Suzuki, K.I. Takano, F. Honda. J. Phys. Soc. Jpn. 79, 5, 053601 (2010). DOI: 10.1143/JPSJ.79.053601
- [10] M.M. Vopson, N. Rogers, I. Hepburn. Solid State Commun. 318, 113977 (2020). DOI: 10.1016/j.ssc.2020.113977
- [11] V.V. Goldman. J. Phys. Chem. Solids 30, 4, 1019–1021 (1969). DOI: 10.1016/0022-3697(69)90301-1
- [12] N.P. Gupta. Solid State Commun. 13, 1, 69–71 (1973).
 DOI: 10.1016/0038-1098(73)90069-0
- [13] R.K. Crawford. Melting, vaporization and sublimation. In "Rare Gas Solids", Eds. M.L. Klein, J.A. Venables. Academic Press, New York (1977) Vol. 2, P. 663–728.
- [14] R.K. Singh, D.K. Neb. Phys. Status Solidi B 126, 1, K15–K18 (1984). DOI: 10.1002/pssb.2221260153
- [15] P. Mohazzabi, F. Behroozi. J. Mater. Sci. Lett. 6, 404–406 (1987). DOI: 10.1007/BF01756777
- [16] С.С. Бацанов. Журнал Физической Химии 83, 11, 2024– 2029 (2009). [S.S. Batsanov, Russ. J. Phys. Chem. A 83, 11, 1836–1841 (2009).] DOI: 10.1134/S0036024409110053
- [17] C. Domb. II Nuovo Cimento (1955–1965) 9, (Suppl 1), 9–26 (1958). DOI: 10.1007/BF02824224
- [18] R. Guardiola, J. Navarro. J. Phys. Chem. A 115, 25, 6843– 6850 (2011). DOI: 10.1021/jp1111313
- [19] S.T. Chui. Phys. Rev. B 41, 1, 796–798 (1990).
 DOI: 10.1103/PhysRevB.41.796
- [20] I. Loa, F. Landgren, J. Phys.: Condens. Matter 36, 18, 185401 (2024). DOI: 10.1088/1361-648X/ad1e08
- [21] М.Н. Магомедов. ПЖТФ 33, 19, 65–71 (2007). [М.N. Magomedov. Tech. Phys. Lett. 33, 10, 837–840 (2007).]
 DOI: 10.1134/S1063785007100094
- [22] М.Н. Магомедов. Физика Металлов и Металловедение 105, 2, 127–136 (2008). [М.N. Magomedov. Phys. Met. Metallogr. 105, 2, 116–125 (2008).] DOI: 10.1134/S0031918X08020038
- [23] Д.С. Сандитов. ЖЭТФ 142, *I* (7), 123–137 (2012).
 [D.S. Sanditov. J. Exp. Theor. Phys. 115, *I*, 112–124 (2012).]
 DOI: 10.1134/S1063776112060143
- [24] Д.С. Сандитов, Б.С. Сыдыков. ЖТФ 84, 5, 52–54 (2014).
 [D.S. Sanditov, B.S. Sydykov. Tech. Phys. 59, 5, 682–685 (2014).] DOI: 10.1134/S1063784214050272
- [25] М.Н. Магомедов. Физика Металлов и Металловедение 10, 13–16 (1992). [М.N. Magomedov. Phys. Met. Metallogr. 74, 4, 319–321 (1992).]
- [26] А.Г. Чирков, А.Г. Пономарев, В.Г. Чудинов. ЖТФ 74, 2, 62–65 (2004).
 [A.G. Chirkov, A.G. Ponomarev, V.G. Chudinov. Tech. Phys. 49, 2, 203–206 (2004).]
 [DOI: 10.1134/1.1648956
- [27] Г.М. Полетаев, М.Д. Старостенков. ФТТ 51, 4, 686–691 (2009).
 [G.M. Poletaev, M.D. Starostenkov. Phys. Solid State 51, 4, 727–732 (2009).
 [DOI: 10.1134/S106378340904012X

- [28] М.Н. Магомедов. Кристаллография 62, 3, 487–504 (2017).
 [М.N. Magomedov. Crystallogr. Rep. 62, 3, 480–496 (2017).]
 DOI: 10.1134/S1063774517030142
- [29] М.Н. Магомедов. ФТТ 66, 2, 232–244 (2024).
 DOI: 10.61011/FTT.2024.02.57247.241 [M.N. Magomedov. Phys. Solid State 66, 2, 221–233 (2024).
 DOI: 10.61011/PSS.2024.02.57919.241]
- [30] М.Н. Магомедов. ЖТФ 80, 9, 141–145 (2010). [М.N. Magomedov. Tech. Phys. 55, 9, 1373–1377 (2010).]
 DOI: 10.1134/S1063784210090227
- [31] М.Н. Магомедов. Уравнение состояния и поверхностные свойства аморфного железа. ЖТФ 90, 10, 1731–1738 (2020). DOI: 10.21883/JTF.2020.10.49806.62-20
 [М.N. Magomedov. Tech. Phys. 65, 10, 1659–1665 (2020). DOI: 10.1134/S1063784220100138]
- [32] T. Soma, H. Matsuo. J. Phys. C: Solid State Phys. 15, 9, 1873– 1882 (1982). DOI: 10.1088/0022-3719/15/9/010
- [33] N.T.T. Hang. Commun. in Phys. 24, 3, 207–215 (2014).
 DOI: 10.15625/0868-3166/24/3/4070
- [34] L.V. Sang, V.V. Hoang, D.T.N. Tranh. Eur. Phys. J. D 69, 208 (2015). DOI: 10.1140/epjd/e2015-60153-1
- [35] H. Li, R. Xu, Z. Bi, X. Shen, K. Han. J. Electron. Mater. 46, 7, 3826–3830 (2017). DOI: 10.1007/s11664-016-5070-8
- [36] G.L. Pollack. Rev. Mod. Phys. 36, 3, 748–791 (1964).DOI: 10.1103/RevModPhys.36.748
- [37] Криокристаллы, Под ред. Б.И. Веркина, А.Ф. Приходько. Наукова Думка, Киев (1983). 526 с. [Стуостуstals, Eds. B.I. Verkin, A.F. Prikhod'ko. Naukova Dumka, Kiev (1983). 526 p.] (in Russian)
- [38] M. Nielsen. Phys. Rev. B 7, 4, 1626–1635 (1973).DOI: 10.1103/PhysRevB.7.1626
- [39] D.A. Young, M. Ross. J. Chem. Phys. 74, 12, 6950–6955 (1981). DOI: 10.1063/1.441058
- [40] V. Diatschenko, C.W. Chu, D.H. Liebenberg, D.A. Young, M. Ross, R.L. Mills. Phys. Rev. B 32, 1, 381–389 (1985). DOI: 10.1103/PhysRevB.32.381
- [41] M. Dusseault, M. Boninsegni. Phys. Rev. B 95, 10, 104518 (2017). DOI: 10.1103/PhysRevB.95.104518
- [42] T.R. Prisk, R.T. Azuah, D.L. Abernathy, G.E. Granroth, T.E. Sherline, P.E. Sokol, J. Hu, M. Boninsegni. Phys. Rev. B 107, 9, 094511 (2023). DOI: 10.1103/PhysRevB.107.094511
- [43] H.H. Sample, C.A. Swenson. Phys. Rev. 158, 1, 188–199 (1967). DOI: 10.1103/PhysRev.158.188
- [44] E.C. Heltemes, C.A. Swenson. Phys. Rev. 128, 4, 1512–1519 (1962). DOI: 10.1103/PhysRev.128.1512
- [45] P.A. Whitlock, D.M. Ceperley, G.V. Chester, M.H. Kalos. Phys. Rev. B 19, 11, 5598–5633 (1979).
 DOI: 10.1103/PhysRevB.19.5598
- [46] H.R. Glyde. "Helium, Solid". P. 1–11. [Online]. http://www.physics.udel.edu/ glyde/Solid_H13.pdf
- [47] C.A. Burns, E.D. Isaacs. Phys. Rev. B 55, 9, 5767–5771 (1997). DOI: 10.1103/PhysRevB.55.5767
- [48] I.J. Zucker. Proc. Phys. Soc. 77, 4, 889–900 (1961). DOI: 10.1088/0370-1328/77/4/311
- [49] J. De Boer. Physica 14, 2–3, 139–148 (1948).
 DOI: 10.1016/0031-8914(48)90032-9
- [50] B. Grabowski, L. Ismer, T. Hickel, J. Neugebauer. Phys. Rev. B 79, 13, 134106 (2009). DOI: 10.1103/PhysRevB.79.134106
- [51] C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer,
 G. Kresse, A. Janotti, C.G. Van de Walle. Rev. Mod. Phys.
 86, 1, 253–305 (2014). DOI: 10.1103/RevModPhys.86.253

- [52] D.D. Satikunvar, N.K. Bhatt, B.Y. Thakore. J. Appl. Phys. 129, 3, 035107 (2021). DOI: 10.1063/5.0022981
- [53] M. Borinaga, I. Errea, M. Calandra, F. Mauri, A. Bergara. Phys. Rev. B 93, 17, 174308 (2016). DOI: 10.1103/PhysRevB.93.174308

Редактор А.Н. Смирнов