05,01

Магнитная структура и гистерезисные характеристики кристаллов сплава Ni₄₉Fe₁₈Ga₂₇Co₆ с эффектом памяти формы

© П.В. Харитонский¹, В.И. Николаев¹, В.М. Крымов¹, Р.Б. Тимашов¹, Е.С. Сергиенко^{1,2}, Д.Д. Дубешко², К.Г. Гареев^{1,3}, А.Ю. Ралин⁴

 ¹ Физико-технический институт имени А.Ф. Иоффе РАН, Санкт-Петербург, Россия
² Санкт-Петербург, Россия
³ Санкт-Петербург, Россия
³ Санкт-Петербург, Россия
⁴ Дальневосточный федеральный университет, Владивосток, Россия
E-mail: peterkh@yandex.ru
Поступила в Редакцию 3 октября 2024 г.

Поступила в Редакцию 3 октября 2024 г. В окончательной редакции 9 октября 2024 г. Принята к публикации 9 октября 2024 г.

> Исследованы магнитные свойства кристаллов сплава Ni₄₉Fe₁₈Ga₂₇Co₆ с эффектом памяти формы. Показано влияние особенностей кристаллической структуры на параметры магнитного гистерезиса. Для сплава Ni₄₉Fe₁₈Ga₂₇Co₆, магнитное состояние которого является многодоменным, предложен подход к оценке гистерезисных характеристик на основе модели магнитостатически взаимодействующих однодоменных частиц с эффективной спонтанной намагниченностью.

> Ключевые слова: сплав с эффектом памяти формы, двойникование, магнитные домены, магнитный гистерезис, намагниченность, коэрцитивность, магнитостатическое взаимодействие.

DOI: 10.61011/FTT.2024.11.59325.251

1. Введение

Ферромагнитные сплавы Гейслера интересны тем, что имеют эффект памяти формы, в том числе и с возможностью магнитного управления им [1]. Некоторые составы кристаллов четверных сплавов Ni–Fe–Ga–Co, например, Ni_{55–x}Ga₂₇Fe₁₈Co_x [2], Ni₅₂Fe₁₇Ga₂₇C₄ [3], Ni₄₉Fe₁₈Ga₂₇Co₆ [4] характеризуются сравнительно высокими температурами мартенситного превращения и точки Кюри, которые могут быть изменены за счет варьирования состава и условий термообработки с удельным магнитным моментом, достигающим $40-90 \text{ A} \cdot \text{m}^2/\text{kg}$ [5–7]. Одной из важных решаемых задач в области исследования сплавов с эффектом памяти формы является снижение управляющего магнитного поля с ~ 1 до ~ 0.1 T [8], что напрямую связано с магнитными характеристиками сплава.

Целью настоящей работы являлось исследование магнитных свойств кристаллов сплава Ni₄₉Fe₁₈Ga₂₇Co₆ с эффектом памяти формы и оценка взаимосвязи кристаллической структуры и магнитного состояния с параметрами магнитного гистерезиса. Теоретический расчет гистерезисных характеристик сплава проводился на основе микромагнитной модели магнитостатически взаимодействующих однодоменных частиц с эффективной спонтанной намагниченностью [9].

2. Материалы и методы

Исследуемый монокристалл сплава Ni₄₉Fe₁₈Ga₂₇Co₆ в форме цилиндра диаметром 6 mm и высотой 10 mm был выращен методом Чохральского вдоль направления [100] при скорости вытягивания 1 mm/min [4]. Образец был отожжен при температуре 1150°C в течение 1 h в аргоновой атмосфере с последующей закалкой в воде. Для проведения исследований состава, морфологии поверхности и магнитных свойств использовался диск диаметром 6 mm и толщиной 0.9 mm, полученный методом искровой резки из первоначального образца.

Микроскопические исследования проводились с использованием сканирующего электронного микроскопа S-3400N (Hitachi, Япония) с аналитической приставкой рентгеноспектрального микроанализа (PCMA). Петля магнитного гистерезиса и кривая разрушения остаточной намагниченности насыщения в поле противоположного направления были построены с помощью вибрационного магнитометра LakeShore 7410 (Lake Shore Cryotronics Inc., США) при температуре 295 К.

3. Результаты и обсуждение

Элементный состав, полученный методом РСМА, представлен в табл. 1, атомарный состав образца соответствует заданному (Ni₄₉Fe₁₈Ga₂₇Co₆). Ранее для этого

Таблица	1.	Элементны	ый со	став	образца	сплава
Ni49Fe18Ga27	7Co ₆ ,	полученный	методо	м рент	теноспект	рального
микроанали	за					

Химический элемент	Атомная доля, %		
Железо	18 ± 1		
Кобальт	6 ± 1		
Никель	50 ± 1		
Галлий	26 ± 1		

Таблица 2. Параметры магнитного гистерезиса образца при температуре 295 К

$\mu_0 H_c,$ mT	$\mu_0 H_{cr},$ mT	M_s , A \cdot m ² /kg	M_{rs} , A \cdot m ² /kg	H_{cr}/H_c	M_{rs}/M_s
1.10	5.80	45.00	0.84	5.27	0.02

образца проводились калориметрические исследования с помощью дифференциального сканирующего калориметра [4]. Было показано, что прямое мартенситное превращение происходит при температуре ниже 290 К, т.е. при комнатной температуре (295 К) кристалл находится в состоянии аустенита.

Экспериментальные кривые магнитного гистерезиса с центральной частью и кривая разрушения остаточной намагниченности насыщения приведены на рис. 1. Значения намагниченности насыщения M_s , остаточной намагниченности M_{rs} , коэрцитивной силы H_c и коэрцитивной силы по остаточной намагниченности H_{cr} приведены в табл. 2. Следует отметить, что переход "аустенитмартенсит" происходит при температурах, близких к комнатной [4]. Наблюдаемая в образце низкая коэрцитивная сила, также свидетельствует, что при температуре 295 К он находится в аустенитном состоянии, так как в мартенситном состоянии коэрцитивность этого кристалла существенно выше [10].

Магнитное состояние образцов Ni-Fe-Ga-Co, подобных изученному, исследовалось методом керровской микроскопии [3,11]. В работе [3] показано, что магнитная структура содержит большое количество магнитных полосовых доменов с характерной шириной порядка $10\,\mu m$, а также пересекающие их поперечные полосы двойникования. Исходя из результатов магнитносиловой микроскопии (рис. 2) и магнитогранулометрических отношений H_{cr}/H_c и M_{rs}/M_s [12] для нашего образца, можно заключить, что он находится в многодоменном состоянии. В нашем случае магнитные полосовые домены, разделенные более тонкими доменными стенками, также пересекаются поперечными полосами двойникования. На наш взгляд области пересечения доменных стенок и полос двойникования не являются однородными по кристаллическим и магнитным свой-

Рис. 1. Петля гистерезиса с выделенной на вставке центральной частью (*a*) и кривая разрушения остаточной намагниченности насыщения M_{rs} (*b*) образца при температуре 295 К.

ствам. Эти области имеют размер порядка нескольких микрометров, и при отсутствии внешнего поля их можно условно считать отдельными "однодоменными частицами" с эффективной спонтанной намагниченностью $I_{rs\,eff}$. При этом вкладом в остаточную намагниченность насыщения образца M_{rs} , вносимым тонкими доменными стенками внутри "частиц", можно пренебречь и теоретически рассчитать эффективные спонтанные намагниченности (см. табл. 3) с помощью модели магнитостатически взаимодействующих однодоменных частиц с эффективной спонтанной намагниченностью [9].

Величины *M_s* и *M_{rs}* (табл. 2) связаны с теоретически рассчитанными значениями простым соотношением [9]:

$$M_{rs}/M_s = \frac{C_{rs}I_{rs\,eff}}{C_sI_{s\,eff}}$$

где $I_{s\,eff}$ — эффективная спонтанная намагниченность по насыщению, $I_{rs\,eff}$ — эффективная спонтанная намагниченность по остаточной намагниченности, C_s —

Рис. 2. Результаты магнитно-силовой микроскопии (INTEGRA-AURA (NT-MDT, Россия)): рельеф поверхности (*a*) и фазовый контраст (*b*).

Доля объема, занятая границами между "частицами"	Доля объема, занятая "частицами"	<i>I_{s eff}</i> , kA/m	<i>I_{rs eff}</i> , kA/m
0.00	0.600	531	9.9
0.00	0.900	354	6.6
0.01	0.594	531	10.0
0.01	0.891	354	6.7
0.05	0.570	531	10.4
0.05	0.855	354	6.9
0.10	0.540	531	11.0
0.10	0.810	354	7.3

Таблица 3. Теоретические значения эффективных спонтанных намагниченностей $I_{s\,eff}$ и $I_{rs\,eff}$

объемная концентрация ферромагнитных материалов в образце, C_{rs} — объемная концентрация "однодоменных частиц", дающих вклад в остаточную намагниченность.

4. Заключение

Теоретическая оценка спонтанной намагниченности $I_{s\,eff}$ (порядка 300–500 kA/m) показывает, что кристалл сплава Ni₄₉Fe₁₈Ga₂₇Co₆ в аустенитном состоянии при комнатной температуре имеет спонтанную намагниченность меньше, чем у чистого никеля (510 kA/m). Значение $I_{rs\,eff}$ по остаточной намагниченности (порядка 7–11 kA/m) обусловлено восстановлением многодоменной структуры, наличием вихревых образований и доменных стенок в нулевом внешнем поле.

Выявленное низкое значение коэрцитивной силы H_c (1.1 mT) в кристаллах сплава Ni₄₉Fe₁₈Ga₂₇Co₆ позволяет предположить принципиальную возможность снижения магнитного поля, управляющего деформацией памяти формы в этих кристаллах.

Список литературы

- А.Н. Васильев, В.Д. Бучельников, Т. Такаги, В.В. Ховайло, Э.И. Эстрин. УФН. 173, 6, 577 (2003).
- [2] Y. Imano, T. Omori, K. Oikawa, Y. Sutou, R. Kainuma, K. Ishida. Mater. Sci. Eng. A. 438–440, 970 (2006).
- [3] Q. Hu, L. Yang, Z. Zhou, Y. Huang, J. Li, J. Li. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 48, 2675 (2017).
- [4] V.I. Nikolaev, S.I. Stepanov, P.N. Yakushev, V.M. Krymov, S.B. Kustov. Intermetallics. 119, 106709 (2020).
- [5] H. Zheng, M. Xia, J. Liu, Y. Huang, J. Li. Acta Mater. 53, 5125 (2005).
- [6] J. Liu, N. Scheerbaum, O. Gutfleisch. IEEE Trans. Magn. 44, 3025 (2008).
- [7] J. Liu, N. Scheerbaum, D. Hinz, O. Gutfleisch. Acta Mater. 56, 3177 (2008).
- [8] M. Namvari, V. Laitinen, A. Sozinov, A. Saren, K. Ullakko. Scr. Mater. 224, 115116 (2023).
- [9] P.V. Kharitonskii, E.A. Setrov, A.Yu. Ralin. Mater. Phys. Mech. 52, 2, 142 (2024).
- [10] H. Morito, K. Oikawa, A. Fujita, K. Fukamichi, R. Kainuma, K. Ishida, T. Takagi. J. Magn. Magn. Mater. 290–291, 850 (2005).
- [11] J. McCord. J. Phys. D: Appl. Phys. 48, 333001 (2015).
- [12] J.L. Kirschvink, D.S. Jones, B.J. MacFadden. Magnetite Biomineralization and Magnetoreception in Organisms. A New Biomagnetism. Plenum Press, New York (1985). 287 p.

Редактор А.Н. Смирнов