Поверхностные плазмон-поляритоны в двустенных углеродных нанотрубках

© С.А. Афанасьев¹, В.А. Зайцев¹, С.Г. Моисеев^{1,2}, И.А. Рожлейс¹, Д.Г. Санников^{1,¶}, Г.В. Тертышникова¹

¹ Ульяновский государственный университет, 432009 Ульяновск, Россия ² Ульяновский филиал Института радиотехники и электроники им. В.А. Котельникова Российской академии наук, 432071 Ульяновск, Россия [¶] E-mail: sannikov-dg@yandex.ru

Поступила в Редакцию 27 апреля 2024 г. В окончательной редакции 4 июля 2024 г.

Принята к публикации 30 октября 2024 г.

Исследованы дисперсионные характеристики поверхностных плазмон-поляритонов в двустенных углеродных нанотрубках с учетом омических потерь. Получено дисперсионное уравнение для поверхностных плазмон-поляритонов, учитывающее анизотропию электропроводности стенок нанотрубки. Найдены его численные решения для плазмонных мод низших порядков, распространяющихся в широком частотном диапазоне (включая терагерцевую и видимую области спектра). Обнаружено, что для углеродных нанотрубок больших радиусов коэффициент замедления поверхностных плазмон-поляритонов может превышать 300.

Ключевые слова: углеродная нанотрубка (УНТ), поверхностный плазмон-поляритон (ППП).

DOI: 10.61011/FTP.2024.09.59302.6326A

1. Введение

Поверхностные плазмон-поляритоны (ППП) — это электромагнитные возбуждения на границе раздела диэлектрик-проводник, ограниченные в перпендикулярном направлении и возникающие в результате взаимодействия электромагнитных полей с колебаниями электронной плазмы проводника [1]. Углеродные нанотрубки (УНТ) являются перспективным классом структур, которые могут служить для возбуждения ППП [2]. УНТ могут быть одно- или двустенными (МУНТ) и проявлять как металлические, так и полупроводниковые свойства. Если фазовая скорость замедленных ППП и дрейфовая скорость носителей заряда на стенках УНТ близки по величине и совпадают по направлению, то протекающий дрейфовый ток может усиливать ППП волну [3]. В работе [4] предложено использовать данный эффект в схеме генератора терагерцевого излучения на основе массива параллельных двустенных УНТ (ДУНТ), вдоль которых протекает постоянный ток. В связи с этим актуальной задачей является изучение условий возбуждения медленных высокодобротных ППП на стенках УНТ.

В настоящей работе исследованы дисперсионные свойства ППП в ДУНТ с учетом анизотропии электропроводности стенок и омических потерь, проведен анализ коэффициента замедления ППП мод в ДУНТ разных поперечных размеров. Описание плазмонных свойств нанотрубок проводится в рамках гидродинамического подхода [5,6].

2. Модель проводимости ДУНТ

В рамках линеаризованной гидродинамической теории, разработанной применительно к УНТ [5], ДУНТ моделируется системой двух коаксиальных цилиндрических стенок, выполненных из графена, радиусами a_1 и a_2 ($a_2 > a_1$) с типичным расстоянием между слоями 0.34 нм. В статье [6] с помощью гидродинамического приближения получен тензор проводимости ДУНТ $\hat{\sigma}_j$ (j = 1, 2 — номер стенки), который определяет поверхностную плотность тока. При его выводе использовались уравнение баланса импульса носителей заряда и уравнение непрерывности. С учетом потерь компоненты тензора проводимости в цилиндрических координатах (r, φ, z) имеют вид

$$\sigma_{zz}^{jm} = \sigma_0 \Omega^{-1} \left(\omega \tilde{\omega} - \frac{\alpha m^2}{a_j^2} \right),$$

$$\sigma_{z\varphi}^{jm} = \sigma_{\varphi z}^{jm} = \sigma_0 \Omega^{-1} \frac{\alpha qm}{a_j},$$

$$\sigma_{\varphi \varphi}^{jm} = \sigma_0 \Omega^{-1} (\omega \tilde{\omega} - \alpha q^2), \qquad (1)$$

где $\sigma_0 = in_0 e^2/(m_{\rm eff}\tilde{\omega}), n_0$ — равновесная поверхностная плотность электронов на стенках трубки, e и $m_{\rm eff}$ — заряд и эффективная масса электрона, $\Omega = \omega \tilde{\omega} - \alpha \left(q^2 + \frac{m^2}{a_j^2}\right), \tilde{\omega} = \omega + i\tau^{-1}, q$ — постоянная распространения ППП, τ — время релаксации электронов, m — азимутальное модовое число для ППП-моды, параметр $\alpha = \frac{V_E^2}{2}$ связан с пространственной дисперсией (компоненты тензора $\hat{\sigma}_j$ зависят от q), $V_{\rm F}$ — скорость

Рис. 1. Дисперсионные зависимости для ППП в ДУНТ с параметрами $a_1 = 0.5$ нм, $a_2 = 0.84$ нм (сплошные линии — НЧ ветви, пунктирные линии — ВЧ ветви). Время релаксации $\tau = 10^{-12}$ с [7], $a_0 = 1$ нм, $\omega_0 = 2.3 \cdot 10^{15}$ с⁻¹. (Цветной вариант рисунка представлен в электронной версии статьи).

Ферми. Особенностью данной модели является учет азимутальных составляющих поверхностной плотности тока на стенках нанотрубки, а также зависимости проводимости от азимутального модового числа.

3. Дисперсионное соотношение для ППП в ДУНТ

Используя систему уравнений Максвелла, в общем случае гибридных мод $(E_z, H_z \neq 0)$ можно записать уравнение Гельмгольца для продольных компонент электрического E_z и магнитного H_z полей в следующем виде:

$$\frac{d^{2}E_{z}}{dr^{2}} + \frac{1}{r}\frac{dE_{z}}{dr} - \left(\kappa^{2} + \frac{m^{2}}{r^{2}}\right)E_{z} = 0,$$

$$\frac{d^{2}H_{z}}{dr^{2}} + \frac{1}{r}\frac{dH_{z}}{dr} - \left(\kappa^{2} + \frac{m^{2}}{r^{2}}\right)H_{z} = 0,$$
 (2)

где $\kappa^2 = q^2 - \omega^2/c^2$ — квадрат поперечного волнового числа, c — скорость света в вакууме. В отсутствие потерь величины q и κ вещественны, при этом $q > \omega/c$, что указывает на замедление ППП мод. Решение уравнений (2) с учетом соответствующих граничных условий приводит к следующему дисперсионному соотношению для ППП мод: где I_m и K_m — модифицированные функции Бесселя порядка m,

$$\begin{split} \Pi_{z\phi}^{(j)} &= \sigma_{z\phi}^{jm} + \sigma_{\phi\phi}^{jm} \frac{mq}{\kappa^2 a_j}, \quad \Pi_{zz}^{(j)} = \sigma_{zz}^{jm} + \sigma_{z\phi}^{jm} \frac{mq}{\kappa^2 a_j}, \\ M_{22} &= K_m(\kappa a_2) \Xi \Pi_{z\phi}^{(2)}, \quad M_{32} = -\frac{i\omega \varepsilon_0}{\kappa^2 a_1 K_m(\kappa a_1)}, \\ M_{42} &= -M_{32} - K_m(\kappa a_2) \Xi \Pi_{zz}^{(2)}, \quad M_{14} = -\frac{1}{\kappa a_1 K'_m(\kappa a_1)}, \\ M_{24} &= -\frac{1}{\kappa a_2 K'_m(\kappa a_2)} + \frac{i\omega \mu_0}{\kappa} \Gamma K'_m(\kappa a_2) \sigma_{\phi\phi}^{1m}, \\ M_{34} &= \frac{mq}{\kappa^2 a_1} M_{14}, \\ M_{44} &= \frac{mq}{\kappa^3 a_2^2 K'_m(\kappa a_2)} - \frac{i\omega \mu_0}{\kappa} \Gamma K'_m(\kappa a_2) \sigma_{z\phi}^{2m}, \\ &\equiv \frac{I_m(\kappa a_2)}{K_m(\kappa a_2)} - \frac{I_m(\kappa a_1)}{K_m(\kappa a_1)}, \\ &\Gamma &= \frac{I'_m(\kappa a_2)}{K'_m(\kappa a_2)} - \frac{I'_m(\kappa a_1)}{K'_m(\kappa a_1)}. \end{split}$$

Известно, что для ППП в МУНТ, имеющих N стенок, дисперсионное соотношение имеет N различных положительных корней для каждого m [6]. В частности, для ДУНТ решение уравнения (3) распадается на две ветви — высокочастотную (ВЧ) и низкочастотную (НЧ).

$$\det \begin{pmatrix} I_{m}(\kappa a_{1})\Pi_{z\phi}^{(1)} & 0 & -M_{14} + \frac{i\omega\mu_{0}}{\kappa} I'_{m}(\kappa a_{1})\sigma_{\phi\phi}^{1m} & M_{14} \\ \frac{I_{m}(\kappa a_{1})K_{m}(\kappa a_{2})}{K_{m}(\kappa a_{1})}\Pi_{z\phi}^{(2)} & M_{22} & \frac{i\omega\mu_{0}}{\kappa} \frac{I'_{m}(\kappa a_{1})K'_{m}(\kappa a_{2})}{K'_{m}(\kappa a_{1})}\sigma_{\phi\phi}^{2m} & M_{24} \\ -M_{32} - I_{m}(\kappa a_{1})\Pi_{zz}^{(1)} & M_{32} & -M_{34} - \frac{i\omega\mu_{0}}{\kappa} I'_{m}(\kappa a_{1})\sigma_{z\phi}^{1m} & M_{34} \\ -\frac{I_{m}(\kappa a_{1})K_{m}(\kappa a_{2})}{K_{m}(\kappa a_{1})}\Pi_{zz}^{(2)} & M_{42} & -\frac{i\omega\mu_{0}}{\kappa} \frac{I'_{m}(\kappa a_{1})K'_{m}(\kappa a_{2})}{K'_{m}(\kappa a_{1})}\sigma_{z\phi}^{2m} & M_{44} \end{pmatrix} = 0,$$
(3)

Рис. 2. Частотные зависимости коэффициента замедления $\beta = \frac{c}{V_{\rm ph}}$ основной моды (m = 0) для ДУНТ различной толщины (сплошные линии — НЧ ветви, пунктирные линии — ВЧ ветви). Параметры те же, что на рис. 1.

4. Численный анализ и обсуждение

Дисперсионное уравнение (3) решалось численно относительно комплексной постоянной распространения q = q' + iq''. На рис. 1 приведены зависимости величин $q'a_0$ и $q''a_0$ от приведенной частоты ω/ω_0 для четырех низших плазмонных мод волновода на основе ДУНТ. Использованы следующие нормировочные множители: $a_0 = 1$ нм, $\omega_0^2 = e^2 n_0/\varepsilon_0 m_{\text{eff}} a_0$. Для входящего в последнее выражение отношения равновесной поверхностной плотности электронов к эффективной массе носителей заряда в [8] получена следующая оценка: $\frac{n_0}{m_{\text{eff}}} = \frac{2V_F}{\pi^2 ha_0}$, где значение скорости Ферми для металлических УНТ оценивается как $V_F \approx 10^6$ м/с. Это дает для параметра ω_0 значение 2.3 · 10¹⁵ с⁻¹.

В спектральной области $\omega < 0.74\omega_0$ существует слабозатухающая мода с индексом m = 0, при этом для ее НЧ ветви зависимость $q'(\omega)$ близка к линейной. В области $\omega < \omega_0$ коэффициент затухания q'' нулевой моды не превышает $4 \cdot 10^5 \text{ m}^{-1}$, которому соответствует длина пробега порядка нескольких мкм. Моды более высоких порядков $(m \ge 1)$ имеют существенно большее по сравнению с фундаментальной модой затухание в частотных областях отсечки, где $q' \ll q''$.

На рис. 2 представлены частотные зависимости коэффициента замедления $\beta = \frac{c}{V_{ph}}$ (V_{ph} — фазовая скорость ППП) фундаментальной моды для ДУНТ, различающихся радиусами слоев a_j . Видно, что величина β для НЧ ветви выше, чем для ВЧ, причем эта величина растет с увеличением радиуса трубок. Частотная зависимость параметра β для НЧ ветви выражена слабо. Для этой ветви в случае трубок большого радиуса на всех частотах достигаются значения $\beta > 300$, что позволяет реализовать условие фазового синхронизма и

Физика и техника полупроводников, 2024, том 58, вып. 9

усилить поверхностную волну за счет взаимодействия с дрейфовыми токами.

На рис. 3 показаны модули электрического поля в поперечном сечении ДУНТ для трех первых мод (m = 0, 1, 2), соответствующих ВЧ ветвям на рис. 1. Из рисунка

Рис. 3. Распределение модуля электрического поля для ВЧ ветвей мод с m = 0 (*a*), 1 (*b*) и 2 (*c*) в поперечном сечении ДУНТ на приведенной частоте $\omega/\omega_0 = 2.5$. Остальные параметры те же, что на рис. 1. (Цветной вариант рисунка представлен в электронной версии статьи).

видно, что электрическое поле ППП мод локализуется главным образом на поверхности стенки ДУНТ меньшего радиуса. Вне ДУНТ интенсивность поля быстро спадает с удалением точки наблюдения от ее внешней стенки. Максимальное значение модуля электрического поля ППП в ДУНТ снижается с ростом азимутального модового числа *m*.

5. Заключение

В данной работе показана возможность существования в двустенной УНТ поверхностных плазмонполяритонных волн с сильной локализацией излучения внутри нанотрубки и с длиной пробега в несколько микрометров. Сверхсильная локализация волнового поля сопровождается существенным снижением фазовой скорости фундаментальной плазмон-поляритонной моды: в зависимости от стенок ДУНТ коэффициент замедления достигает значений 200 и выше. Столь высокое замедление поверхностных волн может быть использовано для реализации замедляющих систем с высокой эффективностью преобразования энергии токовой накачки в энергию ППП.

Результаты, полученные в данной работе для одиночной нанотрубки, могут быть применены к разреженным массивам ДУНТ. Действительно, для частот порядка $10^{15} c^{-1}$ размер области локализации электрического поля может быть оценен по величине $\kappa^{-1} \approx (q')^{-1} \approx 1$ нм; это означает, что рассмотренные ДУНТ практически не влияют друг на друга на расстоянии более 4 нм между их стенками. Поэтому результаты исследования могут быть полезны для создания систем замедления на основе как одиночных нанотрубок, так и массивов УНТ.

Финансирование работы

Исследование выполнено при финансовой поддержке Российского научного фонда (проект № 23-19-00880).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- S.A. Maier. Plasmonics: Fundamentals and Applications (Springer, N.Y., 2007) p. 21. DOI: 10.1007/0-387-37825-1
- G.Y. Slepyan, S.A. Maksimenko, A. Lakhtakia, O. Yevtushenko,
 A.V. Gusakov. Phys. Rev. B, 60 (24), 17136 (1999).
 DOI: 10.1103/PhysRevB.60.17136
- [3] A.S. Kadochkin, S.G. Moiseev, Y.S. Dadoenkova, V.V. Svetukhin, I.O. Zolotovskii. Opt. Express, 25 (22), 27165 (2017). DOI: 10.1364/OE.25.027165
- [4] S.A. Afanas'ev, A.A. Fotiadi, A.S. Kadochkin, E.P. Kitsyuk, S.G. Moiseev, D.G. Sannikov, V.V. Svetukhin, Y.P. Shaman, I.O. Zolotovskii. Photonics, **10** (12), 1317 (2023). DOI: 10.3390/PHOTONICS10121317

- [5] T. Stöckli, J.M. Bonard, A. Châtelain, Z.L. Wang, P. Stadelmann. Phys. Rev. B, 64 (11), 115424 (2001).
 DOI: 10.1103/PhysRevB.64.115424
- [6] A. Moradi. Appl. Phys. A: Mater. Sci. Process., 113 (1), 97 (2013). DOI: 10.1007/s00339-013-7854-5
- [7] R.A. Jishi, M.S. Dresselhaus, G. Dresselhaus. Phys. Rev. B, 48 (15), 11385 (1993). DOI: 10.1103/PhysRevB.48.11385
- [8] G. Miano, F. Villone. IEEE Trans. Ant. Prop., 54 (10), 2713 (2006).

Редактор А.Н. Смирнов

Surface plasmon polaritons in double-walled carbon nanotubes

S.A. Afanasyev¹, V.A. Zaitsev¹, S.G. Moiseev^{1,2}, I.A. Rozhleys¹, D.G. Sannikov¹, G.V. Tertyshnikova¹

 ¹ Ulyanovsk State University,
 432970 Ulyanovsk, Russia
 ² Ulyanovsk branch of the Kotelnikov Institute of Radioengeneering and Electronics of the Russian Academy of Sciences,
 432071 Ulyanovsk, Russia

Abstract The dispersion characteristics of surface plasmon polaritons in double-walled carbon nanotubes have been studied, taking into account ohmic losses. A dispersion equation in matrix form is obtained for the SPPs taking into account the anisotropy of the electrical conductivity of the nanotube walls. Its numerical solutions are found for low-order plasmonic modes propagating over a wide frequency range (including THz and the visible region). It was found that for double-walled carbon nanotubes of large radii, the surface plasmon polaritons retardation coefficient can exceed 300.