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The development of mathematical methods and information technologies for data processing plays an essential

role in establishing various features in the analyzed nucleic acids and is a necessary element in the development and

improvement of instruments and devices for practical use in biology and medicine. The technology of mass parallel

sequencing of nucleic acids includes the process of measuring the intensities of fluorescence signals based on

mathematical processing of images obtained from video cameras, and then constructing a sequence of nucleotides

based on the results of these measurements. The paper considers the methods of information processing, which

are divided into two parts. The first part includes methods for filtering images, detecting fluorescence clusters,

and evaluating the parameters of fluorescence signals, both for single clusters and for clusters
”
superimposed“ on

each other. The second part of the information processing methods considered in this work includes methods for

constructing a sequence of letter codes of DNA nucleotides based on the intensities of fluorescence signals obtained

directly from the results of image processing. No adjustments have been made to such signals related to intensity

changes due to phenomena such as Phasing/Prephasing, signal attenuation and Cross-talk. These methods use

classifiers based on machine learning. It is shown that as a result of the performed approbation of various machine

learning models for the task of constructing a sequence of nucleotides, the results obtained showed sufficiently high

quality indicators of genetic analysis. The quality indicators of the Phred score were in the range from 29 to 35 for

the reference genome of the bacteriophage Phix174.

Keywords: sequencing, nucleic acids, image processing, improving the quality of genetic analysis, machine

learning.
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Introduction

The use of modern information technologies and mathe-

matical methods of data processing to study the analyzed

nucleic acids is an important element of the successful

development of genomic sequencing. The Institute of

Analytical Instrumentation of the Russian Academy of

Sciences (IAI RAS) developed a hardware and software

complex (HSC) for decoding the sequence of nucleic acids

by mass parallel sequencing (
”
Nanofor SPS“) [1]. The

solution of the problem of decoding the genome in the HSC

is divided into a number of stages of processing the initial

data. One of the important initial stages of data processing

is the estimation of the intensity values of fluorescence

signals for different wavelengths on the image frames of

the reaction cell for several sequencing cycles by synthesis

method. Such an assessment is performed using image

processing programs, the algorithms of which are described

in Ref. [2,3].

The technique of mass parallel sequencing is based on

the principle of DNA synthesis using fluorescently labeled

nucleotides. The process begins with the preparation of

libraries, where special adapters are attached to DNA

fragments. These fragments are fixed on the surface of

the reaction cell, forming a dense array of cloned DNA

chains — clusters. Thus, each cluster is a set of copies of

the same DNA fragment.

During sequencing, fluorescently labeled nucleotides are

alternately added to the growing DNA strands. Each

nucleotide carries a unique fluorophore that emits light at

a specific wavelength when excited by a laser. The resulting

fluorescent signal is passed through light filters tuned to

different wavelengths corresponding to the emission of the

labelled nucleotides. After passing through the filters, the

fluorescence signal is recorded by video cameras. Four

video cameras are installed in the sequencer, each of

which registers signals of one of the types of nucleotides

(channels): adenine (A), cytosine (C), guanine (G) and

thymine (T).

The image is captured on each of the four channels after

the addition of nucleotides to the DNA fragments. The next

stage begins upon completion of recording of fluorescent

signals along the entire length of the reaction cell. Reagents

that remove the dye (fluorophore) and stop the synthesis

process are passed through microchannels at this stage. New

reagents are then added to start the next synthesis cycle.
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The process is repeated cyclically, adding nucleotides one

by one, recording their signals with video cameras until the

synthesis of the entire sequence is completed.

Image processing programs developed at the IAI RAS

solve the problems of estimating the intensity values of

fluorescence signals and further decoding the nucleotide

sequence (base-calling), but they have a number of dis-

advantages associated with incomplete correction of errors

caused by a number of factors that distort the results of

genetic analysis. Such factors include: changes of the

values of the recorded intensities due to phenomena such as

phasing/prephasing, signal attenuation and cross-talk [4,5].

Machine learning (ML) methods, which are considered in

this paper, are promising for leveling these shortcomings and

conducting genetic analysis without correcting the described

interference.

The use of ML in DNA sequencing tasks includes the

creation and evaluation of models using algorithms capable

of recognizing, classifying and predicting certain results

based on the data obtained [6]. ML approaches are divided

into unsupervised learning, semi-supervised learning, and

supervised learning [7]. For example, often the purpose

of supervised ML applied to sequencing data is to build

a model based on a training set of collected observations

with a known nucleotide sequence in order to predict

a nucleotide for an arbitrary sample with an unknown

target value of the type of nucleotide being determined,

for example, with a sequence of bacteriophage Phix174

nucleotides (reference genome). In this case, the input

variables are often called features, and the corresponding

samples are called observations.

ML can play a key role in improving the accuracy and

speed of this process. It is used in the following stages of

the analysis.

• Data preprocessing. The sequencing data includes

raw signals from detectors, such as electrical signals,

fluorescence, or intensity graphs. ML helps to filter noise

and calibrate data to improve the quality of the original

signal.

• Model training. ML models are trained on a large

volume of annotated data where the correct nucleotide

sequences are known. This helps the models recognize

complex patterns in the signals corresponding to different

nucleotides.

• Classification and prediction. Modern ML methods,

especially of the Deep Learning methods, such as con-

volutional neural networks (CNN) and recurrent neural

networks (RNN), allow models to classify signals and

predict nucleotide sequences with high accuracy. These

models can take into account contextual information and

sequences of neighboring nucleotides for more accurate

base-calling.

• Error correction. ML algorithms can also be used to

justify and correct errors resulting from sequencing. This

includes analyzing the contextual frequencies of occurrence

of certain nucleotides and using alignment algorithms.

• Integration with other bioinformatics tools. Base-calling

results are often integrated with other genomic data analysis

tools for further annotation and interpretation, which may

also include additional ML steps, for example, for Oxford

Nanopore Technologies sequencing technologies.

An overview of machine learning methods for solving

nucleotide sequencing problems was provided in the article

Ref. [8], and several examples of ML applications for

data processing of the
”
Nanofor SPS“ sequencer were

considered. In addition, various ways to combat the problem

of overfitting are considered: by regularizing the model,

choosing a simpler model with fewer parameters, and

reducing the dimension of the feature space for learning.

The purpose of this work is to search for methods of

image processing of fluorescence signals that can improve

the quality of genetic analysis.

The following main tasks need to be solved for achieving

this goal:

1. Analysis of the image processing algorithms [2,3] per-
forming image filtering, detection of fluorescence clusters,

evaluation of parameters of fluorescence signals for both

single clusters and clusters
”
superimposed“ on each other.

Development of a new algorithm for separating clumped

objects, which will increase the density of clusters in the

analyzed sample and thereby the number of nucleotide

bases in the results of genetic analysis.

2. Demonstration of the prospects of the ML method

for solving the problem of constructing a sequence of nu-

cleotides using a number of sequencing data from
”
Nanofor

SPS“ device. Improvement of the quality of genetic analysis

as a result of application of various ML models to the task

of constructing a sequence of nucleotides.

3. Evaluation of the possibility of simplification of ML

models by reducing the dimension of features to perform

the learning process based on the experimental data of

”
Nanofor SPS“ device.

Improving the accuracy and reliability of genetic analysis

is especially important for its application in biomedicine.

High-quality base-calling leads to increased reliability of sub-

sequent stages of genomic data analysis, such as alignment,

annotation and interpretation. If the base-calling procedure

fails, incorrect genetic interpretations may occur, which is

especially critical for diagnostic studies.

1. Analysis of image processing
algorithms in the sequencer

”
Nanofor

SPS“

The paper [2] lists the main stages of image processing

of fluorescence signals in the device
”
Nanofor SPS“ and

describes the algorithms for their implementation. Among

these stages, the most important are: sharpening filtering

(SF), object detection, correction of the background com-

ponent and separation of
”
clumped“ objects.

An explanation of the operation of the SF algorithm

is given in section 1.1, an algorithm for determining the
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Figure 1. Comparison of signal profiles before and after sharpening filtering. Before processing — dashed dotted line. After processing —
solid line. On the abscissa axis — pixel numbers on the horizontal axis.

threshold for detecting objects is provided, and a new

algorithm for separating
”
clumped“ objects is described.

1.1. SF algorithm

SF image processing allows narrowing objects for sep-

aration when they stick together. In addition, SF restores

the original signal distorted by the hardware function [9,10].
The SF algorithm is based on the inverse two-dimensional

transformation of the Fourier product of the Fourier image

of the original image and the Fourier image of the second-

order derivative of the Gaussian function with a width

equal to about half the average width of the image of the

fluorescence object [2,3,10]. The algorithm described in

Ref. [2] is used to remove the background component.

1.1.1. Fluorescence signals before and after SF

Let us provide an example of how the SF program works.

To do this, we will plot a profile of the line shown by

the black line passing through the pixel with the maximum

brightness of the image fragment shown in Fig. 1, a. The

original signal is shown in Fig. 1, b as a dotted line and the

signal after processing using the SF algorithm SF is shown

by a solid line. The figure shows that as a result of the

SF, the two fluorescence clusters that almost stuck together

separated.

1.2. Plotting histograms to determine the

threshold for detecting objects

It is important to determine a threshold that would

reliably separate the
”
signal“ (object) from noise and

interference for detection of fluorescence objects against

a background of noise and find the coordinates of their

centers.
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Figure 2. Histogram of signal intensities in channel A. Intervals

of normalized intensities are plotted on the abscissa axis. The

number of intensities that fall within a certain interval is plotted on

the ordinate axis.

The signal intensity distributions of different nucleotides

(A, C, G, T) differ from each other, and therefore the

threshold values for images of fluorescence signals of each

of the nucleotides will be different. Let’s call the images

obtained for the nucleotide fluorescence signals A, C, G,

T, respectively, channels A, C, G, T. Histograms of the

distribution of signal intensities normalized to the maximum

value in each pixel are plotted to determine the threshold

values for each of the channels. Intensity intervals from 0 to

1 with a step of 0.001 are postponed along the horizontal

axis of the histogram. Figure 2 shows a histogram of the

intensity distribution of channel A.

As can be seen from Fig. 2, the intensity distribution of

fluorescence signals is a single-modal asymmetric function.

Intensities other than noise
”
contribute“ to the asymmetric
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a b c

Figure 3. An example of two objects sticking together and the results of processing using an iterative algorithm: a — image of two

objects sticking together in grayscale, b — binary image of two objects sticking together after threshold processing before the start of the

iterative procedure, c — a binary image of one of the two objects sticking together after the first iteration, as a result of which the brighter

object is removed.

part of the function. Determining the threshold using

histograms with an asymmetric distribution function is a

little more complicated than for histograms with a two-

modal distribution function, which is described in Otsu’s

paper [11]. The threshold for two-modal distribution

functions is defined as the average value between two

maxima in the distribution function. In our case, the

detection threshold was determined using histograms as

follows. The root mean square (RMS) value of the noise

was estimated. The noise RMS estimate is the value

of the half-width at the half-height of the peak of the

histogram. The threshold value is equal to the product of

the coefficient k by the RMS estimate. The coefficient k
was selected experimentally by processing a large number

of images of fluorescence signals. The coefficient k = 9

turned out to be suitable for determining the threshold for

the majority of tasks.

IAI RAS developed programs based on algorithms for

processing aggravating filtration, detection and evaluation

of parameters of clusters of fluorescence signals and these

programs were implemented in prototypes of devices of

”
Nanofor SPS“. An analysis of the results of these programs

demonstrated that the programs reliably detect clusters of

fluorescence signals with a minimum amplitude of the

useful signal of 80 conventional units and a RMS noise

value of about 15 conventional units. The background

component in the device of
”
Nanofor SPS“, as a rule,

is a nonlinear function with intensity values from 50

to 150 units. The initial image size in the device of

”
Nanofor SPS“ is 2000× 2400 pixels. Due to the fact

that the width of the cluster at its half-height is from

6 to 10 pixels, the background component under the

cluster can be considered linear. As noted in Ref. [2],
the sharpening filtering almost completely corrects the

impact of the background component, which can also be

seen from Fig. 1. Negative signal values that occur after

exacerbating filtration are replaced by zeros and do not

affect the quality of the nucleotide sequence construc-

tion.

1.3. Iterative algorithm for separating clumped

objects

Figure 3, a shows an image of two objects sticking to each

other in grayscale.

The essence of the iterative algorithm is as follows.

As a result of threshold processing, a binary image is

obtained in which the areas of the original image exceeding

the threshold are replaced with zeros and depicted in

black, and the remaining areas are replaced with ones

and depicted in white. Regions consisting of zeros that

have no connections with other regions consisting of zeros

are searched in the binary image obtained as a result of

threshold processing, presented as an example in Fig. 3, a.

An example of such an area is shown in Fig. 3, b. Next,

an image of the same area is used, but in grayscale. The

coordinates of the brightest pixel are in this region. Then the

area (usually 7× 7 or 9× 9 pixels) of the brightest object in
a binary image is replaced with units, and this area becomes

white. Thus, the brightest of them is removed from the

image of two objects sticking together and the procedure

for searching for coordinates corresponding to fluorescence

objects continues. If there were fragments in the original

image consisting of three objects sticking together, then the

coordinates of the brightest object are first determined and

remembered. Then this object is deleted and a fragment

consisting of two objects already stuck together is analyzed,

and so on. In the working program of the sequencer

of
”
Nanofor SPS“ the procedure for separating objects

sticking together lasts up to 5 iterations, i.e. fragments

of images are separated, which can contain from two to

five objects sticking together, which is sufficient for those

images that are obtained in the device at different densities

of fluorescence objects.

The application of this iterative algorithm made it possible

to distinguish clusters of nucleic acids with a more than

twofold increase in the loading density of the detected

objects, which is approximately 106 clusters per square mil-

limeter of the reaction cell and depends on the concentration

of the test sample.
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When developing a program for separating fluorescence

objects sticking together, the
”
watershed“ algorithm was

also studied, which is described in Ref. [12]. The

implementation of this algorithm requires a large number

of operations and cannot be implemented in real time. It

is supposed to be used in post-processing to increase the

reliability of genetic analysis.

2. ML in nucleotide sequence
construction (base-calling) tasks

2.1. Problem formulation

The base-calling task pertains to class of classification

tasks typical for the application of ML algorithms. Clusters

of amplified DNA strands are detected in the images for

various fluorescence channels in the form of patterns of

various sizes and localization. Special software described

in the paper [2,3] is used to determine the position of the

spots and their intensity characteristics together with the

parameters of the surrounding background.

Spot positions and radii are used to extract a number

of characteristics from each spot and its immediate back-

ground. These functions are then used as input to ML

algorithms. Feature extraction is performed by examining

the light intensity of each pixel of a certain rectangular area

of the spot and some surrounding background. Each image

set consists of four microscopic images, one for each base.

These indicators are used by the ML model for the task of

base classification. Output data comprise the sequence of

nucleotides with different bases [13].
The following features are extracted from images of

fluorescence signals from each fluorescence object (cluster)
and its immediate background for the ML algorithm: for

background (BG) — max, mean, median and mode; for

the central area of the cluster image (FG) — max, mean,

pct90 and pct99, where max — maximum intensity value,

mean — arithmetic mean, mode — the most common

value, pct90 and pct99 — 90- the 10th and 99th percentiles,

respectively. These features form the rows of the matrix M.

Thus, the information about each nucleotide contains 8 signs

(4 features for FG and 4 features for BG). The last column

of such a matrix contains the label — the letter code of

the nucleotide obtained from the data of a pre-sequenced

sequence previously mapped to a known (reference) se-

quence, for example, the bacteriophage Phix174. The

matrix M has 34 columns: the cluster number, 32 features

for each nucleotide and the letter code of the nucleotide.

The number of rows in the matrix M is determined by

the number of clusters of fluorescence objects, information

about which is used to build a training sample.

The following classification methods were used to solve

the base-calling task:

• Perceptron model [14];
• Logistic regression model [15];
• model based on the support vector

machine (SVM) [16];

• Decision tree model [17];
• Random forest model [18];
• model k-nearest neighbors (k-nearest neighbors) [19].

2.2. The Scikit-learn platform as a database of
ML models

The Scikit-learn platform is used to apply various ML

algorithms, which supports an easy-to-use interface that is

closely integrated with Python [20]. The Scikit-learn API

is optimally designed to work with ML methods. The

main design principles according to the paper [21] are listed

below:

• Consistency of object calling. All objects share a

consistent and simple interface for calling functions.

• Estimator. Any object that is capable of estimating

parameters based on a dataset is called an estimator (for
example, an imputer designed for data recovery is an

estimator). The estimation itself is performed using the fit

method, which takes a single data set as a parameter (or two
for learning algorithms with a teacher; the second data set

contains labels). Any other parameter necessary to control

the estimation process is considered a hyperparameter (for
example, strategy in imputer) and should be specified as an

instance variable.

• Transformers. Some estimators (such as imputer)
can also transform a dataset; they are called transformers.

The API interface is quite simple: the transformation is

performed by the transform method, to which the data set

to be transformed is passed in the parameter. It returns

a transformed dataset. All transformers have a convenient

fit transform method, which is the equivalent of calling fit

sequentially and then transform.

• Predictors. Finally, some estimators are able to make

predictions with a set of data; they are called predictors.

The predictor has a predict method that accepts a dataset

with new samples and returns a dataset with corresponding

predictions. The predictor also has a score method that

evaluates the quality of predictions using a specified test

set and appropriate labels in the case of learning algorithms

with a teacher.

• Inspection. All predictor hyperparameters are avail-

able directly through instance variables (for example, im-

puter.strategy), and all studied predictor parameters are

also available through open instance variables with an

underscore suffix (for example, imputer.statistics ).
• Non-proliferation of classes. Datasets are represented as

NumPy arrays or sparse SciPy matrices, instead of self-made

classes. Hyperparameters are just regular Python strings or

numbers.

• Ease of composition. Existing building blocks are

reused as much as possible. For example, it is easy to

create a Pipeline predictor from an arbitrary sequence of

transformers, followed by a call to the final predictor.

• Standard default parameter values. Scikit-learn provides

reasonable standard values for most parameters, making it

easier to quickly create a basic working system.

Technical Physics, 2024, Vol. 69, No. 9
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We will divide the dataset into train and test datasets

to assess the quality of the trained model with previously

unknown data. To do this, we will use the train test split

function from the model selection module of the Scikit-learn

library, randomly dividing data arrays into train and test

samples. In the case of the classification task in the base-

calling task, we perform random data splitting, allocating

30% of the data for testing and 70% for training. The special

function Scikit-learn train test split already performs inter-

nal mixing of the training data before splitting. Otherwise,

the order of examples from different classes in the training

datasets could be critical, which is undesirable. By using the

RandomState parameter with a fixed random initial number,

we guarantee reproducibility of the results in subsequent

learning processes. In addition, as a rule, we use built-

in stratification support in all machine learning methods.

Stratification implies that the train test split method returns

training and test subsets with the same proportions of class

labels as in the original dataset.

Many ML and optimization algorithms require scaling of

the input data for optimal performance. The StandardScaler

class from the Scikit-learn preprocessing module is used

for this function. It is important to use the same scaling

parameters to standardize the training and test datasets so

that the values in both datasets are comparable.

There are several accuracy metrics in ML that are used to

evaluate the performance and adequacy of learning models.

The accuracy of classification in the process of model

selection was evaluated in this paper using the following

metrics[22]:
1. Accuracy. Accuracy measures the proportion of

correct predictions of a model relative to the total number

of predictions. ACC = (TP + TN)/(TP + TN + FP + FN),
where TP — true positive, TN — true negative, FP —false

positive and FN — false negative predictions.

2. Completeness (Recall). It shows how much of the

positive cases the model is able to correctly detect out of all

the real positive ones. Recall = TP/(TP + FN).
3. Precision. Determines the proportion of truly positive

predictions relative to all positive predictions of the model.

Precision = TP/(TP + FP).
4. F-measure (F1-score). It is the average

harmonic between completeness and accuracy.

F1-score = 2 · (Precision · Recall)/(Precision + Recall).
5. The area under the ROC curve (ROC AUC). Evaluates

the quality of binary classification by measuring the area

under the ROC curve (Receiver Operating Characteristic).
It shows how well the model distinguishes between positive

and negative classes.

These accuracy measures were used in all the studied

learning models. In our final results, we focused on

evaluating the accuracy of learning in terms of classification

error (misclassification error= 1− ACC), since it most

accurately corresponds to the Phred quality score (explained
below), which is a generally accepted measure of the quality

of identification of nitrogenous bases obtained by automatic

DNA sequencing.

Also, cross-validation was used in all training methods

as a method of evaluating the ML model, which allows

you to evaluate how well the model generalizes data, —
a necessary process when working with limited amounts

of data [23]. The data were divided into several parts

for cross-validation and these parts were called
”
folds“ (in

practice, from 3 to 5 parts). The model was then trained

on several combinations of these folds and evaluated on

the remaining parts of the data. By repeating this process

by cross-checking, an integral evaluation of the model was

obtained for each part of the data. Cross-validation helps to

use the available data more effectively to evaluate the model

and make decisions about its accuracy, which is especially

important in the task under consideration, in which there is

critically insufficient data for training.

2.3. Results of the selection of ML models

As a result of applying various ML models to the base-

calling problem, the obtained results on prediction accuracy

can be presented in a summary table. The values of the

intensities of cluster fluorescence signals obtained from the

parallel sequencing system
”
Nanofor SPS“ were used as

input data. Then, based on these intensities, statistical

characteristics such as mean, median, pct99, pct90, etc.

were extracted. At the same time, corrections of intensity

changes due to phenomena such as Phasing/Prephasing,

signal attenuation and cross-talk were not performed.

The right column of the table shows the Phred quality

score quality indicators adopted in bioinformatics. Phred

quality estimates are logarithmically related to the probabil-

ity of errors in the construction of a sequence of letters of

nucleotides and are defined as

Q = −10 · log10 P.

This ratio can be written as

P = 10
−Q
10 .

For example, Phred assigns a letter a quality score of 30.

The probability that this letter in the sequence was named

incorrectly is 1 in 1000. In other words, the probability of

the letter being correct is 99.9%.

Results of using different ML models

ML Model Error Phred

classifications quality score

Perceptron 0.0008 30.9

Logistic regression 0.0003 35.2

SVM 0.0006 32.2

Decision tree 0.0012 29.2

Random forest 0.0005 33.0

KNN 0.0003 35.2

11 Technical Physics, 2024, Vol. 69, No. 9
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Figure 4. Demonstration of the regularization effect in the form

of reducing the weights of logistic regression when changing the

regularization parameters.

All ML models have demonstrated high accuracy in pre-

dicting the nucleotide sequence in the base-calling process.

It is interesting to note that the achieved prediction accuracy

based on the experimental data of the
”
Nanofor SPS“ device

largely corresponds to the Phred quality score calculated

in accordance with the generally accepted protocols of

Illumina [24,25]. The Random forest model predictably

surpassed the Decision tree model. The excellent results

of the simple KNN model, comparable to the regularized

logistic regression model, indicate the need to optimize

the selection of features using the dimensionality reduction

method.

3. The optimal choice of features to
reduce the dimension

As mentioned earlier, in the process of testing various

models, it is noted that in many cases the model demon-

strates significantly higher accuracy on the training data set

than on the test set, which indicates retraining. When using

the Scikit-learn library, overfitting means that the model

adjusts parameters too precisely to specific observations in

the training dataset, but does not generalize new data well,

which manifests itself in the high variance of the model. The

main reason for retraining is the excessive complexity of the

model for the available training data. Common approaches

to reducing generalization error include the following [26]:
• using more data in the training set;

• introducing a complexity penalty by regularizing the

model;

• choosing a simpler model with fewer parameters;

• reducing the dimension of the data.

Collecting more training data is effective, but often not

applicable. This paper considers common ways to reduce

overfitting by regularization and dimensionality reduction

through feature selection. This leads to simplification

of models by reducing the number of parameters. The

regularization parameters L1 and L2 are used as a penalty

for the complexity of the model for the logistic regression

model. And if the regularization of L2 uses an approach

to reduce the complexity of the model by penalizing large

individual weights for all parameters, then the regulariza-

tion of L1 usually gives sparse feature vectors, and the

weights of most features will be zero. In this sense,

the regularization of L1 can be understood as a method

for selecting features and reducing the dimension of the

model. The above graph provides additional information

about the regularization behavior of L1 (Fig. 4). The

figure shows the change of the weight coefficients of 32

features (8 for each channel) from the inverse value of the

regularization parameter C. Dependences of some features

on the regularization parameter C are not visible, since they

”
merged“ with dependence on other features. It can be

seen from the information presented in the figure that for

the regularization parameter C, less than 0.1, the weight

coefficients are not zero for only 4 features. This situation

gave rise to studies of reduction of the feature space.

PCA (Principal component analysis) is an effective

method for optimal feature selection for a machine al-

gorithm [27]. The transformation of data containing

information about fluorescence signals by the principal

component method, and subsequent classification by the

k-means method, allowed creating e an optimal sample

for identifying the letter code of the nucleotide in this

paper. The linear discriminant analysis (LDA) method

is also applicable to solving the problem of dimension

reduction. The general concept of LDA is very similar to

PCA, but although PCA tries to find the orthogonal axes

of the maximum variance components in the dataset, the

goal of LDA is to find a feature subspace that optimizes

class separability. Fig. 5 a shows the representation of the

division of classes by belonging to a particular nucleotide

(4 classes in the classification problem) when reducing the

multidimensional feature space to two discriminants.

The use of the PCA algorithm and classification by

the k-means method when processing the data of the

”
Nanofor SPS“ device showed that the amount of erroneous

classification of nucleotides did not exceed 0.7%.

Finally, the t-SNE method was used to visualize mul-

tidimensional features in two-dimensional space [28]. It

builds a data model based on their pairwise distances in a

multidimensional feature space. Then this method finds the

probability distribution of pairwise distances in a new space

of lower dimension, close to the probability distribution of

the same pairwise distances in the original space (Fig. 5, b).
In other words, t-SNE is trained to map data points to a

smaller space in such a way that pairwise distances in the

original space are preserved. Fig. 5, b provides reason to be

sure that the space of learning features can be effectively

compressed to a minimum number of dimensions, although

it does not give a specific implementation of such a

reduction.
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Figure 5. a —distribution of features of the training sample in the space of two discriminants, b — t-SNE reduction of the feature space

of the training sample to two dimensions.

Conclusion

The considered algorithms and programs for preprocess-

ing images are the development and refinement of the

algorithms and programs described in the works [2,3,8]. An
iterative algorithm processing grayscale and binary (black-
and-white) images was added to the programs of separation

of
”
superimposed“ fluorescence clusters. This algorithm

makes it possible to increase the density of detectable

clusters and thereby increase the number of nucleotide bases

detected in the processed sample.

The results of testing various machine learning models

for the base-calling task demonstrated fairly high quality of

genetic analysis. The Phred score turned out to be in the

range from 29 to 35 units, whereas the value of this score

for performing base-calling in the
”
Nanofor SPS“ device

without using ML methods is usually 30.

The values of the intensities of cluster fluorescence

signals obtained from the parallel sequencing system of the

”
Nanofor SPS“ device were used as input data. Then these

intensities were used to extract statistical characteristics

of each cluster, such as mean, median, pct99, pct90, so

that information about each nucleotide contains 8 features

(4 features for the cluster image, 4 features for the

background). A total of 32 freatures are obtained for

four channels. At the same time, corrections of intensity

changes due to phenomena such as phasing/prephasing,

signal attenuation and cross-talk were not performed.

Based on the results of testing, it should be noted that

decision trees are especially attractive if we care about in-

terpretability, i.e. we are interested in explicitly highlighting

the most informative features in the classification task when

determining the type of nucleotide. Logistic regression is

not only a useful model for real-time learning of new

sequencing data (when using SGD, stochastic gradient

descent in solving an optimization problem), but also allows

us to predict the probability of classification truth.

Although SVMs are powerful linear models that can be

extended to non-linear problems using the kernel trick,

they require optimal tuning of many parameters to achieve

good predictions. Ensemble methods, such as random

forests, do not require time-consuming parameter tuning

and avoid the effect of overfitting (unlike decision trees),
which makes them attractive models for many practical

problem areas. The KNN classifier offers an alternative

approach to classification through
”
lazy learning“, which

allows you to make predictions without any model training,

but with a more computationally expensive prediction step.

It should also be noted that for the selected machine

learning methods, the results were investigated and obtained

to reduce the feature space from the characteristics of the

data used, which made it possible to reduce the number of

classification errors and simplify the calculation processes,

since instead of 32 features of the characteristics of each

cluster, only 4 were used.

The considered methods were implemented using the

tools of the Scikit-learn system, which made it possible to

ensure simplicity and clarity in the compilation of algorithms

and programs.
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