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Wavelet analysis of turbulence of frequency-modulated heart rate signal
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The method of wavelet analysis of frequency-modulated signal, in which heart contractions occur at true moments

of time, separated by different cardiointervals, is used to analyze the turbulence of the heart rhythm. The local

frequency is calculated when there are strong inhomogeneities in the heart rhythm associated with extrasystoles —
ectopic heart contractions. The behavior of the local frequency is analyzed in the entire continuous time interval,

taking into account both the extrasystoles themselves and the compensatory pauses of the heart following the

extrasystoles.
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Introduction

Heart rate variability (HRV) is an important method for

evaluation of the functional state of the human cardiovascu-

lar system both at rest and during various cardiac tests [1–4].
HRV is calculated using the analysis of RRn — durations of

cardiac cycles, representing the time intervals between R−R
peaks of QRS complexes of adjacent heart contractions.

HRV is a fundamentally non-stationary process, since its

spectral and statistical properties change over time. The

HRT (Heart Rate Turbulence) method allows quantita-

tively describing short-term physiological fluctuations in

the duration of cardiac intervals RRn of the sinus rhythm

after single premature complexes — extrasystoles [5–8].
Extrasystoles are caused by the mechanism of re-entry of the

excitation wave (re-entry) or increased oscillatory activity of

cell membranes arising in the atria, in the atrioventricular

node and in various parts of the conducting system of

the ventricles of the heart. A quantitative description of

heart rate turbulence is one of the methods for predicting

the risks of sudden death [8–17] caused by ventricular

tachyarrhythmia (ventricular fibrillation of the heart).
The turbulence of the heart rate was first studied by the

scientific group of G.Schmidt in Ref. [18,19]. The modern

development of HRT theory is presented in Ref. [7,20–
23]. An overview of the application of quantitative HRT

methods in cardiology is provided in Ref. [7]. Let’s consider
the quantitative HRT parameters characterizing the ven-

tricular extrasystole VPC (Ventricular Premature Complex)
proposed in Ref. [5–8]. Let us suppose that the sequence

of heartbeats RRn containing the extrasystole RRext and the

subsequent compensatory pause RR(0) has the form

RRn = (RR−2;RR−1;RRext ;RR(0);RR1;RR2; . . . ;RR20).
(1)

The intervals RRn before the extrasystole are indicated

by two values preRR = {RR−2;RR−1}. The intervals after

the extrasystole RRext and the compensatory pause RR(0)
have the form postRR = {RR1;RR2; . . . ;RR20}. The heart

rate postRR is a normal sinus rhythm. It is believed that

the extrasystole RRext changes the rhythm of approximately

N0 = 20 of subsequent heartbeats postRR. The change

of heart rate during extrasystole is determined by the

parameter
”
Turbulence Onset“ (TO) in the HRT method

— the relative change of the intervals between two normal

heart contractions (RR) immediately after and before VPC.

The TO value is proportional to the difference between

the average of the first two sine intervals RR after VPC

(RR1, RR2) and the last two sine intervals RR before VPC

(RR−2, RR−1):

TO =
(RR1 + RR2) − (RR−2 + RR−1)

RR−2 + RR−1

· 100%. (2)

Measurements of the TO parameter are first performed

for each individual VPC, and then averaged over all VPCs

during cardiogram recording. The value of TO > 0%

corresponds to a slowdown in the sinus rhythm after

VPC, and TO < 0% corresponds to an acceleration of the

sinus rhythm after VPC. The second HRT parameter is

”
Turbulence Slope“ (TS). The TS value is the maximum

positive slope of the regression line, estimated from any

sequence of 5 subsequent intervals RRn of the sinus rhythm

after VPC. TS is measured in units of milliseconds per

heartbeat (ms/RR). 20 intervals RR of the sinus rhythm after

VPC are analyzed for measuring the TS. Let us suppose that

the sequence RRn has the form [22]:

RRn = {825; 813; 424; 1284; 817; 786; 794; 802; 805;

× 825; 856; 860; 856; 872; 891, . . .}.

RRext = 424ms for such a sequence of heart-

beats, and the compensatory pause is RR(0) = 1284ms.
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TO = −2.14%. The slope of changes of RRn is cal-

culated using straight regression lines for every five RR
intervals [RR1;RR6]; [RR2;RR7]; . . . [RR15;RR20] for deter-

mining TS (ms/RR). Among all these fifteen intervals,

the only one is selected for which the positive value

RRi+5 − RRi > 0 reaches a maximum. Then, a straight

line is drawn using the least squares method through

the points RRi ;RRi+1; . . . RRi+5 for the selected interval

[RRi ;RRi+5]. The average increment of RR per heartbeat

is TS = 16.7ms/RR for the values given in the paper [22]
RRi . It is noted in Ref. [5–8,22] that the values TO < 0%,

TS > 2.5ms/RR are considered normal, and TO > 0%,

TS < 2.5ms/RR are considered pathological.

It should be noted that the quantitative description of

HRT using two parameters TO and TS does not take into

account the duration of both the extrasystole itself RRext

and the compensatory pause RR(0). The article [23]
provides literary references to studies indicating that the

two parameters TO and TS did not reveal prognostic

value both in the case of complex cardiac arrhythmias

with recurrent extrasystoles and in heart disease such as

dilated cardiomyopathy. These circumstances require the

creation of a new quantitative HRT model, which will take

into account both the extrasystoles themselves RRext and

compensatory pauses RR(0) after extrasystoles.

The purpose of this study is to develop quantitative pa-

rameters characterizing a nonstationary heart rate variability

(NHRV), which should take into account both the time

interval corresponding to the extrasystole itself RRext and

the value of the compensatory pause RR(0). An unsteady

rhythmogram means the variability of spectral character-

istics over time t, which is limited by the observation

period T : 0 ≤ t ≤ T . The generally accepted methods of

HRV analysis are based on the amplitude modulated signal

(AMS) model. The studied signal Zn represents the time

intervals RRn between heartbeats Zn = RRn for the AMS

model. The signal Zn(tn) is characterized by an equidistant

grid of times tn+1 = tn + 1t, n = 0, 1, 2, . . . , N − 1, t0 = 0,

separated by a time interval 1t = RRNN, where RRNN
represents the average duration RRn intervals for the entire

observation period, and the value of N is the total number

of heartbeats.

In a real situation, the heart contractions separated

by time intervals RRn should coincide with the true

moments of time tn of peaks of the QRS complexes of

the heart: tn+1 = tn + RRn, n = 0, 1, 2, . . . , N − 1, t0 = 0.

This means that the true contractions of the heart are

characterized by an unequally spaced in time point system.

Therefore, the real heart rhythm signal is a frequency-

modulated signal (FMS) based on an uneven grid of

times tn. The time-varying spectral properties of such

a FMS, which arise during the course of cardiac tests,

will differ from the properties of AMS. The differences

between the traditional model (AMS) and the FMS model

become especially noticeable in cases when a strong trend

of the rhythmogram is noticeable in the sequence RRn

over the entire period of cardiac tests. In addition, the

paper [1] indicates that all transitional areas, as well as

ectopic contractions of the heart (extrasystoles), should

be removed from the rhythmogram record. However,

the operations of removal of transients and extrasystoles

introduce distortions into the true frequency spectrum of the

signal. Instead of the two values TO and TS characterizing

extrasystoles in the HRT model, this paper introduces

a quantitative characteristic Fmax(t), continuously time-

dependent t, representing the changing local frequency of

the FM signal. The value Fmax(t) is found using a continuous

wavelet transform (CWT)) of such a FMS signal. Currently,

CWT is successfully used in the analysis of various non-

stationary signals [24–27]. The papers [25,26] are devoted

to the application of wavelet theory to the analysis of AMS

ECG signals for a conventional sinus rhythm. The modern

application of CWT theory to the analysis of AMS heart

rate is made in Ref. [28–31]. CWT was applied for the

analysis of the sinus rhythm of real heart rate in Ref. [32–35].
We will apply the method developed in Ref. [32–35] to a

rhythmogram with strong inhomogeneities associated with

extrasystoles and subsequent compensatory pauses in this

study.

1. Spectral properties of Gaussian peaks
with sinusoidal law of local frequency
variation

Let us first consider a mathematical model of a rhyth-

mogram having a sinus rhythm without extrasystoles. Let

us consider a continuous signal Z(t) (Fig. 1) as a model

of a rhythmogram characterized by intervals RRn. This

signal constitutes a system of Gaussian peaks located on

an unequally spaced grid of times coinciding with true

heart contractions. All Gaussian peaks have the same unit

amplitude and characteristic width τ0 = 0.02 s:

Z(t) =

N
∑

n=0

z n(t − tn), (3)

z n(t − tn) = exp

(

−
(t − tn)

2

4τ 2
0

)

. (4)

The time intervals between Gaussian peaks RRn (4) are

related to the local frequency f n by the ratio

RRn = 1/ f n, (5)

where f n is the discrete local frequency for which the array

{ f 0; f 1 . . . f N−1} exists. The harmonic law of variation of

local frequency f n is chosen for this mathematical model of

a sequence of Gaussian peaks:

f n(t) = F0 + F1 sin(2πF2nt∗). (6)

Let us assume that F0 = 2.0Hz, F1 = 0.5Hz,

F2 = 0.2Hz, t∗ = 0.5 s. The initial moment of time

is t0 = 0. We are dealing with discrete time t → tn = nt∗
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in the equation (6). We obtain the value of the changing

frequency f n for each moment of time tn = nt∗. The time

points tn (4) at which the centers of Gaussian peaks will be

localized have the form tn+1 = tn + 1/ f n (Fig. 2).

CWT V (ν, t) depending on the frequency ν and time t,
shown in Fig. 3, can be found for the signal Z(t) (3). The
Morlet mother wavelet was used to calculate the CWT.

The complex Morlet mother wavelet has advantages over

the use of many real maternal wavelets. The magnitude

of the CWT module |V (ν, t)|, calculated for an ideal

harmonic signal Z(t) = cos(2π f 0t), does not depend on

time t in case of usage of the Morlet mother wavelet,

which corresponds to a stationary signal with a constant

frequency f 0. Moreover, the maximum CWT |V (ν, t)|max

in case of usage of the Morlet mother wavelet is found at

a frequency value ν = f 0, exactly equal to the frequency of

the harmonic signal. Such properties are not fulfilled in case

of calculation of |V (ν, t)| for an ideal harmonic signal using

other real mother wavelets. A single ridge is formed for the

value |V (ν, t)| in the low-frequency region ν ≈ 1.5−2.5Hz

for all Gaussian peaks separated by time intervals RRn. It

is possible to find the frequency value ν = Fmax(t) for each

moment of time t which determines the first maximum of

CWT |V (ν, t)|max = Fmax(t). We will call this frequency

value Fmax(t) the local frequency of the signal.

The value Fmax(t) varies in the range from 1.5 to

2.5Hz depending on time t and exactly coincides with the

mathematical model of the sinusoidal behavior of the local

frequency Fmax(t) = F0 + F1 sin(2πF2t). Such a sinusoidal

dependence Fmax(t) (6) can be seen on the graph of the

skeleton |V (ν, t)| (Fig. 4), showing local extremes of the
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Figure 1. The sum of Gaussian peaks representing the signal

Z(t) (3).
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Figure 2. Harmonic variation of local frequencies f n, expressed

in Hz, depending on the heart rate number n.
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Figure 3. Continuous wavelet transform module |V (ν, t)|
depending on time t and frequency ν for signal Z(t) (3).
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Figure 4. Skeleton of CWT |V (ν, t)| depending on time t and

frequency ν for signal Z(t) (3).

surface |V (ν, t)| in the frequency range of ν = 0−5Hz over

the entire range of times t .
Thus, it is possible to find the local frequency

Fmax(t) from the ratio |V (ν, t)|max = Fmax(t) by con-

structing a wavelet transform |V (ν, t)| for a sig-

nal representing a superposition of identical Gaussian

peaks (3), (4). This conclusion turns out to be valid

for other theoretical models of dependence RRn. If

the value RRn is constant (RRn = RR0), then this

means that the local frequency of such a frequency-

modulated signal Fmax(t) = 1/RR0 will also be con-

stant. Similar models can be studied for both lin-

ear and nonlinear behavior of the local frequency over

time f n(t).

2. Spectral properties of Gaussian peaks
with strong inhomogeneity of
cardiocycle durations RRn

Let us consider the case of real rhythmograms [36],
for which the time intervals between Gaussian peaks RRn

have a strong heterogeneity associated with the presence

of extrasystoles and compensatory pauses. The CWT

|V (ν, t)| is found for the signal Z(t) with the defined RRn

(Fig. 1). The algorithms for calculating Fmax(t) for the

case of strong heterogeneity of quantities RRn are given

in Ref. [37]. A pair of atrial and ventricular extrasystoles

Technical Physics, 2024, Vol. 69, No. 9
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is characterized by a rhythmogram RRn = {840; 860; 879;

642; 451; 1424; 860; 848; 871; 858; 847; 858}, consisting

of two extrasystoles RRext = 642, 451ms, and a subsequent

compensatory pause RR(0) = 1424ms. Figure 5 shows

the dependence of discrete local frequencies f n = 1/RRn,

measured in hertz, on the time of the centers of the intervals

t∗n = tn+1 + RRn
2

(a discrete series of crosses), as well as

the dependence Fmax(t), calculated by finding the maximum

CWT |V (ν, t)| of continuous signal Z(t) with defined time

intervals RRn.

Let us consider a rhythmogram with a set of extrasystoles,

for which the sequence of cardiac cycles has the form

RRn = {805; 864; 1000; 471; 545; 1191; 490; 1089; 486;

560; 1200; 483; 1184}. The graph Fmax(t) for such

a rhythmogram with strong inhomogeneities is shown

in Fig. 6.

It should be noted that the value of Fmax(t) can change

approximately 2.5 times over a time interval approximately

equal to 1.5 s during an extrasystole followed by a compen-

satory pause. Let us introduce two new parameters TOW

and TSW using the calculated function Fmax(t) and compare
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Figure 5. Continuous line — the dependence of local frequency

Fmax(t) on time t for a pair of extrasystoles; crosses — the

dependence of discrete local frequencies f n = 1/RRn on the time

of the centers of the intervals t∗n = tn−1 + RRn
2

between heartbeats.
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Figure 6. Continuous line — the dependence of local frequency

Fmax(t) on time t for a set of extrasystoles; crosses the dependence
of discrete local frequencies f n = 1/RRn on the time of the centers

of the intervals t∗n = tn−1 + RRn
2

between heartbeats.

them with the turbulence parameters TO and TS [18,19,22]:

TOW = 100%

(〈

1

Fmax(t)

〉

α

−

〈

1

Fmax(t)

〉

β

)

/

〈

1

Fmax(t)

〉

α

,

(7)

TSW(ms/RR) = −1000

〈

1

F2
max

dFmax

dt

〉

γ

〈

1

Fmax

〉

γ

. (8)

The parenthesis symbol 〈 〉µ in formulas (7), (8) means

the sign of averaging over a certain time interval of duration

Tµ, where µ = {α; β; γ}. If µ = α, then this time interval

is before the extrasystole, has a duration of Tα = 2 s and is

located in the time interval [text − Tα; text]. Time

text =

N1−1
∑

n=0

RRn + RRext,

where N1 — the number of heartbeats before the extrasys-

tole, RRext — the duration of the extrasystole in seconds.

The time interval Tβ = Tα for µ = β is after the extrasystole

and the compensatory pause in the interval [t(0); t(0) + Tα],
where t(0) — the time of completion of the compensatory

pause. If µ = γ , then times containing 20 heartbeats after a

compensatory pause are considered. In this case, a single

time interval with duration Tγ = 4 s, located in the interval

[t1 − Tγ/2; t1 + Tγ/2] is selected for averaging, where the

maximum derivative dFmax

dt is reached at time t1 . Calculations
using the formulas (7) and (8) give the following equation

for the values RRn given in Ref. [22]

TOW = −2.8%;

〈

1

Fmax(t)

〉

γ

= 0.816 (1/Hz);

〈

1

F2
max(t)

dFmax

dt

〉

γ

= −0.0191; TSW = 15.6 (ms/RR),

which roughly coincides with the traditional values

TO = −2.14%, TS = 16.7ms/RR [22].

Conclusions

A frequency-modulated signal Z(t) is considered for

analyzing the nonstationary NHRV rhythmogram, which

is a superposition of identical Gaussian peaks depending

on continuous time t . The centers of Gaussian peaks are

located on an uneven grid of times tn and coincide with

the true moments of heart contractions: tn+1 = tn + RRn,

n = 0, 1, 2, . . . , N − 1, t0 = 0, where the value RRn rep-

resents the length of time between cardiac cycles. The

proposed rhythmogram model allows obtaining an analytical

expression for the continuous wavelet transform (CWT),
depending on both the frequency ν and time t, using the

Morlet mother wavelet. A quantitative characteristic of heart

rate turbulence (HRT) was developed, which takes into

account both the duration of the extrasystoles themselves

RRext and the duration of compensatory pauses RR(0) that

follow the extrasystoles. Such a characteristic is the behavior

Technical Physics, 2024, Vol. 69, No. 9
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of the local frequency Fmax(t), which is calculated by the

maximum CWT at any given time both before and after

extrasystoles. Analysis of the curve Fmax(t) will help classify

different types of cardiac arrhythmias. New parameters

of the heart rate wavelet turbulence TOW and TSW were

introduced and compared with the traditional parameters

TO and TS.

The proposed method for calculating the parameter

Fmax(t) can be used to analyze an unsteady rhythmogram

both at rest and when performing various functional tests

for patients with normal sinus rhythm (NSR), as well

as for patients suffering from congestive heart failure

(CHF), atrial fibrillation (AF), preventricular contractions

(PVC), left bundle branch block (LBBB), ischemic/dilated

cardiomyopathy (ISCH) and sick sinus syndrome (SSS).
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