Влияние начального водосодержания пены на эффективность ослабления сферического взрыва в трубе

© Р.Х. Болотнова, Э.Ф. Гайнуллина, В.А. Коробчинская

Институт механики им. Р.Р. Мавлютова — обособленное структурное подразделение Федерального государственного бюджетного научного учреждения Уфимского федерального исследовательского центра Российской академии наук, 450054 Уфа, Россия

e-mail: elina.gef@yandex.ru

Поступило в Редакцию 28 апреля 2024 г. В окончательной редакции 8 октября 2024 г. Принято к публикации 30 октября 2024 г.

> Исследованы особенности взаимодействия сферической ударной волны, формирующейся в центре недеформируемой трубы, заполненной газом, и с защитным слоем из водной пены на ее внутренней поверхности. Численное моделирование проведено на основе двухфазной газожидкостной модели с единым давлением фаз с учетом межфазных сил и теплообмена. Достоверность модели подтверждена согласованием расчетов с экспериментами о сферическом взрыве в водной пене. Детально проанализирована эволюция давлений на поверхности трубы в ближней зоне инициирования ударной волны в условиях отсутствия и наличия пен с различными водосодержаниями. Показано значительное снижение амплитуды и скорости волнового импульса с применением пенной защиты на стенке трубы.

Ключевые слова: водная пена, ударные волны, цилиндрическая труба, численное моделирование.

DOI: 10.61011/JTF.2024.12.59268.379-24

Изучение демпфирующих свойств водных пен при динамическом нагружении важно с точки зрения возможного использования пенных преград в качестве эффективных защит от ударного воздействия. Экспериментальные исследования показали, что покрытие взрывного заряда слоем водной пены значительно снижает амплитуду и скорость распространения ударного импульса [1-4]. Пенный экран, расположенный на расстоянии от места инициирования ударной волны (УВ), также значительно снижает скорость волны сжатия, что подтверждено экспериментами в ударных трубах [5,6]. В [1] показано, что в случае сильного ударного воздействия жидкие пленки, формирующие пену, разрушаются, трансформируя ее в газокапельную смесь. Для исследования динамики сильных УВ в водной пене авторами была предложена газокапельная модель пены [7-9], с применением которой были численно исследованы процессы распространения сильных УВ в водной пене и взаимодействия сферического импульса с защитным пенным экраном.

Настоящая работа является продолжением исследований [8] по изучению динамики сферического взрыва в недеформируемой трубе, содержащей слой водной пены на ее внутренней поверхности. В отличие от предыдущих работ, здесь детально рассмотрены особенности снижения интенсивности ударно-волнового воздействия на поверхности трубы в ближней зоне инициирования сферического взрыва в зависимости от начальных водосодержаний слоя водной пены.

Для описания динамики УВ в газе (азот) и водной пене были использованы приведенные ниже уравнения сохранения для двухфазной однодавленческой модели газожидкостной смеси в двухскоростном и двухтемпературном приближениях с учетом межфазного теплообмена и сил межфазного взаимодействия [10,11]: Уравнения неразрывности фаз

$$\frac{\partial(\alpha_i\rho_i)}{\partial t} + \operatorname{div}(\alpha_i\rho_i\mathbf{v}_i) = \mathbf{0}.$$

Уравнения импульса фаз

$$\frac{\partial(\alpha_i\rho_i\mathbf{v}_i)}{\partial t} + \operatorname{div}(\alpha_i\rho_i\mathbf{v}_i\mathbf{v}_i) = -\alpha_i\nabla p$$
$$+\operatorname{div}(\alpha_i\boldsymbol{\tau}_i) + \mathbf{F}_{i,drag} + \mathbf{F}_{i,vm}.$$

Уравнения энергии фаз

$$\frac{\partial(\alpha_i\rho_i E_i)}{\partial t} + \operatorname{div}(\alpha_i\rho_i E_i \mathbf{v}_i) = -p\frac{\partial\alpha_i}{\partial t} - \operatorname{div}(\alpha_i \mathbf{v}_i p) + \operatorname{div}(\alpha_i \frac{c_{p,i}}{c_{V,i}} \gamma_i \nabla h_i) + K_{ht}(T_j - T_i) + \operatorname{div}(\alpha_i \mathbf{v}_i \cdot \boldsymbol{\tau}_i).$$

Уравнение динамики объемного содержания воды в пенном слое

$$\frac{\partial \alpha_1}{\partial t} + \operatorname{div}(\alpha_1 \mathbf{v}) + \operatorname{div}(\alpha_1 \alpha_2 (\mathbf{v}_1 - \mathbf{v}_2)) - \alpha_1 \operatorname{div} \mathbf{v} = \alpha_1 \alpha_2 \left(\frac{1}{\rho_2} \frac{d\rho_2}{dt} - \frac{1}{\rho_1} \frac{d\rho_1}{dt} \right)$$

Здесь p — давление, α_i — объемное содержание, ρ_i — плотность, \mathbf{v}_i — скорость, $\boldsymbol{\tau}_i = \mu_i (\nabla \mathbf{v}_i + \nabla \mathbf{v}_i^T) - \frac{2}{3} (\mu_i \operatorname{div} \mathbf{v}_i) \mathbf{I}$ — тензор вязких напряжений, μ_i — динамическая вязкость, \mathbf{I} — единичный тензор, $\mathbf{F}_{i,drag}$ — сила межфазного сопротивления, определенная моделью Шиллера-Науманна, $\mathbf{F}_{i,vm}$ — сила присоединенных масс, $E_i = e_i + K_i$ — полная энергия,

 e_i — внутренняя энергия, K_i — кинетическая энергия, $c_{p,i}$, $c_{V,i}$ — удельные теплоемкости при постоянном давлении и объеме, γ_i — температуропроводность, h_i — энтальпия, K_{ht} — интенсивность межфазного теплообмена Ранца-Маршалла, T_i — температура, $\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2$ — скорость газожидкостной смеси. Нижние индексы i, j = 1, 2 относятся к водной и газовой фазам соответственно. Для описания термодинамических свойств азота применялось уравнение состояния Пенга-Робинсона. Вода описывалась линейным по температуре и плотности уравнением состояния [12].

Модель предполагает, что за фронтом сильной УВ пена разрушена на микрокапли [13] в виде монодисперсной газокапельной смеси.

Компьютерная реализация предложенной газожидкостной модели проводилась с использованием разработанного авторами решателя на основе солвера twoPhaseEulerFoam в программном комплексе OpenFOAM [12]. При численном моделировании строились многоблочные сетки, характеризующиеся сгущением ячеек в области инициирования взрыва. Контроль сеточной сходимости полученных результатов осуществлялся как последовательным измельчением расчетной сетки, так и варьированием заранее задаваемых параметров точности итерационного алгоритма PIMPLE до достижения устойчивости полученных решений. Наилучшие точность и устойчивость достигнуты при следующих параметрах дискретизации сеточной области: $\Delta t = 1 \cdot 10^{-10}$ s; Δx , $\Delta y = 0.001 - 0.003$ m. При аппроксимации производных по времени и пространству были использованы схемы Эйлера и Гаусса.

Для оценки достоверности приведенной модели и метода ее численной реализации был проведен сравнительный анализ расчетов и экспериментальных данных по максимальным значениям давлений [1] для задачи о сферическом взрыве в водной пене с объемным водосодержанием $\alpha_{10} = 0.0083$ (рис. 1). Начальное распределение импульса давления при взрыве задавалось в виде

$$p(0, x, y, z) = p_0 + \Delta p \exp(-(x^2 + y^2 + z^2)/a^2), \quad (1)$$

где $\Delta p = 3000$ MPa, $p_0 = 0.1$ MPa, a = 0.035 m.

Дополнительно на рис. 1 представлены обобщенные экспериментальные данные пиковых давлений в газе [14] и водной пене [15], которые демонстрируют значительное ослабление интенсивности УВ в пене. Получено удовлетворительное согласование расчетов с экспериментами [1,15].

При решении основной задачи моделировался сферический взрыв в центре недеформируемой цилиндрической трубы радиусом r = 1.4 m, заполненной азотом и содержащей пенный слой толщиной 0.4 m для начальных объемных водосодержаний пены $\alpha_{10} = 0, 0.1, 0.15, 0.2$. Параметры начального импульса, заданного в виде (1), следующие: $\Delta p = 100$ MPa, $p_0 = 0.1$ MPa, a = 0.15 m.

В первую очередь был выполнен расчет динамики УВ в условиях отсутствия пенного слоя внутри трубы.

Рис. 1. Расчетные профили давления (1) в указанные моменты времени (ms); 2, 3 — обобщенные экспериментальные данные по максимальным давлениям в УВ при сферическом взрыве в газе (2) [14] и водной пене (3) [15]; 4 — пиковые давления в экспериментах по сферическому взрыву в пене с $\alpha_{10} = 0.0083$ [1].

Характерные изолинии давления (bar) в указанные моменты времени представлены на рис. 2.

К моменту времени t = 1.1 ms УВ достигает жесткой границы трубы, и в результате отражения от нее амплитуда давления на стенке возрастает до 9.6 bar при t = 1.2 ms. В дальнейшем зона повышенного давления смещается и ослабевает ($p \approx 3$ bar при t = 2 ms, $p \approx 2.4$ bar при t = 4 ms). В окрестности оси симметрии наблюдается формирование зоны малых давлений ($p \approx 0.9$ bar, t = 2 ms). Дальнейший процесс взаимодействия волновых импульсов с боковой поверхностью трубы и на оси симметрии приводит к возникновению области пониженного давления вблизи стенки трубы ($p \approx 0.5$ bar, t = 4 ms).

На рис. 3 приведены расчетные распределения полей давления в моменты времени, соответствующие наиболее интенсивному воздействию на стенку трубы для указанных начальных водосодержаний пенного слоя.

При взаимодействии с импульсом давления уплотнение водной пены приводит к существенному снижению его скорости. Характерное время достижения максимального давления УВ на поверхности трубы в случае отсутствия пенного слоя ($\alpha_{10} = 0$) составляет $t \approx 1.2$ ms. При начальном водосодержании пенного слоя $\alpha_{10} = 0.1$ это время увеличивается в ~ 7 раз ($t \approx 8.5$ ms); при $\alpha_{10} = 0.15$ — в ~ 9 раз ($t \approx 10.5$ ms), и для $\alpha_{10} = 0.2$ — в ~ 10 раз ($t \approx 12.5$ ms). Указанные времена показывают количественную оценку степени снижения скорости распространения им-

Рис. 2. Расчетные изолинии давлений с приведенными значениями (bar) в указанные времена при сферическом взрыве в трубе, заполненной газом. Курсив — характерные давления внутри зон, ограниченных изобарами. Точка контроля динамики давления: x = 0, y = 1.4 m (см. рис. 4).

Рис. 3. Расчетные распределения полей давления в моменты времени (ms) для начальных водосодержаний α_{10} в слое водной пены на внутренней поверхности трубы, заполненной газом. Курсив — характерные давления внутри зон, ограниченных изобарами. Точка контроля динамики давления: x = 0, y = 1.4 m (см. рис. 4). Штриховая линия — граница пенного слоя.

пульса давления в пенном слое в зависимости от его водосодержания по сравнению с распространением импульса сжатия в трубе без пенной защиты (рис. 2, 3).

Расчетные временные зависимости амплитуды давления в точке трубы x = 0, y = 1.4 m, расположенной на минимальном расстоянии от центра взрыва (рис. 2, 3), показаны на рис. 4. При наличии пенного слоя максимальные значения давлений, фиксируемые на поверхности трубы, составляют ~ 1.7 bar, что в ~ 5 раз меньше соответствующих значений в рассматрива-

емой зоне x = 0 y = 1.4 m в случае отсутствия пенного слоя.

Проведенный численный анализ показал, что ударное воздействие на стенку трубы без пенной защиты имеет осциллирующий характер, вызванный переотражением импульсов давления, формирующихся при взаимодействии основной и отраженных волн от поверхности трубы и оси симметрии. При этом амплитуда вторичных импульсов на стенке трубы превышает соответствующие максимальные значения давления при наличии пенного слоя (ср. линии 1-4 на рис. 4). Получены оценки сте-

Рис. 4. Расчетные зависимости амплитуды давления от времени на ближайшей к центру взрыва границе трубы (x = 0, y = 1.4 m, см. рис. 2, 3): I — расчеты при $\alpha_{10} = 0$; 2-4 — расчеты при наличии пенной защиты на внутренней поверхности трубы с $\alpha_{10} = 0.1$, $\alpha_{10} = 0.15$ и $\alpha_{10} = 0.2$ соответственно.

пени снижения скорости и амплитуды импульса сжатия при его распространении в пенном слое в зависимости от увеличения начального водосодержания в пенном слое.

Полученные результаты детализируют особенности волновых процессов, происходящих в трубе с барьером из водной пены, которые приводят к значительному снижению интенсивности и скорости импульса давления при его взаимодействии с границей трубы по сравнению со случаем отсутствия пенной защиты, что способствует снижению риска разрушения трубы при внутреннем взрыве. Проведенные исследования могут быть использованы, в частности, при разработке методов обеспечения безопасности для задач трубопроводной транспортировки газа.

Финансирование работы

Работа выполнена при финансовой поддержке средствами госбюджета по госзаданию 124030400064-2 (FMRS-2024-0001).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- E. Del Prete, A. Chinnayya, L. Domergue, A. Hadjadj, J.-F. Haas. Shock Waves, 23 (1), 39 (2013). DOI: 10.1007/s00193-012-0400-0
- S.P. Medvedev, S.V. Khomik, V.N. Mikhalkin, A.N. Ivantsov, G.L. Agafonov, A.A. Cherepanov, T.T. Cherepanova, A.S. Betev. J. Phys.: Conf. Ser., 946, 012061 (2018). DOI: 10.1088/1742-6596/946/1/012061

- K.L. Monson, K.M. Kyllonen, J.L. Leggitt, K.E. Edmiston, C.R. Justus, M.F. Kavlick, M. Phillip, M.A. Roberts, C.W. Shegogue, G.D. Watts. J. Forensic Sci., 65 (6), 1894 (2020). DOI: 10.1111/1556-4029.14536
- [4] K. Ahmed, A.Q. Malik. AIP Advances, 10, 065130 (2020). DOI: 10.1063/5.0010283
- [5] G. Jourdan, C. Mariani, L. Houas, A. Chinnayya, A. Hadjadj, E. Del Prete, J.-F. Haas, N. Rambert, D. Counilh, S. Faur. Phys. Fluids, 5, 056101 (2015). DOI: 10.1063/1.4919905
- [6] M. Monloubou, J. Le Clanche, S. Kerampran. Actes 24eme Congres Francais de Mecanique. Brest: AFM, 255125 (2019).
- [7] Э.Ф. Гайнуллина. Многофазные системы, 14 (2), 74 (2019).
 DOI: 10.21662/mfs2019.2.011
- [8] Р.Х. Болотнова, Э.Ф. Гайнуллина. Вестник ЮУрГУ. Серия "Математическое моделирование и программирование", 14 (1), 118 (2021). DOI: 10.14529/mmp210109
- [9] Р.Х. Болотнова, Э.Ф. Гайнуллина, В.А. Коробчинская. Письма в ЖТФ, 24, 42 (2023).
 DOI: 10.61011/PJTF.2023.24.56871.106A [R.Kh. Bolotnova, E.F. Gainullina, V.A. Korobchinskaya. Tech. Phys. Lett., 12, 104 (2023).]
- [10] Р.И. Нигматулин. Динамика многофазных сред (Наука, М., 1987), ч. 1. [R.I. Nigmatulin. Dynamics of multiphase media (Hemisphere, NY, 1990)]
- [11] Л.Д. Ландау, Е.М. Лифшиц. *Теоретическая физика. Гидродинамика* (Наука, М., 1986) [L.D. Landau, E.M. Lifshitz. *Fluid mechanics* (Pergamon Press, Oxford, 1987), v. 6.]
- [12] Электронный ресурс. *OpenFOAM. The open source computational fluid dynamics (CFD) toolbox.* Режим доступа: http://www.openfoam.com
- [13] С.А. Ждан. ФГВ, **26** (2), 103 (1990). https://elibrary.ru/item.asp?id=30555610
- [14] G. Kinney, K. Graham. *Explosives shocks in Air* (Springer, Berlin, 1985)
- [15] W. Hartman, B. Boughton, M. Larsen. *Blast mitigation capabilities of aqueous foam* (Sandia National Laboratories Tech. Rep. SAND2006–0533, 2006), p. 98.