02

Сравнение результатов оптических и электрофизических измерений концентрации электронов проводимости в образцах n-InSb

© А.Г. Белов¹, Е.В. Молодцова¹, Н.Ю. Комаровский^{1,2}, Е.И. Кладова¹, Р.Ю. Козлов^{1,2}, Е.О. Журавлёв^{1,2}, С.А. Климин³, Н.Н. Новикова³, В.А. Яковлев³

 ¹ Государственный научно-исследовательский и проектный институт редкометаллической промышленности (АО "Гиредмет" им. Н.П. Сажина), Москва, Россия
 ² Национальный исследовательский технологический университет "МИСИС" (НИТУ МИСИС), Москва, Россия
 ³ Институт спектроскопии РАН (ИСАН), Троицк, Москва, Россия
 e-mail: klimin@isan.troitsk.ru
 Поступила в редакцию 13.09.2024 г.

Поступила в редакцию 13.09.2024 г. В окончательной редакции 13.09.2024 г. Принята к публикации 27.09.2024 г.

> Исследованы спектры инфракрасного отражения монокристаллических образцов *n*-InSb, легированных теллуром, при комнатной температуре. С помощью дисперсионного анализа получены спектральные зависимости действительной и мнимой частей диэлектрической проницаемости и построена функция потерь. Определены значения характеристического волнового числа, отвечающего высокочастотной плазмонфононной моде и вычислены значения оптической концентрации электронов N_{opt} . На тех же образцах выполнены электрофизические измерения по методу Ван дер Пау при комнатной температуре и определены значения холловской концентрации N_{Hall} . Показано, что для всех исследованных образцов оптическая концентрация превышает холловскую. Высказано предположение, что приповерхностные слои образцов обогащены свободными электронами. Оценена толщина приповерхностного слоя образца, в котором формируется отраженный световой сигнал, и показано, что она не превышает 1 μ m.

> Ключевые слова: *n*-InSb, спектры отражения, плазмон-фононное взаимодействие, метод Ван дер Пау, концентрация свободных электронов.

DOI: 10.61011/OS.2024.09.59185.6959-24

Введение

В течение ряда лет в АО "Гиредмет" ведутся исследования, имеющие целью разработку бесконтактного неразрушающего метода определения концентрации свободных носителей заряда (КСНЗ) в образцах сильно легированных полупроводниковых материалов. В основе метода лежит математическая обработка спектра отражения, записанного в средней инфракрасной (СИК) и дальней инфракрасной (ДИК) областях. С помощью дисперсионного анализа по экспериментально измеренному спектру отражения вычислялись зависимости действительной ε_1 и мнимой ε_2 частей комплексной диэлектрической проницаемости $\varepsilon = \varepsilon_1 + i\varepsilon_2$ от волнового числа, после чего строилась так называемая "функция потерь":

$$LF = \operatorname{Im}(-1/\varepsilon) = \frac{\varepsilon_2}{\varepsilon_1^2 + \varepsilon_2^2}$$

Далее определялось значение характеристического волнового числа ν_+ , по которому с помощью расчётной градуировочной зависимости вычислялось значение КСНЗ. Хотя рассматриваемый метод определения КСНЗ разработан для T = 295 К, он может быть распространён и на другие температуры, например T = 77 К.

Поскольку в полупроводниковых соединениях A_2B_6 и A_3B_5 присутствует заметная доля ионной связи, при проведении расчётов необходимо учитывать взаимодействие плазменных колебаний с продольными оптическими (LO) фононами (плазмон-фононное взаимодействие). В этом случае вместо ранее существовавших независимых колебаний (плазмонов и LO-фононов) возникают смешанные плазмон-фононные моды с частотами ν_- (низкочастотная, преимущественно фононная) и ν_+ (высокочастотная, преимущественно плазмонная) [1,2]. Для определения КСНЗ использовалась высокочастотная мода ν_+ , с большим вкладом плазменных колебаний, частота которых непосредственно зависит от значения КСНЗ. Значения ν_- и ν_+ отождествлялись с волновыми числами, отвечающими максимумам функции потерь.

Упомянутый подход был использован для определения концентрации свободных электронов в *n*-InSb [3], *n*-InAs [4], *n*-GaAs [5], *n*-GaSb [6], а также дырок в *p*-GaAs [7]. В случае наличия в исследуемых образцах свободных носителей заряда только одного типа оптические данные сопоставлялись с результатами традиционных холловских измерений по методу Ван дер Пау [3–5]. Если в образцах присутствовали свободные носители заряда двух типов (*n*-GaSb [6], *p*-GaAs [7]), то из сопоставления оптических и холловских данных можно было определить отношение подвижностей "лёгких" и "тяжёлых" электронов [6], либо "лёгких" и "тяжёлых" дырок [7].

Настоящая работа является непосредственным продолжением ранее начатых исследований. Сравниваются результаты измерений концентрации электронов проводимости, полученные оптическим методом, $N_{\rm opt}$, и электрофизическим методом, $N_{\rm Hall}$, на образцах *n*-InSb, легированных теллуром.

Методика эксперимента

Монокристаллы антимонида индия были получены методом Чохральского. Исходные компоненты In и Sb (чистотой 6N), а также легирующая примесь Te помещались в кварцевый фильтрующий тигель, который устанавливался в рабочий тигель ростовой камеры. Синтез соединения InSb проводился в фильтрующем тигле при температуре ≈ 750 °C в вакууме. После фильтрации расплава в рабочий тигель температура расплава снижалась до ≈ 525 °C. Монокристалл выращивался на затравку, ориентированную в кристаллографических направлениях [100] или [111] (таблица). Выращенный монокристалл отжигался в зоне нагревателя по специальному тепловому режиму, подобранному экспериментально [8].

Контрольные пластины вырезались перпендикулярно оси роста из верхней и нижней частей слитка. Пластины шлифовались на порошке М14 и травились в полирующем травителе для снятия нарушенного слоя. Из пластин вырезались образцы приблизительно квадратной формы с линейными размерами 8–12 mm; толщина образцов изменялась в пределах 0.78–1.98 mm (таблица).

Спектры отражения записывались с помощью фурьеспектрометра Tensor 27 в интервале волновых чисел $340 < \nu < 1500 \,\mathrm{cm^{-1}}$ (разрешение $2 \,\mathrm{cm^{-1}}$) и вакуумного фурье-спектрометра BRUKER IFS66v/s в интервале волновых чисел $50 < \nu < 1200 \,\mathrm{cm^{-1}}$ (разрешение $4 \,\mathrm{cm^{-1}}$); угол падения был близок к углу нормального падения и составлял не более 13° с нормалью.

Электрофизические измерения проводились по методу Ван дер Пау. Контакты припаивались индием в торец по углам образца. Держатель с двумя образцами, прикрепленными с противоположных сторон, размещался в зазоре между полюсами электромагнита: образцы располагались перпендикулярно направлению индукции магнитного поля. Удельное электрическое сопротивления измерялось в отсутствие магнитного поля, а коэффициент Холла — в магнитном поле с индукцией B = 0.5 Т при силе тока через образец 200 mA.

Спектры отражения обрабатывались с применением дисперсионного анализа. Вычислялись зависимости ε_1 и ε_2 от волнового числа, строилась функция потерь *LF*, определялось значение характеристического волнового числа v_+ , после чего с помощью расчетной градуировочной зависимости вычислялось значение концен-

Рис. 1. Спектр отражения образца №1 (кривая I) и функция потерь (кривая 2). Вертикальными штриховыми линиями обозначены значения ν_{-} и ν_{+} .

трации электронов проводимости N_{opt} . Используемая при вычислениях теоретическая модель, а также алгоритм определения N_{opt} подробно описаны в работе [3]. Значение N_{opt} сравнивалось с аналогичным значением, полученным из холловских измерений, N_{Hall} .

Результаты эксперимента и их обсуждение

На рисунке представлен типичный спектр отражения R(v) (кривая 1) и отвечающая этому спектру функция потерь (кривая 2); образец №1 — см. таблицу.

Как видно из рисунка, функция потерь имеет два максимума: левый (низкочастотный), обусловленный LOфононом, выражен слабо, тогда как правый (высокочастотный) выражен более рельефно. Для упомянутого образца $\nu_{-} = 175 \text{ см}^{-1}$, а $\nu_{+} = 338 \text{ см}^{-1}$. Значение N_{opt} определялось по известному значению ν_{+} с помощью расчетной градуировочной зависимости, которая описывается кубической параболой [3]:

$$N_{\text{opt}} = 1.90 \cdot 10^{10} (\nu_{+})^{3} - 6.90 \cdot 10^{12} (\nu_{+})^{2}$$
$$+ 3.54 \cdot 10^{15} (\nu_{+}) - 5.06 \cdot 10^{17}. \tag{1}$$

В таблице представлены параметры исследованных образцов *n*-InSb, результаты оптических и электрофизических измерений, а также значения

$$\delta = rac{N_{
m opt} - N_{
m Hall}}{N_{
m opt}}$$

Образцы расположены в порядке возрастания значений $N_{\rm opt}.$

Отметим, что разрешение, с которым записывались спектры отражения, было не хуже $4 \, \mathrm{cm}^{-1}$ (см. выше), так что случайная относительная погрешность определения значения ν_+ не превышает $\pm 1.2\%$ (образец №1,

8	9	3

N₂	Толщина образца,	Кристаллографическая	$\nu_+,$	Концентрация электронов, ст ⁻³		δ,%
п/п	d, mm	ориентация	cm^{-1}	N _{opt}	$N_{ m Hall}$	
1	1.11	< 100 >	338	$6.36\cdot 10^{17}$	$5.5\cdot10^{17}$	14
2	1.40	< 100 >	351	$7.08\cdot 10^{17}$	$6.3\cdot10^{17}$	11
3	0.89	< 100 >	356	$7.39\cdot 10^{17}$	$6.5\cdot10^{17}$	12
4	1.92	< 111 >	362	$7.73\cdot 10^{17}$	$6.9\cdot10^{17}$	11
5	1.92	< 111 >	386	$9.25\cdot 10^{17}$	$7.1\cdot10^{17}$	23
6	0.86	< 100 >	395	$9.87\cdot 10^{17}$	$9.2\cdot 10^{17}$	7
7	0.78	< 100 >	397	$1.00\cdot 10^{18}$	$9.8\cdot 10^{17}$	2
8	1.29	< 100 >	408	$1.08\cdot 10^{18}$	$9.7\cdot10^{17}$	10
9	1.36	< 100 >	414	$1.21\cdot 10^{18}$	$1.2\cdot 10^{18}$	1
10	0.98	< 100 >	474	$1.64\cdot 10^{18}$	$1.5\cdot10^{18}$	9
11	1.54	< 100 >	502	$1.94\cdot 10^{18}$	$1.5\cdot10^{18}$	22
12	1.55	< 100 >	536	$2.33\cdot 10^{18}$	$2.2\cdot 10^{18}$	5
13	1.66	< 100 >	537	$2.35\cdot 10^{18}$	$2.0\cdot 10^{18}$	16
14	1.98	< 111 >	555	$2.58\cdot 10^{18}$	$2.0 \cdot 10^{18}$	22

Параметры исследованных образцов

для которого $v_+ = 338 \, {\rm cm}^{-1}$). Для всех остальных образцов упомянутая погрешность ещё меньше. Согласно специально проведенным метрологическим исследованиям холловской методики, случайная относительная погрешность определения $N_{\rm Hall}$ с доверительной вероятностью P = 0.95 не превосходит $\pm 6\%$. Соответственно, в таблице значения $N_{\rm opt}$ приведены с двумя знаками после запятой, а значения $N_{\rm Hall}$ — с одним. Значения параметра δ приведены с округлением.

Как видно из таблицы, для всех исследованных образцов $N_{\rm opt} > N_{\rm Hall}$, причем это различие не зависит от концентрации электронов, кристаллографической ориентации образца и изменяется в широких пределах: от 1% (образец №9) до 23% (образец №5). Подобная картина наблюдалась нами и применительно к образцам *n*-InAs, легированным серой и оловом. Оптическая концентрация превышала холловскую, а значение параметра δ достигало 20% [4].

В случае образцов *n*-GaAs, легированных теллуром и кремнием, наблюдалась обратная картина: оптическая концентрация оказалась меньше холловской [9].

Таким образом, можно констатировать, что значения оптической и холловской концентраций электронов проводимости отличаются, причем отличие может быть в обе стороны в зависимости от материала образца. Здесь необходимо отметить принципиально важный аспект. Коль скоро отраженный световой сигнал формируется в узком приповерхностном слое образца, значения $N_{\rm opt}$, полученные из оптических измерений, будут относиться именно к этому слою, тогда как значения $N_{\rm Hall}$ —

ко всему объему образца. Это и может послужить причиной расхождения в значениях $N_{\rm opt}$ и $N_{\rm Hall}$.

Какова же толщина этого приповерхностного слоя? Попытаемся оценить её, предположив, что в качестве слоя, в котором формируется отраженный световой сигнал, выступает скин-слой. В этом случае воспользуемся известной формулой

$$l = c \sqrt{\frac{2\varepsilon_0}{\omega \eta e N \mu}}.$$
 (2)

Здесь l — толщина скин-слоя, $c = 3 \cdot 10^{10}$ cm/s — скорость света в вакууме, $\varepsilon_0 = 8.85 \cdot 10^{-14}$ F/cm — ди-электрическая постоянная, $\omega = 2\pi c \nu (s^{-1})$ — круговая частота света, η — безразмерная магнитная проницаемость материала, $e = 1.6 \cdot 10^{-19}$ С — заряд электрона, N — концентрация электронов проводимости, μ — их подвижность.

Для оценки по формуле (2) выберем значения параметров, относящихся к образцу №1 (таблица): $\nu \approx \nu_+ = 338 \text{ cm}^{-1}$ ($\omega = 6.37 \cdot 10^{13} c^{-1}$), $\eta = 1$ (немагнитный материал), $N = N_{\text{Hall}} = 5.5 \cdot 10^{17} \text{ cm}^{-3}$, $\mu = 2.7 \cdot 10^4 \text{ cm}^2/(\text{V} \cdot \text{s})$. Тогда в соответствии с формулой (2) получим $l \approx 3.2 \cdot 10^{-5} \text{ cm} = 0.32 \,\mu\text{m}$. Это толщина слоя, в котором интенсивность электромагнитной волны убывает в $e \approx 2.71$ раза. Взяв за толщину интересующего нас слоя значение 3l, получим, что значение N_{opt} относится к приповерхностному слою образца толщиной около 1 μ m. Для других исследованных образцов это значение будет ещё меньше.

Из полученных данных следует, что для всех исследованных образцов приповерхностный слой обогащен свободными электронами (также, как и в образцах n-InAs [4]). Среди возможных причин можно перечислить две основные: топологические эффекты и неравномерное распределение легирующей примеси по объему кристалла. Что касается первого предположения, следует обратить внимание на работу [10], в которой предсказано возникновение топологически нетривиальной фазы в напряженном InSb. В свою очередь легирование приводит к определенным напряжениям в материале. Предположение о неравномерном распределении, на наш взгляд, не может объяснить эффект разного знака в разных образцах, так как при вырезании пластины на поверхности может оказаться фрагмент монокристалла как с повышенной, так и с пониженной концентрацией теллура. Имеющейся информации недостаточно для того, чтобы сделать какие-либо выводы о природе упомянутого слоя. Этот вопрос является предметом самостоятельного исследования.

Выводы

1. Получены спектры инфракрасного отражения образцов n-InSb, легированных теллуром, при комнатной температуре. С помощью дисперсионного анализа построены функции потерь и определены значения концентрации электронов проводимости $N_{\rm opt}$.

2. На тех же образцах проведены электрофизические измерения по методу Ван дер Пау при комнатной температуре и получены значения холловской концентрации *N*_{Hall}.

3. Показано, что для всех исследованных образцов оптическая концентрация превышает холловскую. Высказано предположение, что приповерхностные слои исследованных образцов обогащены электронами проводимости.

4. Оценена толщина приповерхностного слоя образца, в котором формируется отраженный световой сигнал. Показано, что она не превосходит 1 µm.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- B.B. Varga. Phys. Rev. A, **137**, 1896 (1965).
 DOI: 10.1103/Phys. Rev.137.A1896
- [2] K.S. Singwi, M.P. Tosi. Phys. Rev., 147 (2), 658 (1966).
 DOI: 10.1103/Phys.Rev.147.658
- [3] I.M. Belova, A.G. Belov, V.E. Kanevskii, A.P. Lysenko. Semiconductors, **52** (15), 1942 (2018).
 DOI: 10.1134/S1063782618150034
- [4] T.G. Yugova, A.G. Belov, V.E. Kanevskii, E.I. Kladova, S.N. Knyazev, I.B. Parfent'eva. Modern Electronic Materials, 7 (3), 79 (2021). DOI: 10.3897/j.moem.7.3.76700

- [5] T.G. Yugova, A.G. Belov, V.E. Kanevskii, E.I. Kladova, S.N. Knyazev. Modern Electronic Materials, 6 (3), 85 (2020). DOI: 10.3897/j.moem.6.3.64492
- [6] А.Г. Белов, Е.В. Молодцова, С.С. Кормилицина, Р.Ю. Козлов, Е.О. Журавлев, С.А. Климин, Н.Н. Новикова, В.А. Яковлев. Опт. и спектр., **131** (7), 919 (2023). DOI: 10.21883/OS.2023.07.56126.4318-23
- [7] A.G. Belov, V.E. Kanevskii, E.I. Kladova, S.N. Knyazev, N.Yu. Komarovskiy, I.B. Parfent'eva. E.V. Chernyshova. Modern Electronic Materials, 9 (2), 69 (2023). DOI: 10.3897/j.moem.9.2.109743
- [8] Н.Ю. Комаровский, Е.В. Молодцова, А.Г. Белов, М.Б. Гришечкин, Р.Ю. Козлов, С.С. Кормилицина, Е.О. Журавлев, М.С. Нестюркин. Заводская лаборатория. Диагностика материалов, 89 (8), 38 (2023) DOI: 10.26896/1028-6861-2023-89-8-38-46
- [9] Н.Ю. Комаровский, А.Г. Белов, Е.И. Кладова, С.Н. Князев, Е.В. Молодцова, И.Б. Парфентьева, А.А. Трофимов. Прикладная физика, 6, 54 (2023). DOI: 10.51368/1996-0948-2023-6-54-59
- [10] Z. Zhu, Y. Cheng, and U. Schwingenschlögl. Phys. Rev. B, 85, 235401 (2012). DOI: 10.1103/PhysRevB.85.235401