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The anharmonic oscillator as a Bloch-Siegert model
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interaction leads to a two-level atom model in which the Stark shift of the resonant levels differs depending on
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1. Introduction

Quantum oscillator is an important quantum and non-

linear optics model that is behind the theoretical concepts

of interaction between electromagnetic radiation and optical

resonators, superconducting structures in the Josephson

effect conditions, and of the electromagnetic radiation

itself when its quantum state is considered. However, in

case of harmonic quantum oscillator in ensembles of such

oscillators, it is impossible to form the main nonlinear-

optical effects such as optical nutation, photon echo,

superradiation [1], that are demanded for spectroscopy as

well as for data processing and quantum computing [2,3].
The reason for such picture of interaction between the

electromagnetic radiation andquantum harmonic oscillators

is in the structure of creation and annihilation operator

algebra that describes the Hamiltonian of a problem —
this problem is mathematically solvable [1]. To avoid

this
”
obstacle“, either combined systems are used in

applications, for example, resonant atoms are placed inside

the resonator [4,5], or anharmonicity is considered [6].
Consideration of quantum oscillator anharmonicity in

nonlinear and quantum optics problems is usually limited to

a rotating wave model where a pair of resonance levels from

the non-equidistant spectrum of an anharmonic oscillator

interacts with an electromagnetic field, and the system, thus,

becomes equivalent to a two-level atom model that is in

resonant interaction with a classical coherent wave [7].
This paper focuses on considerable difference between

the two-level system model obtained from the anharmonic

quantum oscillator and that obtained from an atom. The

difference is in the second-order processes of interaction

between the objects in question and the electromagnetic

wave. Besides, if we restrict ourselves to the case of classical

coherent wave of one carrier frequency and anharmonicity

of two lowest degrees, then we have only three types

of resonance with absorption of one quantum from an

electromagnetic field

Itis known that atomic energy levels in a high-frequency

electromagnetic field acquire a shift that is known as the

Stark shift owing to the high-frequency Stark effect [8–
10]. The magnitude of the Stark shift of a resonance level

is contributed to by not only resonance levels, but also

by other atomic levels among which the contribution of

resonance levels is usually small [9,10]. A total absence

of the contribution from other oscillator levels is a feature

that has been found in the two-level model of the resonant

interaction between the anharmonic oscillator and coherent

field. As a result of this feature, the relation between two

shifts of resonance levels is well defined and cannot be

arbitrary as in the case of two-level model obtained from the

problem of resonant interaction with a multilevel atom. This

difference governs the behavior of collective processes in

ensembles of excited two-level particles, for example, when

a superrariation pulse is generated [11].
To obtain the two-level model of the resonant interaction

between the anharmonic oscillator and coherent wave, we

use algebraic perturbation theory and sequentially reduce

the problem to the two-level model and compare it with

the Bloch–Siegert model known from magnetic resonance

theory [12]. In case of multilevel atoms and molecules, the

resonance level energy shift in the Bloch–Siegert model is a

small quantity in the total Stark shift of levels. Nevertheless,

many studies [13–18], including experimental ones [16–19]
have been still devoted to the investigation of the Bloch–
Siegert shift in various resonance process models. Note

that quantum-mechanical oscillators are not addressed here,

though there are many nonlinear models for them.

The feature of our result may be restated as follows: the

Stark shift in a multilevel system such as the anharmonic
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oscillator differs in case of resonant interaction with a

single-frequency coherent wave, generally speaking, from

the Bloch–Siegert shift as well as from the cases of resonant

interactions with multilayer atoms. The Bloch–Siegert
relation for the Stark shifts can be achieved only iin one

of three possible types of resonance that implies excitation

of the anharmonic oscillator from the ground state to the

third one during the absorption of one electromagnetic

field quantum. In terms of the effective Hamiltonian, this

resonance case is equivalent to the abstract two-level model

of a quantum particle. Contrary to the previous studies [12–
19], we use algebraic perturbation theory to obtain the

resonance energy level shift because this theory allows

coherent and broadband quantum fields to be addressed in

a consistent manner. In the latter case, the use of algebraic

perturbation theory is justified [20]. The differences of

algebraic perturbation theory from the Magnus method [21]
and the Floquet approach [22] that were previously used

for the analysis of other resonance physics problems are ex-

plained in [23]. A perturbation theory version from [24,25]
is also sometimes used with the same typical inaccuracies.

Note that algebraic perturbation theory may be treated in

this problem as generalization of the Kylov-Bogolyubov-

Mitropolsky averaging method described in [8] for optical

problems. Algebraic perturbation theory is laid in [9,10,26–
29].

The application features of algebraic perturbation theory

are discussed first, then the effective Hamiltonian is derived

fro the anharmonic quantum oscillator in the resonance

coherent wave field in three typical resonance cases. absorp-

tion of one coherent field quantum in these cases induces

one-quantum or two-quantum or three-quantum transitions

in the anharmonic oscillator. Algebraic perturbation theory

made it possible to use the results of previous studies

performed within this framework directly for description of

optical nutation on the ensemble of anharmonic oscillators.

Possibilities of the developed approach for describing other

nonlinear optical effects in the quantum oscillator systems

are thus demonstrated. In case of nutation oscillations, the

presented results give an idea of the anharmonic oscillator

parameters by means of the experimental study of optical

nutation. It is the optical nutation in various systems that is

often investigated experimentally [17–19].

2. Features of algebraic perturbation
theory

Consider the anharmonic quantum oscillator in the coher-

ent resonance wave field. The resonance conditions will be

prescribed below. The benchmark for description of optical

effects is the Schrödinger equation for the state vector |9〉
of the anharmonic oscillator with the Hamiltonian H of the

problem written as

i~
d
dt
|9〉 = H|9〉, H = Hosc + Vint,

Hosc = ~�c

(

c†c + α(c + c†)3 + β(c + c†)4
)

= Hosc−Diag + Hosc−Non−D,

Vint = g
(

Ecl exp(−iωclt − i8)

+ E
∗
cl exp(iωclt + i8)

)(

c + c†
)

.

Here, Hosc is the Hamiltonian of the oscillator of

frequency �c taking into account the anharmonicity of

the third-/fourth-orders defined by the constants α and

β . Operator of interaction between the oscillatior and

coherent wave Vint is defined by the parameter g (for
example, in case of a resonator, g defines the cou-

pling of external and intracavity fields on the mirror).
Ecl exp(−iωclt − i8) + E

∗
cl exp(iωclt + i8) is the electric

field strength of the coherent wave carrying the frequencies

ωcl and amplitudes Ecl , 8 is the electric field phase of the

coherent wave in the oscillator position point. It is assumed

that the coherent wave amplitude Ecl varies slowly over time

compared with exp(±iωclt).
Note that, apart from anharmonicity, the given model with

the interaction operator Vint has been repeatedly addressed

before [30–33]. The difference of the anharmonicity

consideration is in that there is both diagonal Hosc−Diag

and non-diagonal ... small corrections: Hosc−Non−D :

Hosc−Diag = ~�cN + V1, Hosc−Non−D = V2 + V3,

N = c†c, V1 = ~�c6β
(

N + N2
)

,

V2 = ~�cα
(

(3cN + c3) + H.c.
)

,

V3 = ~�cβ
(

(c4 − 2c2 + 4c2N) + H.c.
)

.

Letters H.c. usually replace the Hermitian conjugates of the

previous.

It is convenient to assume β in the diagonal term V1 as

”
independent“ from β in the term V3 in the following sense.

According to the principles of algebraic perturbation

theory, we perform the unitary transformation of the initial

state vector |9〉 of the open system and environment:

|9̃〉 = T̂ |9〉, T̂ = e−iS, S† = S

and expand the Hermitian generator of the unitary transfor-

mation S as series in the available coupling constants:

S = S(1,0,0,0) + S(0,1,0,0) + S(0,0,1,0) + S(0,0,0,1)

+ S(2,0,0,0) . . . , (1)

where each of the coupling constants, i.e. constants in the

interaction operators Vint, V1, V2 and V3, is corresponded by

one place in the four superscripts. The system Hamiltonian

is transformed into the Hamiltonian H̃ according to the

expression

H̃ = T̂ HT̂ † − i~T̂
d
dt

T̂ †,
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is expanded in the similar (1) series

H̃ = H̃(0,0,0,0) + H̃(1,0,0,0)

+ H̃(0,1,0,0) + H̃(0,0,1,0) + H̃(0,0,0,1) + H̃(2,0,0,0) + . . . (2)

and defines the transformed Schrödinger equation

i~
d
dt

|9̃〉 = H̃|9̃〉.

The fact that expansions in four constants (β was used

twice — in the first and third superscripts) were used in

expansions (1) and (2) with three interaction constants,

i.e. α, β and g , exactly reflects the above-mentioned

”
independency“ of constants and the specifics of analysis

using the algebraic perturbation theory methods.

Principles used for selection of terms in the transfor-

mation generator and transformed Hamiltonian are clearly

defined when using the interaction representation. The

key difference of the algebraic perturbation theory method

from the above-mentioned Magnus and Floquet methods

(and also other methods based on the Baker-Hausdorff

formula [9,10,24,25]) is in the principle used for selection of

terms in series (1) and (2). The principle is formulated more

compactly in the interaction representation — the effective

Hamiltonian terms in the interaction representation shall

not contain any rapidly time-varying terms compared with

exp(±i�ct) and exp(±iωclt). Then, on the contrary, the

transformation generator terms include only rapidly time-

varying terms. Assignment of operators to the interaction

representation will be marked through explicit writing of the

time argument (except the time dependence of the coherent

field amplitude). The whole series can be summarized

here by the first superscript because it is responsible for

the diagonal addition to the Hamiltonian and therefore the

whole series of terms, but for the first one, will be null. This

facts will be further used as follows. The representation will

be assumed hereinafter as a representation that is defined

by the harmonic oscillator Hamiltonian with the diagonal

correction:

H(t) = exp(iHosc−Diagt/~)HNon−D exp(−iHosc−Diagt/~)

= V2(t) + V3(t) + Vint(t),

Vint(t) = g
(

Ecl exp(−iωclt − i8)

+ E
∗
cl exp(iωclt + i8)

)(

c(t) + c†(t)
)

,

c(t) = exp(iHosc−Diagt/~)c exp(−iHosc−Diagt/~).

Wherein

i~
d
dt

|9̃〉 = H̃|9̃〉, |9̃〉 = T̂ (t)|9(t)〉,

T̂ (t) = e−iS(t), S†(t) = S(t),

H̃(t) = T̂ (t)V (t)T̂ †(t) − i~T̂ (t)
d
dt

T̂ †(t),

V2 = ~�cα
(

(3c(t)N + c(t)3) + H.c.
)

,

V3(t) = ~�cβ
(

(c(t)4 − 2c(t)2 + 4c(t)2N) + H.c.
)

,

H̃(t) = H(t) − i
[

S(t), H(t)
]

− 1

2

[

S(t),

[

S(t), H(t)
]]

− . . . − i~e−iS(t) d
dt

eiS(t).

Now, the transformation generator and transformed

Hamiltonian ae expanded as series in coupling constants

defining only interactions Vint(t), V2(t) and V3(t). Accord-

ingly, these interactions are met by the following expansions:

S(t) = S(1,0,0)(t) + S(0,1,0)(t)

+ S(0,0,1)(t) + S(2,0,0)(t) + . . . , (3)

H̃(t) = Ṽ (t)(1,0,0) + Ṽ (t)(0,1,0)Ṽ (t)(0,0,1) + Ṽ (t)(1,1,0)

+ Ṽ (t)(1,0,1)Ṽ (t)(0,1,1) + Ṽ (t)(2,0,0) + . . . (4)

It is easy to obtain:

Ṽ (t)(1,0,0)(t) = ~
dS(1,0,0)(t)

dt
+ Vint(t),

Ṽ (t)(0,1,0)(t) = ~
dS(0,1,0)(t)

dt
+ V2(t),

Ṽ (t)(0,0,1)(t) = ~
dS(0,0,1)(t)

dt
+ V3(t),

Ṽ (t)(2,0,0)(t) = ~
dS(2,0,0)(t)

dt
− i

2

[

S(1,0,0)(t),Vint(t)
]

. . .

It is convenient, but not mandatory, to proceed to the

next representation of bosonic operators of the oscillators

through the projectors:

c ↔
∞
∑

n=1

√
n|n − 1〉〈n|, c† ↔

∞
∑

n=1

√
n|n〉〈n − 1|,

c2 ↔
∞
∑

n=2

√

n(n − 1)|n − 2〉〈n|, ... |En〉 = |n〉,

En = ~�c

(

n + 6β(n + n2)
)

, �n,k =
En,k

~
, En,k = En − Ek .

Then the problem operators may be rewritten in a form

similar to the operators defining the problem of interaction

between the multilayer atom and resonance coherent field:

Vint(t) = g
(

Ecl exp(−iωclt − i8) + E
∗
cl exp(iωclt + i8)

)

×
(

∞
∑

n=1

dn−1,n|En−1〉〈En|ei�n−1,nt + H.c
)

,

V2(t) = ~α�c

(

(

∞
∑

n=1

hn−1,n|En−1〉〈En|ei�n−1,nt

+
∞
∑

n=3

hn−3,n|En−3〉〈En|ei�n−3,nt
)

+ H.c.
)

,
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V3(t) = ~β�c

(

(

∞
∑

n=4

hn−4,n|En−4〉〈En|ei�n−4,nt

+

∞
∑

n=2

hn−2,n|En−2〉〈En|ei�n−2,nt
)

+ H.c.
)

,

dn−1,n = dn,n−1 =
√

n, hn−1,n = hn,n−1 = 3n3/2,

hn−3,n = hn,n−3 =
√

n(n − 1)(n − 2),

hn−2,n = hn,n−2 = (4n − 2)
√

n(n − 1),

hn−4,n = hn,n−4 =
√

n(n − 1)(n − 2)(n − 3). (6)

In notations (5), the problem of the resonant interaction

between the coherent field and anharmonic oscillator be-

comes quite similar to the problem of resonant interaction

between the coherent field and multilayer atom. Therefore,

considerable difference in results here is believed to be im-

portant. Unlike the case with multilayer atoms, constants (6)
that define the intensity of transitions between the levels are

rigorously defined. For a multilayer atom, only sum rule

conditions may be relied upon [34,35], though the same

constants may be also defined in some cases.

Ṽ (0,1,0)(t) and Ṽ (0,0,1)(t) may be determined indepen-

dently of the resonant interaction conditions because they

are rapidly time-varying quantities. Therefore

Ṽ (0,1,0)(t) = Ṽ (0,0,1)(t) = 0.

This condition suggests that there are not harmonic genera-

tion processes in the first order of algebraic perturbation

theory. Values for S(0,1,0) and S(0,0,1) that define the

interference processes and harmonic generation are also

derived from it, however, they are not shown here because

harmonic generation is not addressed in this paper.

3. One-quantum resonance condition

Depending on the initial state of the anharmonic oscillator

(before the interaction with the coherent field), one-

quantum resonance may be implemented with different

transitions where nonzero population of one energy level

from the pair is the main condition. In the first order,

the resonance levels shall differ in their quantum number

per unit. In two-quantum resonances and higher-order

resonances, the difference in the quantum number of the

quantum levels is 2 or more. These cases are not addressed

in this work.

Let the population of the quantum state |n〉, n ≤ 1 be

nonzero. Frequencies of transitions to the neighboring

energy levels are as follows

�n,n−1 = �c(1 + 12βn), �n+1,n = �c(1 + 12β(n + 1)).

Assume that the widths γn+1,n and γn,n−1 of the spectral

line of quantum transitions |n + 1〉 → |n〉 and |n〉 → |n − 1〉
are small:

γn+1,n, γn,n−1 ≪ 12β�c . (7)

If the spectral line of coherent radiation and Rabi frequency

are small too, then, when the harmonic oscillator is exposed

to the coherent field of the carrier frequency ωcl , two

different one-quantum resonances, when ωcl
∼= �n,n−1 or

when ωcl
∼= �n+1,n, are suggested. During exposure to

a two-frequency field, double resonance with
”
cascade“

configuration is possible. With the growth of the number

of excitations of the quantum oscillator, the adopted an-

harmonicity model shall be replaced with another one, for

example, use the Morse potential [36].
Transitions |n + 2〉 → |n〉, |n〉 → |n − 2〉, etc., during

absorption of only one electromagnetic field quantum are

an important feature of the one-photon resonance in the

anharmonic oscillator. These processes become possible due

to the interactions V2(t) and V3(t). They define the harmonic

generation processes. The two-level model emerging here

will be discussed using the transitions |2〉 ↔ |0〉 as an

example. Another process to be discussed is the resonance

transition |3〉 ↔ |0〉 during absorption of one coherent

electromagnetic field quantum.

Thus, the following conditions of the one-quantum reso-

nance will be discussed:

ωcl
∼= �n+1,n, n ≥ 0, (8)

ωcl
∼= �2,0, (9)

ωcl
∼= �3,0. (10)

4. Transformation to the two-level model.
Resonance (8)

In conditions (8), the rapidly time-varying terms of the

generator S(1,0,0)(t) are as follows:

S(1,0,0)(t) =

− g
i~

6′′
n

(

Ecldn−1,n exp(−iωclt − i8 + i�n−1,nt)
−ωcl + �n−1,n

+
E
∗
cldn−1,n exp(iωclt + i8 + i�n−1,nt)

ωcl + �n−1,n

)

|En−1〉〈En|

− g
i~

6′′
n

(

Ecldn,n−1 exp(−iωclt − i8 + i�n,n−1t)
−ωcl + �n,n−1

+
E
∗

cldn,n−1 exp(iωclt + i8 + i�n,n−1t)
ωcl + �n,n−1

)

|En〉〈En−1|.

Double prime denotes the selection condition of terms

written in a general form — there shall be no slowly time-

varying terms and accordingly varying denominators among

them.

The operator of the one-quantum resonance transition

|n + 1〉 → |n〉 is written as

Ṽ (1,0,0)(t) = gE∗
cldn,n−1|En−1〉〈En|ei(ωcl−�n,n−1)t + H.c.,

Ṽ (0,1,0)(t) = Ṽ (0,0,1)(t) = 0. (11)
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The next operator is generally called the Stark shift operator

due to the high-frequency Stark effect [8–10]:

Ṽ (2,0,0)(t) = HSt
n,n+1,

HSt
n,n+1 = g2|Ecl|2

∑

j=n,n+1

|E j〉〈E j |, (12)

5n(ωcl) =
|dn,n−1|2

~

( 1

�n,n−1 + ωcl

)

+
|dn,n+1|2

~

( 1

�n,n+1 − ωcl

)

,

5n+1(ωcl) =
|dn+1,n|2

~

1

�n+1,n + ωcl
+

|dn+1,n+2|2
~

×
( 1

�n+1,n+2 + ωcl
+

1

�n+1,n+2 − ωcl

)

, n ≥ 1.

When n = 0

Ṽ (1,0,0)(t) = gE∗
cl|E0〉〈E1|ei(ωcl−�1,0)t + H.c., (13)

HSt
0,1 = g2|Ecl|2

(

50(ωcl |E0〉〈E0| + 51(ωcl)|E1〉〈E1|
)

,

(14)

50(ωcl) =
|d01|2

~

1

�0,1 − ωcl
,

51(ωcl) =
|d12|2

~

( 1

�1,2 + ωcl
+

1

�1,2 − ωcl

)

+
|d10|2

~

1

�1,0 + ωcl
.

Whereby in rigorous resonance ωcl = �c(1 + 12β) and

considering 12β ≪ 1

50(ω) ≈ − 1

2~�c
, 51(ω) ≈ − 1

6β~�c
,

so that

|50(ω)| ≪ |51(ω)|, (15)

which distinguishes this situation both from the
”
pure“

Bloch–Siegert model where 50(ω) = −51(ω) and from the

multilayer atom case where |50(ω)| ≈ |51(ω)| is possible.
Thus, the resonant interaction between the coherent wave

and anharmonic oscillator in conditions (8) distinguishes a

pair of resonance levels |n〉 and |n + 1〉 whose Stark shift

is defined by the resonance levels themselves as well as

by the nearby levels |n − 1〉 and |n + 2〉. In case when

n = 0, the Stark shift of the level |0〉 may be neglected. The

effective two-level Hamiltonian of the resonant interaction

in conditions (8) in the interaction representation may be

written as

V E f f (t) = Ṽ (1,0,0)(t) + HSt
n,n+1(t). (16)

5. Transformation to the two-level model.
Resonance (9)

In conditions (9), the main relations of algebraic pertur-

bation theory are as follows

Ṽ (1,0,0)(t) = Ṽ (0,1,0)(t) = Ṽ (0,0,1)(t) = 0,

S(0,1,0)(t) = −α�c

i

(

∞
∑

n=1

hn−1,n|En−1〉〈En|ei�n−1,nt

�n−1,n

+

∞
∑

n=3

hn−3,n|En−3〉〈En|ei�n−3,nt

�n−3,n

)

+ H.c.,

Ṽ (1,1,0)(t) = − i
2

[

S(0,1,0),Vint(t)
]′

− i
2

[

S(1,0,0),V2(t)
]′

.

Prime denotes the selection condition of terms written in

a general form — there shall be no rapidly time-varying

terms among them. The calculations give the following

expressions:

Ṽ (1,1,0)(t) =

− 9

2

√
2gα�cEcl|E2〉〈E0|e−iωcl−i8+i�2,0t + H.c., (17)

HSt
0,2 = g2|Ecl|2

(

50(ωcl |)E0〉〈E0| + 52(ωcl)|E2〉〈E2|
)

,

(18)

50(ωcl) =
|d01|2

~

1

�0,1 − ωcl
,

52(ωcl) =
|d21|2

~

( 1

�2,1 + ωcl
+

1

�2,1 − ωcl

)

+
|d23|2

~

( 1

�2,3 + ωcl
+

1

�2,3 − ωcl

)

.

In case of precise resonance (9), ωcl = 2�c(1 + 18β)
and 18β ≪ 1,

52(ωcl) ≈ −250(ωcl). (19)

takes place The effective two-level Hamiltonian of the

resonant interaction in conditions (9) in the interaction

representation may be written as

V E f f (t) = Ṽ (1,1,0)(t) + HSt
0,2(t). (20)

6. Transformation to the two-level model.
Resonance (10)

In conditions (10), excitation of the anharmonic oscillator

from the ground n = 0 to the third n = 3 energy quantum

level takes place during absorption of one quantum from

the electromagnetic coherent field. The main relations of

algebraic perturbation theory are the same:

Ṽ (1,0,0)(t) = Ṽ (0,1,0)(t) = Ṽ (0,0,1)(t) = 0,
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However, now to calculate the effective Hamiltonian of

the resonant interaction responsible for the resonance

ωcl
∼= �3,0, the unitary transformation generator S(0,0,1)(t)

must be known:

S(0,1,0)(t) = −β�c

i

(

∞
∑

n=1

hn−4,n|En−4〉〈En|ei�n−4,nt

�n−4,n

+

∞
∑

n=3

hn−2,n|En−2〉〈En|ei�n−2,nt

�n−2,n

)

+ H.c..

Compared with the expression for S(1,0,0)(t), S(0,0,1)(t)
contains no primes because all terms in the written equation

are rapidly time-varying functions.

Then, the resonance transition operator Ṽ (1,0,1)(t) is

defined as follows

Ṽ (1,0,1)(t) = − i
2

[

S(0,0,1),Vint(t)
]′

− i
2

[

S(1,0,0),V3(t)
]′

.

(21)
They give the following results:

Ṽ (1,0,1)(t) = −8
√
6gβEcl|E3〉〈E0|e−iωclt−i8+i�3,0t + H.c.,

(22)

HSt
0,3 = g2|Ecl|2

(

50(ωcl)|E0〉〈E0| + 53(ωcl)|E3〉〈E3|
)

,

(23)

50(ωcl) =
|d01|2

~

1

�0,1 − ωcl
,

53(ωcl) =
|d32|2

~

( 1

�3,2 + ωcl
+

1

�3,2 − ωcl

)

+
|d34|2

~

( 1

�3,4 + ωcl
+

1

�3,4 − ωcl

)

.

It should be emphasized that the equation for 50(ωcl)
is no formally different from the equations in the previous

sections, however, another quantity for the coherent field

carrier ωcl is substituted into it. Therefore, in case of

precise resonance (10), ωcl = 3�c(1 + 24β) and 24β ≪ 1,

the following relation takes place

53(ωcl) ≈ −50(ωcl), (24)

i.e. the relation between the resonance level frequency shifts

of the effective two-level system here coincides with that

for the Bloch–Siegert shifts in the initial purely two-level

system.

The effective two-level Hamiltonian of the resonant inter-

action in conditions (10) in the interaction representation

may be written as

V E f f (t) = Ṽ (1,0,1)(t) + HSt
0,3(t). (25)

7. Conclusion

The main results of the work are effective Hamiltoni-

ans (16), (20) and (25) describing the two-level quantum

system isolated from the anharmonic quantum oscillator

spectrum by the resonant interaction between the oscillator

and classical coherent wave with the same carrier frequency.

A situation has been found - resonance (10) — when we

may speak of a
”
purely“ two-level system with an accuracy

up to terms of the second order. This fact distinguishes

the results described here from the majority of works

addressing the behavior of both harmonic and anharmonic

oscillators. For example, study [37] has shown the difference

in behavior of the quantum oscillator and classical oscillator

in case of excitation by unipolar short pulses. In this case,

the oscillator state is formed with a wide set of states of

the latter due to the excitation broadbandness. Focus shall

be also made on study [38], where the nonlinear behavior

of the anharmonic oscillator is treated as a quantum

equivalent of the classical renormalization method [6]. The
identified quantum corrections to the classical motion of

the anharmonic oscillator were found in the coherent state

conditions of the initial oscillator, rather than in coherent

excitation conditions of the initial oscillator by the external

resonance quasi-monochromatic light field. The main results

in the cited article pertain to the behavior of the second and

next harmonics that appear in the oscillator motion exactly

due to consideration of the quantum additions.

The effective Hamiltonian was obtained using algebraic

perturbation theory with an accuracy up to the second order

in the coherent field. It consists of the resonance transition

operator with absorption or emission of the coherent field

quantum and operator of the Stark interaction between

the anharmonic oscillator and coherent field. This is the

difference from the standard explanation based on the non-

equidistance of the anharmonic oscillator spectrum where

a pair of levels of the two-level model is isolated by a

simple resonance condition. Further analysis of such two-

level system leads to the Bloch–Siegert model with relation

between the parameters of type (23) Stark shift where

50(ωcl) corresponds to the lower level g of the two-level

system and 53(ωcl) corresponds to the upper level e. Some

other cases where these relations are different have been

also addressed. It should be emphasized that these relations

define the temporal dynamics of collective disintegration of

a two-level particle ensemble in a quantum field [11].

The analysis conducted using algebraic perturbation

theory makes it possible to apply the results of standard

description of the nonlinear optical effects based on the

optical nutation obtained within the framework of the same

algebraic perturbation theory directly to the anharmonic

oscillator systems [10]. For example, the frequency of

nutation oscillations of he resonance light wave intensity

in the vicinity of the leading edge (or after a short-time

perturbation of its amplitude or phase) �N is given [10] by
equation:

�N =
√

(1− 1St)2 + �2
R,

where 1 is the deviation from the resonance,

1St = g2|Ecl|2
(

5e(ωcl) −5g(ωcl)
)

is the transition fre-
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quency shift due to the high-frequency Stark effect, and

�R is the Rabi frequency:

�R = 2g
√

n|Ecl|~−1,

n = 1, 2 in case of resonance (8),

�R = 9
√
2gα|Ecl|~−1

in case of resonance (9),

�R = 16
√
6gβ|Ecl|~−1

in case of resonance (10).
Nutation oscillations are one of the important objects

of the performed experimental investigations [17–19]. The

shown equations give an idea of the anharmonic oscillator

parameters in the examined model using the results of the

experimental investigation of the optical nutation.
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