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The wave function of a photoelectron near the center of a quantum vortex

© N.V. Larionov 1,2, Yu.L. Kolesnikov 1, V.M. Molchanovskiy 1

1 State Marine Technical University, St. Petersburg, Russia
2 Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia

e-mail: larionov.nickolay@gmail.com

Received March 13, 2024

Revised May 28, 2024

Accepted May 28, 2024

The behavior of a photoelectron in the vicinity of the localization of the quantum vortex is theoretically

investigated in a two-dimensional approximation. The obtained photoelectron wave function has a simple structure,

which is the product of a Gaussian wave packet by a polynomial containing information about the vortex. With its

help, the probability density and current are analyzed, both in momentum and coordinate spaces. The effect of the
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1. Introduction

In our previous studies we have investigated quantum

vortices forming during the over-barrier ionization of a two-

dimensional hydrogen atom by an ultrashort laser pulse [1–
4]. The calculations were conducted using both a numerical

solution of the Schrödinger equation and analytical approach

based on the non-stationary perturbation theory. In the

latter case, a analytical expression has been obtained for a

photoelectron function in the momentum k-representation.
This wave function was used to identify the quantum

vortex centers and to analyze the
”
symmetric“ flow of

probability [5] in the corresponding k-space.
Transition from the k-space to the conventional coordinate

space has not been performed for the obtained wave

function. The reason behind this are significant difficulties

in the two-dimensional Fourier transform.

In this work, for the case of well localized vortices,

we can successfully simplify the above-mentioned photo-

electron wave function so that it is written as a product

of the Gaussian function of the momentum modulus

k = |k| and the polynomial with respect to the projections

kx , ky . Such simplified wave function does not lose

any information about a quantum vortex and allows a

quantum vortex to be easily examined in the coordinate

space.

For the purpose of this study, a system of atomic units

(~ = 1, me = 1, e = 1) is used, where the atomic unit of

electric field Fa is equal to the Coulomb field strength at

the Bohr radius, and the atomic unit of time Ta multiplied

by 2π is the orbital period of an electron in the same Bohr

model.

2. Theoretical model

The given model is represented by a two-dimensional

hydrogen atom [6] exposed to an ultrashort laser pulse. The

”
atom+filed“ interaction operator is written in the dipole

approximation:

V̂ = −d̂F(t), (1)

where d̂ = −r̂ = −(ex x̂ + ey ŷ) is the atomic dipole moment

operator and ex , ey are the unit vectors of the Cartesian

coordinate system. The electric field strength vector of laser

F(t) is simulated by the following function:

F(t) = (Fx(t), 0) = ex F0 cos(ωt − α) [θ(T − t) − θ(−t)] ,
(2)

where ω is the frequency, θ(t) is the Heaviside function,

T is the pulse duration, α is the initial phase. The constant

amplitude F0 values are taken such that the over-barrier

ionization predominates.

The electron wave function is sought as a sum of the

ground (initial) state of the atom and a state corresponding

to the continuous spectrum [7]. The latter is written

as a superposition of cylindrical waves with unknown

amplitudes that are in turn calculated using the non-

stationary perturbation theory.

Omitting the intermediate calculations that have been

described in detail in our previous works, we write a

part of the wave function in the momentum representation

responsible for the continuous spectrum of the electron

(hereinafter referred to as the photoelectron):

9̃(k, ϕk , t) =
∑

m

bk,m(t)(−i)|m|8m(ϕk)e
−iEk t . (3)

Here, (k, ϕk) are polar momentum components k of

the photoelectron, m = 0,±1,±2, . . . is the photoelec-

tron angular momentum projection on the z axis and

Ek = k2/2 = (k2
x + k2

y)/2 is the photoelectron energy.

8m(ϕk) = eimϕk /
√
2π is the angular part of the wave

function.
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Amplitudes bk,m(t) satisfy the following system of equa-

tions [4]:

∂bk,m(t)
∂t

=
−i
2

(δm,+1 + δm,−1)
6keiωk1t

(k2 + 1)5/2
Fx(t)

+
(−i)|m−1|−|m|

2
Fx (t)

( ∂

∂k
− ikt − m − 1

k

)

bk,m−1(t)

+
(−i)|m+1|−|m|

2
Fx(t)

( ∂

∂k
− ikt +

m + 1

k

)

bk,m+1(t), (4)

where ωk1 = (k2 + 1)/2 is the frequency of transition from

the ground state to the continuous spectrum state. The

initial condition for unknown amplitudes is bk,m(0) = 0.

To solve system (4), the non-stationary perturbation

theory is used, i.e. bk,m(t) is written as a perturbation theory

series:

bk,m(t) =
∑

s=1,2,...

b(s)
k,m,10(t),

where the subscript
”
10“ indicates the initial bound state of

the electron and b(s)
k,m,10 ∼ F s

0 .

Note that in (3) the bond with the atomic core is

completely ignored.

3. Wave function in the vicinity of the
center of vortex

Consider the case of steady-state solution t > T and

choose the following parameters of the laser pulse: w = π,

α = 0 and T = 3, 4. We have previously identified well

localized quantum vortices specifically with these parame-

ters [4]. In case of the even duration T , one pair of vortices

appears in the momentum space, and two pairs appear for

the odd duration.

Case T = 4. In this case, for the complete identification

of quantum vortices, it is sufficient to solve system (4) to

the second-order in perturbation theory. By performing this

simple procedure for the chosen laser parameters, we obtain

the following wave function of the photoelectron:

9̃4(k, ϕk , t) = A
sin(k2 + 1)

(k2 + 1)3/2
eik2−iEk t

[

k cos(ϕk)

(k2 + 1)2 − 4π2

×
(

1 +
2iF0k cos(ϕk)(7(k2 + 1)2 − 4π2)

(k2 + 1)2((k2 + 1)2 − 16π2)

)

− 2iF0

(k2 + 1)((k2 + 1)2 − 16π2)

]

,

(5)
where A is the constant. Here, terms with F0 correspond to

the second order in perturbation theory and the terms that

are free from this amplitude correspond to the first order.

Subscript
”
4“ indicates the excitation laser pulse duration.

The centers of quantum vortices symmetric about the

kx axis may be found from the zero equality of the

real and imaginary parts of the wave function (5), i.e.

Re
(

9̃4(k, t)
)

= 0 = Im
(

9̃4(k, t)
)

(compare with [8–10]).
Hence, the Cartesian and polar coordinates of the centers

of vortices are equal to (Figure 1, a)

kx0
= 0, ky0

= ±
√
2π − 1 ≈ 2.3,

k0 =
√
2π − 1, ϕ0 = π/2, 3π/2. (6)

”
Symmetric“ flow

j(k, t) = Im[9̃∗(k, t)∇k9̃(k, t)], (7)

where ∇k ≡ ∂/∂k plotted for state (5) demonstrates twist-

ing around the axis through these centers [3,4] (Fig-
ure 1, c, d).
It is easy to verify that in this case the mean momentum

of the photoelectron in state (5) is equal to zero:

〈kx ,y 〉4 =

∫

kx ,y |9̃4(k, t)|2 d2k
2π

= 0, (8)

where kx = k cos(ϕk), ky = k sin(ϕk).
If we go back to the taken pulse parameters, then this

result seems natural. However, it should be considered that

the used wave function (3) has been obtained by dropping

the bound state of electron and replacing the Coulomb

waves with cylindrical ones.

Mathematically, expression (8) contains the following

integrals:

2π
∫

0

cos(ϕk) cos(nϕk)dϕk ,

2π
∫

0

sin(ϕk) cos(nϕk)dϕk ,

that in our case n = 0, 2, 4 make it vanish.

Dispersion of any of the momentum components is

nonzero:

〈k2
x ,y 〉4 =

∫

k2
x ,y |9̃4(k, t)|2 d2k

2π
6= 0. (9)

It is impossible to calculate integral (9) analytically.

Compare below the numerical values of integral (9) with

the approximately found values.

Despite a relatively simple form of the wave function (5),
when attempting to write it in the coordinate representation,

you face significant difficulties in the Hankel transform [11].
This is the reason why the investigation of vortices in a

conventional space has been performed only by means of

numerical solution of the Schrödinger equation.

We will be interested hereinafter in the photoelectron

behavior in the vicinity of the centers of quantum vortices.

For this, expand wave function (5) in a Taylor series in the

vicinity of k0. Thus, for individual functions from (5) we

have

sin(k2 + 1) ≈ (k2 − k2
0),

1

(k2 + 1)3/2(k2 + (2π + 1))
= e− ln[(k2+1)3/2(k2+(2π+1))]

≈ 1

8
√
2π5/2

e−
k2−k2

0
π ,
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1

(k2 + 1)5/2((k2 + 1)2 − 16π2)
= e− ln[(k2+1)5/2((k2+1)2−16π2)]

≈ − 1

48
√
2π9/2

e−
k2−k2

0
π .

(10)
Note that ((k2+1)2 − 4π2) = (k2 − k2

0)(k
2 + (2π + 1)) and

omit the small term proportional to cos2(ϕk) (ϕk ≈ ϕ0).
Then photoelectron wave function (5) in the vicinity of

the center of vortex will be written as:

9̃4,a p(k, ϕk , τ ) = A e−
a(τ )

2
√
π

k2
[

k cos(ϕk) +
iF0(k2 − k2

0)

3π2

]

,

(11)
where a(τ ) = (2 + iπτ )/

√
π, τ = (t − 4/2).

Obtained expression (11) is a Gaussian function multi-

plied by the second-order polynomial with respect to the

momentum components (the added subscript
”
a p“ is the

abbreviation of
”
approximation“). From the structure of

this polynomial, it is easy to define wave function zeroes

corresponding to the centers of vortices (k0, ϕ0) (6).
Calculating the mean photoelectron momentum us-

ing (11), we can see that, as in the
”
precise“ wave function

case (5), it is equal to zero〈kx ,y 〉4,a p = 0. For dispersion,

we obtain the following expressions:

〈k2
x〉4,a p =

π

4

[

27π5 + F2
0 (4− 8π + 6π2)

]

9π5 + 2F2
0 (2− 6π + 5π2)

≈ 3π

4
,

〈k2
y 〉4,a p =

π

4

[

9π5 + F2
0 (4− 8π + 6π2)

]

9π5 + 2F2
0 (2− 6π + 5π2)

≈ π

4
. (12)

It can be seen that the dependence on the field strength

is very weak. Comparing the approximated dispersion val-

ues (12) with the corresponding numerical values obtained

using (5), the latter are approximately 1.2 times as high as

the former.

The key advantage of expression (11) compared with its

precise equivalent (5) is in that it is easily rewritable in the

coordinate representation. Without getting into specifics of

simple calculations, write the answer:

ψ4(r, ϕ, τ ) =

∞
∫

0

2π
∫

0

9̃4,a p(k, ϕk , τ )eikr cos(ϕk−ϕ)

× kdkdϕk

(2π)2
=

Ã
|a(τ )|3 e

− r2

|a(τ )|2
+i πr2τ

2|a(τ )|2

×
[(

F0(4(π − 1) + π2(r2 − k2
0τ

2)) − 6π3r cos(ϕ)
)

+ iπτ
(

2F0(3π − 2) − 3π3r cos(ϕ)
)]

, (13)

where Ã is the constant, r = (r, ϕ) are the polar coordinates
of the photoelectron and |a(τ )|2 = (4 + π2τ 2)/π.
Using (13), we easily find the mean photoelectron

coordinates and coordinate dispersion:

〈x〉4 ≈ −12k2
0

9π5
F0, 〈y〉4 = 0.

〈(△x)2〉4 = 〈x2〉4 − 〈x〉24 ≈
3πτ 2

4
,

〈(△y)2〉4 = 〈y2〉4 − 〈y〉24 ≈
πτ 2

4
. (14)

Whereby, as must be the case, |a(τ )|2 ≈
〈(△x)2〉4 + 〈(△y)2〉4.
The obtained wave function in the coordinate representa-

tion (13) has a similar structure with the wave function in

the momentum representation (11). The Gaussian multiplier

describes the spreading of the formed wave packet. The

second-order polynomial with respect to the photoelectron

coordinates contains the information about the quantum

vortex in the conventional space. By setting the real and

imaginary parts of the expression in brackets in (13) to zero

and solving the derived system of equations, we find the

coordinates of the centers of vortices:

x0 =
F0(6π − 4)

3π3
,

y0 = ±

√

k2
0|a(τ )|2
π

− x2
0 ≈ ±k0τ . (15)

From (15) we draw obvious conclusions: vortex moves

at a velocity equal to k0 that defines zero of the wave

function in the momentum space; for the given even T , the
vortex will move along the axis perpendicular to the linear

polarization of the ionizing field. This indicates indirectly

that the nature of vortices is attributed to the interference of

states assigned to opposite waves.

Case T = 3. In case of odd duration T = 3, the pho-

toelectron wave function obtained considering the second-

order in perturbation theory is written as

9̃′
3(k, ϕk , t) = A

e−iEkt

(k2 + 1)7/2

×
[

8iπ4e
3
4

i(k2+1)(k2 + 1)2 cos( 3
4
(k2 + 1))k cos(ϕk)

(k2 + 1)2 − 4π2

− 4π2F0

(k2 + 1)4 − 20π2(k2 + 1)2 + 64π4

[

k2 cos(2ϕk)

×
(

((k2 + 1)2 − 9π2)(k2 + 1)2 + π2e
3
2

i(k2+1)

× (4π2 − 7(k2 + 1)2) − 4π4
)

+
(

4π4k2 − π2e
3
2

i(k2+1)

× ((5k2 − 2)(k2 + 1)2 + 4π2(k2 + 2)) + (k2 + 1)2

×(k6 + 2k4 − 11π2k2 + k2 − 2π2) + 8π4
)

]]

. (16)

As in the previous case, wave function (16) makes it

possible to identify zeroes corresponding to the centers of

vortices [4]. There are four such zeroes whose Cartesian

coordinates are

kx01
= 0, ky01

= ±
√

4π/3− 1 ≈ ±1.79,

kx02
= 0, ky02

= ±
√

8π/3 − 1 ≈ ±2.72. (17)
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Figure 1. Photolectron momentum density ln[ρ(kx , ky )]: a — ρ(k) = |9̃4(k, t)|2, b — ρ(k) = |9̃4,a p(k, t)|2 . c and d — vector field

v(kx , ky , t) in the vicinity of the centers of quantum vortices. Pulse duration T = 4. Laser field strength F0 = 0.4 and t = 5.

Polar coordinates are

k01 =
√

4π/3 − 1, ϕ01 = π/2, 3π/2,

k02 =
√

8π/3 − 1, ϕ02 = π/2, 3π/2. (18)

That is there are two pair of quantum vortices symmetric

about the kx axis.

However, the
”
symmetric“ flow (7) plotted using (16)

will not demonstrate any vortex behavior around the centers

of these vortices. Here, for the given case of the odd T ,
the third order in perturbation theory must be considered.

To avoid overloading the text, the third-order correction

δ9̃3(k, ϕk , t) to (16) is removed into the Appendix.

9̃3(k, ϕk , t) = 9̃′
3(k, ϕk , t) + δ9̃3(k, ϕk , t) (19)

Now we will be interested in the behavior of wave function

(19) in the vicinity of two neighboring vortices (Figure 2).

If we do the same as in the case with T = 4, i.e.

expand the wave function in a Taylor series in the vicinity

of one of the centers, then we lose the information

about the neighboring second vortex. Therefore, we will

perform the expansion in the vicinity of the resonance value

kr =
√
2π − 1 that lies exactly almost between the centers

of two neighboring vortices
√
4π/3 − 1 < kr <

√
8π/3 − 1

(for T = 4 the value of kr coincided with the coordinate of

the center of vortex k0).

Performing expansion 9̃3(k, ϕk , t) (19) sequentially, as

in the previous case, in the vicinity of kr , we derive the

following simplified expression:

9̃3,a p(k, ϕk , τ
′) = A e−

a(τ ′)
2
√
π

k2

[(

1− F2
0

2π3

− i

(

4

9π4
+

3

8π2

)

F2
0

)

k cos(ϕk) −
4F0(1− 9

32
(k2−k2

r )
2)

9π2

]

,

(20)
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Figure 2. a and b — vector field v(kx , ky , t) in the vicinity of the centers of quantum vortices. Pulse duration — T = 3. Laser field

strength — F0 = 0.5 and t = 4.
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Figure 3. a — Photolectron density ln[ρ(x, y, t)]. b, c, d — vector field v(x, y, t) in the vicinity of the centers of quantum vortices. Pulse

duration T = 4. Laser field strength — F0 = 0.4. Time t = 5.
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Figure 4. Vector field v(x, y, ti) in the vicinity of the centers of quantum vortices in different times: a — t1 = 5, b — t2 = 10. c, d —
absolute values of the wave function bx (red curve), by (black curve) vs. the x, y components, respectively: t1 = 5 — solid line, t2 = 10 —
dashed line. Arrows indicate the centers of vortices. Pulse duration T = 4. Laser field strength F0 = 0.4.
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x0 = 0.639, y0 = 7.02. Pulse duration T = 4. Time t = 5.
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where the terms with F2
0 correspond to the third or-

der in perturbation theory and a(τ ′) = (2 + iπτ ′)/
√
π,

τ ′ = t − 3/2.

In the same way as for T = 4, the polynomial at the

Gaussian function allows the coordinates of the centers of

vortices to be found easily. However, here, due to the

chosen expansion point, they are shifted a little along the

ky axis

k ′
01 =

√

k2
r − 4

√
2/3 ≈ 1.84 ≈ k01,

k ′
02 =

√

k2
r + 4

√
2/3 ≈ 2.68 ≈ k02. (21)

Calculating the momenta observed in state (20)
(or (19), it can be seen that the mean momentum

of the photoelectron along the x axis is nonzero, i.e.

〈kx 〉3,a p 6= 0, 〈ky 〉3,a p = 0. This, as in the case described

above, may be explained by the given pulse parame-

ters.

We will not write the explicit expressions for mean

〈kx 〉3,a p and 〈k2
x ,y 〉3,a p calculated using (20) due to their

awkwardness. We should note only that these expressions

give results that qualitatively coincide with the results calcu-

lated using the
”
precise “ wave function 9̃3(k, ϕk , t) (19).

By applying the Fourier transform to (20), we obtain the

corresponding function in the coordinate representation:

ψ3(r, ϕ, τ
′) =

∞
∫

0

2π
∫

0

9̃3,a p(k, ϕk , τ
′)eikr cos(ϕk−ϕ)

× kdkdϕk

(2π)2
=

Ã
|a(τ ′)|5 e

− r2

|a(τ ′)|2 +i πr2τ ′
2|a(τ ′)|2

×
[

ia3(τ ′)

(

1− F2
0

2π3
− i

(

4

9π4
+

3

8π2

)

F2
0

)

r cos(ϕ)

+
F0

8π1/2

(

r4 + c1(τ
′)r2 + c2(τ

′)

)]

,

(22)
where coefficients c i(τ

′) are removed to the Appendix due

to their awkwardness.

Function (22) has an expected structure similar to the

one that took place for T = 4. However, the polynomial at

the Gaussian exponent that defines the centers of vortices

in the conventional space, has a more complicated structure

than in (13). Therefore, we will not write the zeroes of this

polynomial.

Quantum vortices in the coordinate space will be investi-

gated in he next section using obtained wave functions (13)
and (22).

4. Calculation results

Momentum space. First we will check how the probability

density has changed during the wave function expansion in

the vicinity of the center of the vortex. Recall that the time

t is taken everywhere such that t > T .
Figure 1 for T = 4 shows the photoelectron momentum

distribution ρ(k) (for more explicit display, the diagrams

are plotted for ln(ρ)) plotted using the
”
precise“ wave

function 9̃4(k, t) (5) (Figure 1, a) and its approximation

9̃4,a p(k, t) (11) (Figure 1, b).

Expansion (10) applied to 9̃4(k, t) (5) has led to the

loss of information about the photoelectron states away

from the centers of quantum vortices. However, this

information is still preserved in the immediate vicinity

to them, which is evident not only from the probability

density zeroes (arrows), but also from the nature of

the vector field for the normalized
”
symmetric“ flow (7)

(Figure 1, c, d)

v(k, t) = j(k, t)/ρ(k). (23)

The field v(k, t) obtained using only approximate func-

tion (11) is represented here. For the chosen range of values

of kx , kx , it will be no different from the field plotted using

the
”
precise“ function (5) [4].

Note that the top and bottom vortices are absolutely the

same, except that their directions of rotation are opposite.

Also note that, due to free movement of the photoelectron,

the momentum density ρ(k) is written without the argument

t . When it comes to the
”
symmetric“ flow (7), due to

its sensitivity to the wave function phase [5], the time

dependence is retained.

The vector field v(k, t) forT = 3 is shown in Figure 2.

The upper half-plane, where one pair of vortices is localized,

is addressed.

When using the
”
precise“ wave function 9̃3(k, t) (19),

the coordinates of the centers of vortices are given by

equation (17) or (18) (Figure 2, a). For approximate

function 9̃3,a p(k, t) (20), these coordinates are shifted a

little (21) (Figure 2, b).
Momentum densities ρ(k) plotted using functions (19)

and (20) will differ from each other in the same manner as

in the case with T = 4 (Figure 1,a, b).
Coordinate space. Figure 3 for T = 4 shows the

photoelectron distribution ρ(r, t) = |ψ4(r, t)|2 (Figure 3, a)
and photoelectron velocity field (Figure 3, b, c, d)

v(r, t) = Im[ψ∗
4 (r, t)∇ψ4(r, t)]/ρ(r, t) (24)

(the term
”
velocity field“ was borrowed from the quantum

hydrodynamics [12–14]) plotted using derived wave func-

tion (13).
As for the momentum space, there are two symmetric

vortices with opposite directions of rotation (Figure 3, c, d).
Coordinates of the centers of vortices are given by equa-

tions (15) and equal to x0 = 0.064, y0 = ±7.049.

Note that the found vortices in the momentum and

coordinate spaces correspond to each other. However,

the real structure of vortices in the coordinate space

corresponding to the
”
precise“ function (5) will differ from

that in the momentum space. Dropping in (5) of the term
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Figure 6. a — Photolectron density ln[ρ(x, y, t)], b — corresponding vector field v(x, y, t). c, d — vector field v(x, y, t) in the vicinity

of the centers of neighboring vortices. a, b, c — F0 = 0.5. d — F0 = 5. Pulse duration T = 3. Time t = 4.

with cos2(ϕk) and approximation of rational functions of k
by the Gaussian function erase the information about the

photoelectron behavior outside the vortex localization area.

At the same time, the Fourier transform covers all possible

values of k.

Now we shall trace the time evolution of the vortices. Fig-

ure 4 for two different times t1 = 5, t2 = 10 shows the field

v(x , y, ti) and the following dependences of the wave func-

tion modulus bx(ti ) ≡ |ψ(x , y0, ti)|, by (ti) ≡ |ψ(x0, y, ti)|
on one of the coordinates (Figure 4, d — normalized to

their peaks of functionbx ,y).

It can be seen that wave packet spreading shown by the

curves in Figure 4. c, d does not change the geometry and

scale of the vortex in Figure 4, a, b. The vortex moves in

space without changes and the coordinate of its center is

described by equation (15): t1 — x0 = 0.064, y0 = ±7.049;

t2 — x0 = 0.064, y0 = ±18.446.

In the following Figure 5, the photoelectron velocity

field v(x , y, t) is plotted at different strengths F0 of the

ionizing laser pulse. Here, taking into account the

suddenness of filed inclusion (2), we go beyond small

perturbations [15].

We can see that the increase in the field strength F0 leads

to the increase in the vortex scale. The plotted current

lines clearly demonstrate that in case of high strength F0

the velocity field v(x , y, t) will have a solenoid structure at

much larger scales than in case of low strengths.

Figure 6 shows the results obtained using the wave

function ψ3(x , y, τ ′) (22). Zeroes in the photoelectron

distribution (Figure 6, a) that correspond to the centers of
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two pairs of vortices are clearly seen. Figure 6, b shows the

corresponding velocity field v(x , y, t) twisted around each

of these centers. The direction of vortex rotation is the

same as in the momentum space: a pair of vortices in the

upper half-plane with the opposite direction of rotation and

a pair in the lower half-plane that is symmetric to it about

the x axis.

The coordinates of the centers of vortices are found

by setting the real and imaginary parts of the polyno-

mial to zero in wave function expression (22). For

the case shown in Figure 6 with the given t = 4 we

have: F0 = 0.5: x01 = −0.31, y01 = ±1.63, x02 = 0.034,

y02 = ±7.05; F0 = 5: x01 = −1.16, y01 = ±4.07,

x02 = 0.3, y02 = ±7.22.

As for the even T , the increase in strength leads to the

increase in the vortex scale (Figure 6, c, d).

The explicit time dependence of the coordinates of the

centers of vortices in case of ψ3(x , y, τ ′) (22) has a complex

form and cannot be reduced to simple motion similar

to (15).

In spreading of the wave packet corresponding to

ψ3(x , y, τ ′) (22), the vortices are retained.

Duration T = 1. As noted earlier [2,3], with the pulse

duration equal to half-period, i.e. T = 1, for F0 < 1 no

vortices are observed. On the other hand, as shown above,

the increase in the field amplitude F0 leads to the increase

in the vortex scale. Therefore it is interesting to consider the

case with T = 1 for different values of F0.
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Figure 7 at T = 1 and two different strengths F0 = 0.5, 2

shows the photoelectron momentum distribution ρ(k) and

vector field v(k, t). It can be seen that the increase in the

field strength leads to formation of vortices (Figure 7, d).

This is a manifestation of the well-known dependence of

transition probability on the field intensity and the time of

exposure of this field to the quantum system [15].

With F0 = 0.5, T = 1 is not sufficient to provide electron

transition from the bound state to the continuous spectrum

states responsible for vortex formation [4]. The increase in

strength compensates this short duration and the probability

of transition to the required states increases.

As mentioned above, to identify vortices in the case with

T = 3 (Figure 2), the third order in perturbation theory

shall be considered. However, according to the preliminary

calculations, if F0 > 1 is taken, then the vortices may be

already seen in the second order.

5. Conclusion

In this work, a wave function describing quantum vortices

was obtained for a photoelectron torn out from a two-

dimensional hydrogen atom by an extremely short laser

pulse. The analytical expression of this wave function

both in the momentum and coordinate representation has

a simple form — the Gaussian function multiplied by the

polynomial with respect to the photoelectron coordinates.

The polynomial contains information about the centers of

quantum vortices and is responsible for vortex behavior of

the photoelectron velocity field, and the Gaussian function

describes spreading of the formed wave packet.

The obtained wave function made it possible to investi-

gate the quantum vortex evolution in the coordinate space:

the vortex moves in space without distortions at a velocity

defined by zero of the wave function in the momentum

space corresponding to the center of quantum vortex.

It is shown that the vortex scale formally defined as the

region where the velocity vector field is close to the solenoid

field may be changed by varying the electric field strength

of the ionizing pulse. In particular, the short pulse duration

with which the vortices fail to form may be compensated

by the increase in the field strength.

Note that the strong field limit F0 > 1 addressed here

certainly required a more rigorous approach. Moreover,

the approximations that were used initially have essentially

reduced the considered problem of the photoelectron to the

analysis of a specific state of a free particle that depends on

the strength F0 as on an external parameter.

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Third-order correction to the photoelectron wave func-

tion (16):

δ9̃3(k, ϕk , t) = A
e−iEk t

(k2 + 1)7/2

× −iF2
0 e

3
4

i(k2+1)k cos(ϕk)

((k2 + 1)2−4π2)2((k2 + 1)4−52π2(k2 + 1)2 + 576π4)

×
[

cos
(3

4
(k2 + 1)

)

(16π2 − (k2 + 1)2)

×
[

−4k2(k2 + 1)6−iπ2(3(k2+(2 + 40i))k2 + (3 + 16i))

× (k2 + 1)4 + 24π4(k2 + 1)2(5ik4 − (6− 10i)k2

+ (12 + 5i)) − 16iπ6(27k4 + (54− 4i)k2 + (27− 24i))

− 4k2
(

(k2 + 1)6 − 26π2(k2 + 1)4 + 108π4(k2 + 1)2

− 80π6
)

cos(2ϕk)

]

− sin
(3

4
(k2 + 1)

)

(

(k2 + 1)4

− 40π2(k2 + 1)2 + 144π4
)

[

4ik2(k2 + 1)4 − π2(k2 + 1)2

× (3(k2 + (2 + 8i))k2 + (3 + 16i)) + 16π4(3k4

+ (6 + 2i)k2 + (3 + 4i)) + 4ik2((k2 + 1)4

− 2π2(k2 + 1)2 − 8π4) cos(2ϕk)

]]

.

(25)
Coefficients included in the photoelectron wave function

in the coordinate representation (22):

c1(τ
′) =

2k2
r a2(τ ′)

π
− 8a(τ ′)

π1/2
,

c2(τ
′) =

(36π2 − 36π − 23)a4(τ ′)

9π2

− 4k2
r a3(τ ′)

π3/2
+

8a2(τ ′)

π
. (26)
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