06,07,13

Влияние гетеровалентного катионного замещения $Bi^{3+} \rightarrow Ba^{2+}$ в BaTiO₃ на фазовый переход *Pm*-3*m* \leftrightarrow *P*4*mm* и эффективность сбора энергии

© В.Д. Фокина¹, М.В. Горев^{1,2}, В.С. Бондарев^{1,2}, М.С. Молокеев^{1,2}, И.Н. Флёров¹

¹ Институт физики им. Л.В. Киренского СО РАН — обособленное подразделение ФИЦ КНЦ СО РАН, Красноярск, Россия

² Институт инженерной физики и радиоэлектроники, Сибирский федеральный университет, Красноярск, Россия

E-mail: fokina@iph.krasn.ru

Поступила в Редакцию 14 августа 2024 г. В окончательной редакции 24 августа 2024 г. Принята к публикации 25 августа 2024 г.

Проведены исследования теплоемкости, теплового расширения и его чувствительности к изменению электрического поля керамических образцов BaTiO₃ и Ba_{0.97}Bi_{0.02}TiO₃. Установлен характер влияния химического давления и электрического поля на основные параметры фазового перехода $Pm-3m \leftrightarrow P4mm$. Выполнен анализ термодинамического цикла Ольсена в диаграмме энтропия — температура и определены плотности преобразованной отработанной тепловой энергии в электрическую.

Ключевые слова: фазовые переходы, сегнетоэлектрик, теплоемкость, тепловое расширение, сбор энергии.

DOI: 10.61011/FTT.2024.10.59085.214

1. Введение

Постоянно растущий спрос на электроэнергию удовлетворяется, главным образом (примерно на 76%), за счет использования невозобновляемых источников энергии, при этом основным источником остается тепло [1]. Несмотря на значительные успехи в оптимизации традиционных циклов с подводом тепла от сжигания топлива (нефти, газа, угля), тепловые потери остаются достаточно большими. Так как очень часто температурный уровень отработанной энергии достаточно высокий, то, в случае её успешного сбора, устройства, работающие на прямом термодинамическом цикле, могут рассматриваться в качестве возобновляемых или, как минимум, устойчивых источников энергии. В связи с вышеизложенными обстоятельствами, в настоящее время весьма актуальной является проблема сбора и хранения энергии.

Среди многочисленных методов утилизации отработанной ("бросовой") энергии, основанных на разнообразных физических эффектах, выделяется активно развиваемый подход с использованием пироэлектрического эффекта [2–6]. Пироэлектрические генераторы являются твердотельными тепловыми двигателями, преобразующими тепловую энергию непосредственно в электрическую, так как любое изменение температуры в пироэлектрических устройствах сбора энергии приводит к разности электрических потенциалов на клеммах генератора.

Сегнето- и антисегнетоэлектрики, а также релаксоры, рассматриваются в качестве материалов (объемные керамики, толстые/тонкие пленки), перспективных для использования в виде рабочих тел в термодинамических циклах преобразования энергии, основанных на пироэлектрическом эффекте. До недавнего времени большинство исследуемых сегнетоэлектрических керамик приготавливалось на основе $Pb(Zr_xTi_{1-x})O_3$ и $Pb(Mg_{1/3}Nb_{2/3})O_3$ или их твердых растворах [7–12]. Основным недостатком таких материалов является большое содержание (около 60%) высокотоксичного свинца, что находится в противоречии с современными экологическими требованиями, предъявляемыми к функциональным элементам микро- и наноэлектроники [13–16]. Именно поэтому в последние годы предметом многочисленных активных исследований являются бессвинцовые сегнетоэлектрические материалы [13–16]. При этом наибольшее внимание уделяется твердым растворам на основе BaTiO₃, Bi_{0.5}Na_{0.5}TiO₃ и K_{0.5}Na_{0.5}NbO₃.

Было установлено, что частичное замещение катионов в разных кристаллографических позициях структуры BaTiO₃ может приводить не только к изменению температуры сегнетоэлектрического структурного превращения и выклиниванию промежуточных фаз, но и к появлению релаксорных свойств. Так, например, при внедрении в BaTiO₃ ионов Sn⁴⁺ и Zr⁴⁺, изовалентных титану, происходит существенное (почти на 100 K) расширение области существования аномальной теплоемкости, связанной с фазовым переходом *Pm*-3*m* \leftrightarrow *P*4*mm*, и отклонение поведения соответствующей диэлектрической проницаемости от классического закона Кюри–Вейса, что свидетельствует о размытии сегнетоэлектрического превращения и, таким образом, о приближении материалов к релаксорному состоянию [17–20].

Общепризнанным оптимальным термодинамическим циклом сбора отработанной тепловой энергии является

цикл, предложенный Р.Б. Ольсеном и состоящий из двух изотермических и двух изополевых процессов [21,22]. Как правило, цикл Ольсена анализируется в координатах P-E при реализации процессов в следующей последовательности: $T_{\rm cold} = {\rm const}~(E_{\rm low} \rightarrow E_{\rm high}) \rightarrow E_{\rm high} = {\rm const}~(T_{\rm cold} \rightarrow T_{\rm hot}) \rightarrow T_{\rm hot} = {\rm const}~(E_{\rm high} \rightarrow E_{\rm low}) \rightarrow E_{\rm low} = {\rm const}~(T_{\rm hot} \rightarrow T_{\rm cold})$. Для количественной оценки степени эффективности применения конкретного сегнетоэлектрика в качестве рабочего тела используется совершаемая за цикл удельная электрическая работа, известная также как плотность энергии (J/cm³), определяемая путем интегрирования площади цикла: $N_{\rm D} = \oint EdP$.

Недавно при исследовании твердого раствора BaTi_{0.86}Sn_{0.14}O₃ (BTSn), синтезированного путем гомовалентного замещения центрального атома, мы впервые опробовали возможность использования сравнительного анализа цикла Ольсена в рамках двух фазовых диаграмм: поляризация-электрическое поле и энтропия-температура [19]. Было обнаружено удовлетворительное согласие величин плотности энергии, определенных с помощью двух подходов, что подтвердило возможность использования данных о теплоемкости, измеренной в условиях E = 0 и $E \neq 0$, для оценки эффективности использования конкретного материала в качестве рабочего тела в цикле сбора энергии.

В настоящей работе исследовано влияние гетеровалентного замещения двухвалентного бария трехвалентным висмутом в межоктаэдрической полости структуры Pm-3m на теплоемкость, тепловое расширение, его чувствительность к изменению электрического поля и характеристики эффективности сбора энергии соединений $Ba_{1-x}Bi_{2x/3}TiO_3$ (x = 0, 0.03). Ранее подобные твердые растворы были исследованы с целью выяснения степени чувствительности температур фазовых переходов и диэлектрических свойств к изменению химического давления [23].

Образцы и экспериментальные методы

Соединения BaTiO₃ (BT) и Ba_{0.97}Bi_{0.02}TiO₃ (BBT) были приготовлены в результате твердофазной реакции (1 - x)BaCO₃+x/3Bi₂O₃+TiO₂ \rightarrow Ba_{1-x}Bi_{2x/3}TiO₃ + (1 - x)CO₂ по методике, описанной в [24]. Исходные материалы тщательно перемалывались в течение одного часа, а затем были спрессованы в форме дисков под давлением 100 MPa. Синтез проводился при 1100°C в течение 2 h. На последнем этапе образцы отжигались при 850°C в течение 15 h. В результате были получены керамические цилиндрические таблетки (d = 7 mm, h = 1.1 mm), плотность которых составляла ~ 92% от теоретической. Для исследования диэлектрической проницаемости и влияния электрического поля на параметры фазового перехода на керамические образцы наносились золотые электроды путем распыления в вакууме.

Структурная характеризация синтезированных образцов ВТ и ВВТ выполнена при 300 К с использованием порошкового рентгеновского дифрактометра Наоуиап DX-2700BH с Cu-Ка излучением и линейным детектором. Размер шага 20 составлял 0.01°, экспозиция в каждой точке — 0.2 s на шаг. Все пики на экспериментальных дифрактограммах были проиндексированы в тетрагональной ячейке (Р4тт) с параметрами, близкими к параметрам BaTiO₃. Поэтому эта структура была принята в качестве стартовой модели для уточнения по методу Ритвельда, которое было выполнено с использованием программы TOPAS 4.2 [25]. Уточнения были стабильными и давали низкие *R*-факторы (рис. 1, табл. 1). Примесей и посторонних фаз в обоих образцах не обнаружено. Позиция иона Ba²⁺ в структуре BBT оказалась занятой ионами Ba²⁺/Bi³⁺ с фиксированным соотношением согласно предложенной химической формуле, Ba_{0.97}Bi_{0.02}TiO₃.

Детальные измерения изобарной теплоемкости $C_p(T)$ в температурном интервале 310–415 К выполнены на автоматизированном адиабатическом калориметре [26]. Образцы помещались в измерительную ячейку с нагревателем и фиксировались с помощью смазки Аріегол, которая обеспечивала надежный тепловой контакт. Измерения теплоемкости образцов проводились в режимах непрерывных (dT/dt = 0.2-0.4 K/min) и дискретных $(\Delta T = 1.5-3.0 \text{ K})$ нагревов с погрешностью, не превышающей 0.3-1.0%. Теплоемкость измерительной ячейки с нагревателем измерялась в отдельном эксперименте.

Исследования температурных зависимостей линейной деформации $\Delta L/L(T)$ и коэффициента линейного теплового расширения $\alpha(T)$ проводились на индукционном дилатометре DIL-402C фирмы Netzsch в потоке газообразного гелия с расходом 50 ml/min. Скорость нагрева образцов составляла 2 K/min. Эксперименты выполнялись в условиях отсутствия ($E_{\rm cp} = 0$) и приложения ($E = 5.45 \, {\rm kV/cm}$) электрического поля. Для калибровки и учета расширения измерительной системы был использован эталон из плавленого кварца. Согласованность данных, полученных в нескольких сериях измерений, оказалась достаточно высокой ~ 97%.

Измерения диэлектрической проницаемости керамик $Ba_{1-x}Bi_{2x/3}TiO_3$ были выполнены с использованием прибора E7-20 на частоте 1 kHz. Эксперименты проводились в дилатометре параллельно с измерениями теплового расширения на одних и тех же образцах.

3. Результаты и обсуждение

Результаты исследования температурного поведения теплоемкости керамик $\text{Ba}_{1-x}\text{Bi}_{2x/3}\text{TiO}_3$ представлены на рис. 2. Обнаружено аномальное поведение $C_p(T)$, связанное с переходом при нагревании из тетрагональной фазы *Р4mm* в исходную кубическую фазу *Рm-3m*.

Видно, что катионное замещение $Bi^{3+} \to Ba^{2+}$ привело к размытию пика теплоемкости BBT и к существен-

Рис. 1. Разностная рентгенограмма уточнения структуры в фазе P4mm BT (a) и BBT (b) при 300 К.

Соединение	BaTiO ₃	Ba _{0.97} Bi _{0.02} TiO ₃	
Пространственная группа	P4mm	P4mm	
<i>a</i> (Å)	3.99117(40)	3.99612(17)	
c (Å)	4.03015(49)	4.02771(17) 64.318(6)	
V (Å ³)	64.198(15)		
Ζ	1	1	
$2 heta$ -interval, $^\circ$	15-70	15-70 6.45 4.53 3.61	
$R_{\rm wp},\%$	11.015		
$R_{\rm p},\%$	7.694		
χ^2	4.279		
$R_{\rm B},\%$	8.96	0.98	

Таблица 1. Основные параметры уточнения структуры керамических образцов $Ba_{1-x}Bi_{2x/3}TiO_3$ (x = 0; 0.03) при 300 K

ному уменьшению его максимальной величины по сравнению с ВТ. В то же время температуры максимумов C_p , T_1 , интерпретируемые как температуры структурного превращения, оказались достаточно близки 397 К (ВТ) и 402 К (ВВТ).

Для определения интегральной термодинамической характеристики, а именно изменения энтропии за счет изменения симметрии кристаллической решетки, приводящего к появлению поляризации, необходимо было разделить полную молярную теплоемкость на составляющие, соответствующие решеточному $C_{\rm Lat}(T)$ и аномальному, связанному с поляризацией $\Delta C_{\rm p}(T) \sim \partial P^2 / \partial T$, вкладам. Участки на кривой $C_{\rm p}(T)$ вне области существования аномалии теплоемкости рассматривались как соответствующие $C_{\rm Lat}(T)$ и аппроксимировались комбинацией функций Дебая и Эйнштейна

 $C_{\text{Lat}}(T) = K_{\text{D}}C_{\text{D}}(T, \theta_{\text{D}}) + K_{\text{E}}C_{\text{E}}(T, \Theta_{\text{E}}),$ где $K_{\text{D}}, K_{\text{E}}, \Theta_{\text{D}}, \Theta_{\text{E}}$ — подгоночные параметры.

Интегрирование температурных зависимостей $\Delta C_p/T$ позволило определить для обоих исследуемых керамических образцов изменения энтропии при фазовом переходе $Pm-3m \leftrightarrow P4mm$: $\Delta S_1 = (1.3 \pm 0.1)$ J/mol·K (BT) и $\Delta S_1 = (0.9 \pm 0.1)$ J/mol·K (BBT). Из температурных зависимостей $\Delta S_1(T)$, представленных на рис. 2, следует, что изменение химического давления за счет частичного катионного замещения привело не только к уменьшению энтропии перехода в BBT, но и к изменению характера ее поведения: отсутствует значительный рост C_p в окрестностях T_1 , связанный со скрытой теплотой. Эти результаты позволяют считать, что незначительное изменение химического давления привело к изменению рода фазового перехода $Pm-3m \leftrightarrow P4mm$ с первого на второй.

На рис. 3, а представлены результаты измерений теплового расширения ВТ и ВВТ. В обоих соединениях

Рис. 2. Температурные зависимости изобарной молярной теплоемкости (*a*) и аномальной энтропии (*b*) керамик ВТ (*1*) и ВВТ (*2*). Штриховые линии — решеточные теплоемкости.

Рис. 3. Температурное поведение коэффициента линейного теплового расширения керамик ВТ (1) и ВВТ (2) в окрестностях фазового перехода Pm-3 $m \leftrightarrow P4mm$ (a). Температурные зависимости деформации $\Delta L/L$ (b) и α (c) для керамики ВВТ при E = 0 (3) и E = 5.45 kV/cm (4).

переход в тетрагональную фазу сопровождается ярко выраженным аномальным поведением коэффициента линейного теплового расширения $\alpha(T)$. При этом величина пика $\alpha(T)$ в BBT оказалась меньше и более сглаженной. Температуры фазовых переходов: 400 К (ВТ) и 404 К (BBT), соответствующие минимумам $\alpha(T)$, хотя и незначительно, но все же выше аналогичных, определенных в калориметрических измерениях. Несовпадение величин Т₁, определенных двумя теплофизическими методами, объясняется различными экспериментальными условиями, а именно разными скоростями изменения температуры. По сравнению с процессом измерения теплового расширения, dT/dt = 2 K/min, условия осуществления процесса измерений теплоемкости $dT/dt \leq 0.4$ K/min являются более близкими к равновесным термодинамическим условиям.

Характер влияния электрического поля на температуру сегнетоэлектрического превращения $Pm-3m \leftrightarrow P4mm$ и поведение ряда физических свойств ВТ был известен [27,28]. Поэтому нами экспериментально определялась устойчивость кубической фазы к изменению электрического поля, то есть зависимость $T_1(E)$, только для ВВТ. Эксперименты по исследованиям теплового расширения на одном образце были выполнены в условиях E = 0 и $E \neq 0$. Результаты исследования оказались воспроизводимыми в нескольких сериях повторных измерений и представлены на рисунках 3, *b* и 3, *c*. Наиболее наглядно смещение температуры фазового перехода при $E \neq 0$ проявляется на зависимости $\alpha(T, E)$ (рис. 3, *c*). Оказалось, что поле напряженно-

стью $E = 5.45 \, \text{kV/cm}$ вызывает повышение температуры фазового перехода *Рт-3т → Р4тт*, соответствующей минимуму пика $\alpha(T)$, на ~ 2 К. Конструкционные особенности измерительной камеры дилатометра не позволяли проведение измерений в полях большей напряженности. Получение надежных данных при меньших величинах Е было затруднено в силу малой величины изменения T₁. Поэтому коэффициент, характеризующий чувствительность твердого раствора ВВТ к электрическому полю, был определен по двум экспериментальным точкам и составил $dT_1/dE = 0.37 \,\text{K}/(\text{kV/cm})$. В связи с выше отмеченной высокой воспроизводимостью результатов измерений теплового расширения при термоциклировании нет оснований сомневаться в достоверности величины коэффициента. Более того, значение dT_1/dE оказалось несколько меньше, но все же близким к величинам, установленным ранее для монокристаллического ВаТіО₃ в экспериментах по исследованию влияния электрического поля на двулучепреломление, $dT_1/dE = 0.75 \text{ K/(kV/cm)}$ [28], и теплоемкость, $dT_1/dE = 0.55 \text{ K/(kV/cm)}$ [27]. Отличие величин, полученных разными методами, вполне вероятно, обусловлено, во-первых, разными интервалами электрического поля: $\Delta n_{[100]}(T, -E) - (0-1.5-3.2)$ kV/cm и $C_p(T, E)$ — (0-3.5-5.9) kV/cm, а во-вторых, разными граничными условиями экспериментов: $(\Delta n_{[100]})_{T=\text{const}}(E)$ и $(C_{p})_{E=\text{const}}(T).$

Величина скорости изменения температуры перехода под действием электрического поля для ВТ была также определена нами из уравнения Клапейрона-Клаузиуса:

Рис. 4. Температурные зависимости диэлектрической проницаемости ВТ (a) и ВВТ (b) при f = 1 kHz. Поведение величины $\ln(1/\varepsilon - 1/\varepsilon_m)$ как функции $\ln(T - T_m)$ для ВТ (c) и ВВТ (d).

 $dT_1/dE = \delta P/\delta S$. Однако, так как для этого сегнетоэлектрика скачки поляризации δP и энтропии δS при T_1 близки к полным их изменениям, вычисления были выполнены с использованием более точно определяемых величин ΔP [29] и ΔS [26]. Рассчитанный коэффициент, $dT_1/dE = 0.77$ K/(kV/cm), хорошо согласуется с величинами, определенными экспериментально.

Таким образом, характер влияния изменения химического давления и напряженности электрического поля на фазовый переход $Pm-3m \leftrightarrow P4mm$ в ВТ идентичен по ряду позиций. Во-первых, в обоих случаях растет температура T_1 . Нельзя исключить, что это может быть связано с увеличением объема элементарной ячейки, так как гидростатическое давление, вызывающее уменьшение объема элементарной ячейки ВТ, приводит к снижению температуры T_1 [30].

Во-вторых, ранее обнаружено [27], что с ростом напряженности электрического поля переход первого рода $Pm-3m \leftrightarrow P4mm$ в ВТ приближается к трикритической точке, а о подобном явлении в твердом растворе ВВТ свидетельствует сглаживание аномалии теплоемкости по сравнению с ВТ.

Температурные зависимости диэлектрической проницаемости ВТ и ВВТ представлены на рис. 4, *a* и 4, *b*. В окрестностях комнатной температуры значения диэлектрической проницаемости обоих соединений близки, порядка ~ 10^3 . Однако присутствие в структуре перовскита трехвалентного Ві привело к расширению пика $\varepsilon(T)$ при фазовом переходе Pm-3m-P4mm и уменьшению его максимальной величины с 3700 для титаната бария до 2900 в твердом растворе.

Для описания зависимостей $\varepsilon(T)$ было использовано универсальное уравнение, известное как модифицированный закон Кюри-Вейсса и полученное на основе анализа как микроскопической модели флуктуации состава [31,32], так и эмпирических данных для размытых фазовых переходов [33], $(1/\varepsilon - 1/\varepsilon_m) = (T - T_m)^{\gamma}/C''$, где ε_m — максимальная величина диэлектрической проницаемости при соответствующей температуре T_m , C'' — модифицированная константа Кюри-Вейса, а показатель γ равен 1 для классических сегнетоэлектриков и 2 для релаксоров. Промежуточные значения γ характеризуют степень диффузности (размытости) фазового перехода.

На рис. 4, с и *d* можно видеть зависимость логарифма обратной диэлектрической проницаемости. Величины γ для "чистого" титаната бария и твердого раствора составили соответственно 1.34 и 1.27, что свидетельствует

Рис. 5. Температурные зависимости молярной энтропии керамик BT (a, b) и BBT (c, d) при $E_{\text{low}} = 0$ (1) и $E_{\text{high}} = 5.45 \text{ K/(kV/cm)}$ (2) в окрестностях фазового перехода Pm-3 $m \leftrightarrow P4mm$ (a, c) и в параэлектрической фазе (b, d).

о достаточно небольшой степени размытия сегнетоэлектрического перехода. Величина показателя $\gamma > 1$ связана с керамической природой исследованного образца. Вследствие размерной неоднородности и случайной ориентированности кристаллических зерен в керамике неизбежно появление внутренних механических напряжений, приводящих к некоторому размытию аномалий физических свойств. Полученные результаты согласуются с данными о том, что твердые растворы ВВТ в интервале концентраций висмута 0 < x < 0.09 претерпевают сегнетоэлектрические переходы $Pm-3m \leftrightarrow P4mm$, а при 0.09 < x < 0.15 переходы носят релаксорный характер [34].

Вследствие достаточно высокой электрической проводимости керамических образцов ВТ и ВВТ невозможно было получить надежную информацию о петлях диэлектрического гистерезиса. Однако, как нами недавно было показано, для определения параметров сбора энергии наряду с изотермами в диаграмме P-E могут быть использованы изополевые зависимости энтропии в диаграмме S-T: величины плотности энергии N_D , рассчитанные двумя способами, удовлетворительно, согласовывались между собой [19].

Так как прямые измерения теплоемкости в условиях $E \neq 0$ были невозможны из-за выделения Джоулева тепла вследствие высокой проводимости керамик, выполнена следующая процедура для восстановления функции $S(T, E \neq 0)$. Во-первых, предполагалось, что энтропия фазового перехода Pm- $3m \leftrightarrow P4mm$, ΔS_1 , не зависит от электрического поля, по крайней мере, при использованной в работе невысокой его напряженности $E_{\text{high}} = 5.45 \text{ kV/cm}$. Во-вторых, положение аномальной энтропии на решеточной составляющей при $E_{\text{high}} \neq 0$, $\Delta S_1(T, E)$, определялось сдвигом функции $\Delta S_1(T, E = 0)$ вдоль температурной шкалы в соответствии с коэффициентом dT_1/dE : $\Delta S_1(T, E_{\text{high}}) = \Delta S_1(T + E_{\text{high}} \cdot dT_1/dE, 0).$ На рис. 5 представлены температурные зависимости полной энтропии $S(T) = \int (CP/T)_E dT$ обеих исследованных керамик в области фазового перехода при T_1 , соответствующие условиям $E_{low} = 0$ и $E_{high} = 5.45$ kV/cm. В соответствии с данными, приведенными на рис. 2, *b*, и *c* отличающимися в полтора раза коэффициентами dT_1/dE , более наглядно влияние электрического поля проявляется для ВТ. В то же время, в параэлектрической фазе, то есть там, где отсутствует поляризация и связанная с ней аномальная энтропия, кривые $S(T, E_{low} = 0)$ и $S(T, E_{high} \neq 0)$ совпадают (рис. 5, *b* и *d*).

Циклы сбора энергии A-B-C-D-A в координатах S-T показаны на рис. 5, *а* и *с*. Процесс A-B является изотермическим, связанным с увеличением напряженности внешнего поля от $E_{\rm low} = 0$ до $E_{\rm high} = 5.45$ kV/cm. Далее в процессе B-C осуществляется нагрев рабочего тела от $T_{\rm cold}$ до $T_{\rm hot}$ при $E_{\rm high} =$ const за счет подвода "бросового" тепла от внешнего источника. В изотермическом процессе C-D электрическое поле уменьшается до нуля. И наконец, в процессе D-A керамическое рабочее тело возвращается в условиях $E_{\rm low} = 0$ к первоначальной температуре $T_{\rm cold}$. Площадь построенного таким образом цикла будет равна плотности энергии, собранной за один цикл.

На рис. 5, *а* и *с* циклы A-B-C-D-A представлены в узком интервале температур. Практический интерес с точки зрения утилизации "бросового" низкопотенциального тепла представляет интервал температур, как минимум, 70–100 К. Поэтому оценки плотности собираемой энергии, $N_{\rm D} = \oint T dS$ выполнены нами для обоих образцов при осуществлении цикла в интервале температур от $T_{\rm cold} = 310$ K до $T_{\rm hot} = 410$ K и представлены в табл. 2, где для сравнения приведены также сведения о параметрах сбора энергии родственных сегнетоэлектрических материалов на основе PbTiO₃ и BaTiO₃. Видно, что исследованные нами сегнетоэлектрики BT и BBT

Материал	$N_{\rm D}, {\rm J/cm^3}$	$T_{\rm cold}, {\rm K}$	$T_{\rm hot}, K$	$E_{\rm low}, {\rm kV/cm}$	$E_{\rm high}, {\rm kV/cm}$	$N_{\rm D}^* \cdot 10^5$, J/(cm ² ·kV·K)	Лит-ра
PMN-10PT	0.19	303	353	0	35	10.9	[35]
8/65/35PLZT	0.89	298	433	2	75	9.0	[36]
BCT-BZT-Fe	0.30	303	483	0	30	5.5	[37]
BTSn (P-E)	0.127	220	320	0	18.5	6.8	[19]
BTSn (S-T)	0.168	220	320	0	15.4	10.9	[19]
BT (S-T)	0.032	310	410	0	5.5	5.9	&
BBT (S-T)	0.043	310	410	0	5.5	7.8	&

Таблица 2. Сравнение абсолютной N_D и относительной N_D^{*} плотностей энергии для различных объемных и толстопленочных (BTSn) сегнетоэлектрических материалов. (& — данные настоящих исследований)

значительно уступают в величине плотности энергии ND всем приведенным в табл. 2 материалам.

С другой стороны, табл. 2 показывает, что очень сложно сравнивать результаты различных исследований, проведенных на родственных соединениях из-за очень разных диапазонов как температур $T_{\rm hot} - T_{\rm cold}$, так и электрических полей $E_{\rm high} - E_{\rm low}$, используемых для определения параметров сбора энергии. Можно считать, что существует, по крайней мере, две основные причины такой ситуации. Во-первых, температурный диапазон сильно связан с температурой "нормального", T_1 , или диффузного, $T_{\rm m}$, фазового перехода. Во-вторых, максимальное значение используемого поля $E_{\rm high}$, безусловно, ограничено напряжением пробоя, которое индивидуально для каждого из образцов и редко приводится в статьях.

Поэтому, основываясь на результатах [19], сравнение относительных величин следующего вида, $N_{\rm D}^* = N_{\rm D}/(\Delta T \cdot \Delta E)$, на наш взгляд, является более корректным и информативным. Конечно, в этом случае зависимости $N_{\rm D}(T)$ и $N_{\rm D}(E)$ для фиксированных интервалов $E_{\rm high} - E_{\rm low}$ и $T_{\rm hot} - T_{\rm cold}$ должны быть близки к линейным. Однако эти условия не являются экзотическими, так как подобные зависимости наблюдались в широких диапазонах внешних параметров как для твердого раствора BTSn [19], так и для керамик BCT-BZT-Fe [37].

Из табл. 2 видно, что по относительному параметру эффективности N_D^* оба исследованных образца, ВТ и ВВТ, как и другие бессвинцовые перовскиты, практически не уступают свинецсодержащим соединениям. Можно с уверенностью предполагать, что соответствие плотностей энергии, полученных для разных материалов при одинаково высоких значениях E_{high} , E_{low} и T_{hot} , T_{cold} , окажется еще более удовлетворительным. Что касается исследованных керамик ВТ и ВВТ, то очевидной задачей на дальнейшее является совершенствование технологии их приготовления, которая позволила бы добиться существенного уменьшения проводимости образцов.

4. Заключение

Выполнены исследования температурных зависимостей теплоемкости, теплового расширения и диэлектрической проницаемости керамических образцов $Ba_{1-x}Bi_{2x/3}TiO_3$ (x = 0; 0.03) в области сегнетоэлектрического фазового перехода Pm- $3m \leftrightarrow P4mm$. Небольшое процентное замещение катиона Ba^{2+} на Bi^{3+} в структуре $BaTiO_3$ привело к следующим последствиям, ряд которых согласуется с эффектами, наблюдаемыми в условиях приложения давления и/или электрического поля.

Во-первых, несмотря на соотношение ионных радиусов, $R_{\rm Bi^{3+}} < R_{\rm Ba^{2+}}$ (CN=12), произошло небольшое увеличение объема элементарной ячейки в фазе *Р4mm* твердого раствора ВТ (табл. 1), что, по-видимому, можно объяснить нетривиальным изменением межатомных взаимодействий вследствие гетеровалентного катионного замещения.

Во-вторых, обнаружен рост температуры фазового перехода в ВВТ, что, возможно, является следствием указанного увеличения объема элементарной ячейки, так как внешнее гидростатическое давление, вызывающее уменьшение объема, приводит к понижению температуры *T*₁ [30].

В-третьих, катионное замещение не вызвало изменения поведения диэлектрической проницаемости, о чем свидетельствует неизменность показателя $\gamma \approx 1.3$ в модифицированном уравнении Кюри–Вейса.

В-четвертых, понизилась чувствительность температуры перехода к изменению электрического поля, о чем свидетельствует уменьшение в полтора-два раза коэффициента dT_1/dE для BBT по сравнению с BT.

В-пятых, из поведения теплоемкости следует изменение первого рода фазового перехода в ВТ на второй род в ВВТ, что согласуется с приближением этого превращения к трикритической точке при $E \neq 0$ в ВТ [24].

В-шестых, анализ изополевых температурных зависимостей полной энтропии свидетельствует о небольшом отличии относительных плотностей утилизируемой энергии в циклах Ольсена с ВТ и ВВТ в качестве рабочих тел и их близости к параметрам других перспективных сегнетоэлектрических материалов (табл. 2).

Благодарности

Рентгенографические и дилатометрические данные получены с использованием оборудования Красноярского регионального центра коллективного пользования ФИЦ КНЦ СО РАН.

Финансирование работы

Работа выполнена в рамках научной тематики Госзадания ИФ СО РАН.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] IRENA. REthinking Energy 2017 (2017).
- [2] G. Sebald, D. Guyomar, A. Agbossou. Smart Mater. Struct. 18, 125006 (2009).
- [3] S. Pandya1, J. Wilbur, J. Kim, R. Gao, A. Dasgupta, C. Dames, L.W. Martin. Nature Mater. 17, 432 (2018)
- [4] A. Thakre, A. Kumar, H.-C. Song, D.-Y. Jeong, J. Ryu. Sensors 19, 2170 (2019).
- [5] R.A. Surmenev, R.V. Chernozem, I.O. Pariy, M.A. Surmeneva. Nano Energy 79, 105442 (2021).
- [6] D. Zabek, F. Morini. Therm. Sci. Eng. Prog. 9, 235 (2019).
- [7] G.H. Haertling. J. Am. Soc. 82, 797 (1999).
- [8] N. Setter, R. Wasser. Acta Mater. 48, 151 (2000).
- [9] G. Rijnders, D.H. Blank. Nature 433, 369 (2005).
- [10] S. Choi, T.R. Shrout, S. Jang, A. Bhalla. Mater. Lett. 8, 253 (1989).
- [11] X.-G. Tang, H.L.-W. Chan. J. Appl. Phys. 90, 034109 (2005).
- [12] R. Yimnirun, A. Ngamjarurojana, R. Wongmaneerung, S. Wongsaenmai, S. Ananta, Y. Laosiritaworn. Appl. Phys. A 89, 737 (2007).
- [13] A. Chauhan, S. Patel, G. Vats, R. Vaish. Energy Technol. 2, 205 (2014).
- [14] A. Chauhan, S. Patel, R. Vaish. AIP Adv. 4, 087106 (2014).
- [15] S. Patel, A. Chauhan, R. Vaish. Energy Technol. 3, 70 (2015).
- [16] S. Patel, A. Chauhan, A. Chauhan, R. Vaish. Mater. Res. Express 2, 035501 (2015).
- [17] М.В. Горев, В.С. Бондарев, И.Н. Флёров, Ф. Сью, Ж.-М. Саварио. ФТТ 47, 12, 2212 (2005).
- [18] A.A. Instan, K.K. Mishra, R.S. Katiyar. J. Appl. Phys. 126, 134101 (2019).
- [19] V.D. Fokina, V.S. Bondarev, E.I. Pogoreltsev, I.N. Flerov. Ceramics International 48, 32966 (2022).
- [20] C. Lei, A.A. Bokov, Z.-G. Ye. J. Appl. Phys. 101, 084105 (2007).
- [21] R.B. Olsen, D.D. Brown. Ferroelectrics 40, 17 (1982).
- [22] R.B. Olsen, D.A. Bruno, J.M. Briscoe. J. Appl. Phys. 58, 4709 (1985).
- [23] М.В. Горев, И.Н. Флёров, В.С. Бондарев, М. Maglione, A. Simon. ФТТ 53, 10, 1969 (2011).

- [24] A. Simon, J. Ravez, M. Maglione. Solid State Sci. 7, 925 (2005).
- [25] Bruker AXS TOPAS V4: General profile and structure analysis software for powder diffraction data. — User's Manual. Bruker AXS, Karlsruhe, Germany. 2008.
- [26] А.В. Карташев, И.Н. Флёров, Н.В. Волков, К.А. Саблина. ФТТ 50, 11, 2027 (2008).
- [27] Б.А. Струков, А.К. Иванов-Щиц. Кристаллография 18, 4, 866 (1973).
- [28] D. Meyerhofer. Phys. Rev. 112, 2, 413 (1958).
- [29] Ф. Иона, Д. Ширане. Сегнетоэлектрические кристаллы. Мир, М. (1965). 555 с.
- [30] S.A. Hayward, E. Salje. Journal of Physics: Condensed Matter. 14, 599 (2002).
- [31] J. Gao, Y. Wang, Y. Liu, X. Hu, X. Ke, L. Zhong, Y. He, X. Ren. Scientific Reports 7, 40916 (2017).
- [32] G.A. Smolenskii. J. Phys. Soc. Jpn. 28, 26 (1970).
- [33] K. Uchino, Sh. Nomura. Ferroelectrics 44, 55 (1982).
- [34] F. Bahri, A. Simon, H. Khemakhem, J. Ravez. Phys. Stat. Sol. (a) 184, 2, 459 (2001).
- [35] G. Sebald, S. Pruvost, D. Guyomar. Smart Mater. Struct. 17, 015012 (2008).
- [36] F.Y. Lee, S. Goljahi, I.M. McKinley, ChS. Lynch, L. Pilon. Smart Mater. Struct. 21, 025021 (2012).
- [37] D. Sharma, S. Patel, A. Singh, R. Vaish. J. Asian Ceram. Soc. 4, 102 (2016).

Редактор К.В. Емцев