05,07

Магнитные свойства и спиновое состояние ионов Co³⁺ слоистого кобальтита DyBaCo₂O_{5.49}

© Н.И. Солин, С.В. Наумов

Институт физики металлов им. М.Н. Михеева УрО РАН, Екатеринбург, Россия E-mail: solin@imp.uran.ru

Поступила в Редакцию 9 сентября 2024 г. В окончательной редакции 10 сентября 2024 г. Принята к публикации 10 сентября 2024 г.

В кобальтитах DyBaCo₂O_{5.49} впервые определено спиновое состояние ионов Co³⁺ вблизи перехода металл–изолятор. В непроводящей фазе, как в других редкоземельных (*R*) кобальтитах *R*BaCo₂O_{5.50}, ионы Co³⁺ находятся в низком (LS, *S* = 0) и промежуточном (IS, *S* = 1) спиновых состояниях. В металлической фазе ионы Co³⁺ в октаэдрах и пирамидахп находятся в промежуточном (IS, *S* = 1) спиновом состоянии. Переход металл–изолятор происходит при изменении спинового состояния ионов Co³⁺ из IS- в LS-состояние в октаэдрах без изменения IS-состояния в пирамидах. Температурный гистерезис намагниченности показывает, что переход металл–изолятор в DyBaCo₂O_{5.50} является фазовым переходом 1-го рода. Предполагается, что метамагнитное поведение редкоземельных кобальтитов *R*BaCo₂O_{5.50} обусловлено их слоистой структурой и определяется размером редкоземельного иона.

Ключевые слова: переход металл-изолятор, редкоземельный ион, метамагнитное поведение.

DOI: 10.61011/FTT.2024.10.59084.233

1. Введение

Слоистые кобальтиты RBaCo₂O_{5.50}, где R — редкоземельный ион, вызывают интерес из-за своих необычных электронных, структурных и магнитных переходов [1-9]. В них обнаружен ряд последовательных переходов: металл-изолятор (MI), парамагнитный (PM) → ферромагнитный (FM) → антиферромагнитный (AFM) переход. Предполагается, что эти явления возникают вследствие сильно коррелированных взаимодействий между электронными, орбитальными и спиновыми степенями свободы [2]. В отличие от манганитов, переход в кобальтитах не связан с магнитным упорядочением, что является следствием магнитно-активного (антиферромагнитного) характера матрицы RMnO₃ в случае манганитов и слабомагнитного (парамагнитного) поведения *R*CoO₃ в случае кобальтитов [7]. Оксиды RBaCo₂O_{5.50} имеют слоистую кристаллическую структуру перовскита, состоящую из слоев, расположенных вдоль c-оси, в которой слои $RO_{0.5}$ и ВаО перемежаются слоями CoO₂. Вследствие слоистости они являются сильно анизотропными [2]. В *R*BaCo₂O_{5.50} присутствуют только ионы Со³⁺, которые расположены в кристаллической решетке из равного числа октаэдров СоО6 и квадратных пирамид СоО₅.

Основным вопросом для этих материалов является происхождение и выяснение движущих сил перехода металл-изолятор. Было признано, что ключом к пониманию этих явлений является изменение спинового состояния ионов Co³⁺ в зависимости от температуры. Из структурных и магнитных данных [3] сделан вывод, что в GdBaCo₂O_{5.50} переход из непроводящей фазы

к металлической обусловлен возбуждением электронов LS-состояния в $e_{\rm g}$ -полосу HS-состояния Co³⁺ в октаэдрах без изменений IS-состояния Co³⁺ в пирамидах. Хотя эта модель противоречит структурным данным, она нашла широкое признание и считается справедливой для всех редкоземельных ионов. Спиновое состояние ионов Co³⁺ устанавливается по магнитным измерениям с учетом PM-вклада редкоземельных ионов. Уточнение парамагнитного вклада ионов R^{3+} показывает [10], что переход в неметаллическое состояние происходит вследствие изменения высокоспинового (HS, S = 2) состояния в низкоспиновое (LS, S = 0) состояние в октаэдрах, и превращения низкоспинового LS-состояния ионов Co³⁺ в пирамидах.

Размер редкоземельного иона незначительно влияет на температуру перехода металл—изолятор, и температуру Кюри [11]. Слоистые кобальтиты проявляют метамагнитное поведение, температура перехода (T_m) из FM-состояния в AFM зависит от магнитного поля [2,5,6]. Метамагнитное поведение NdBaCo₂O_{5+ δ}, $\delta \approx 0.50$, в больших магнитных полях при низких температурах объяснено [6] большим размером редкоземельных ионов на основе метамагнитной модели Л. Ландау [12].

Размер редкоземельного элемента влияет на магнитное состояние $RBaCo_2O_{5.50}$. С увеличением размера редкоземельных ионов $R = Eu \rightarrow Nd \rightarrow Pr$ в AFM-состоянии возникают FM-корреляции. В $RBaCo_2O_{5.50}$, где R = Eu, Nd, Pr, FM-взаимодействия присутствуют при всех температурах ниже температуры Нееля T_N даже в антиферромагнитно упорядоченной фазе [6,13–15].

Природа метамагнитного поведения и FM-состояния в АҒМ-фазе не ясна.

Из всех синтезированных $RBaCo_2O_{5.50}$, где R = Pr, Nd, Sm, Eu, Gd, Tb, в настоящее время наименее изучены соединения с наименьшим размером ионов: R = Dy и Ho. Известны всего три работы, одна [16] — посвященная исследованиям магнитных и электрических свойств, две другие — структурным данным DyBaCo₂O_{5.50} [17,18]. Отличительной особенностью этих соединений является то, что переход металл-изолятор происходит при $\delta \approx 0.50.$

Методом порошковой нейтронной дифракции показано, что DyBaCo₂O_{5.50} ниже 230 К имеет антиферромагнитную структуру с ионами Co³⁺ в промежуточном (IS, S = 1) спиновом состоянии в октаэдрическом и пирамидальном окружении. При низких температурах магнитные моменты ионов Co³ имеют скошенную магнитную структуру [17]. Рентгеновским и нейтронографическим исследованиями монокристалла DyBaCo₂O_{5.50} обнаружен структурный переход и аномалии электросопротивления ниже $T_{\rm MI} \approx 325 \, {\rm K}$. Серия очень слабых сверхструктурных рентгеновских рефлексов от монокристалла DyBaCo₂O_{5,50} объяснена в предположении, что при T_{MI} происходит структурный переход 2-го рода из фазы с пространственной группы Рттт в фазу Ртта [18]. Ниже показываем, что переход металл-изолятор при $T = 325 \,\mathrm{K}$ в DyBaCo₂O_{5.49} происходит вследствие фазового перехода 1-го рода.

Работа направлена на определение спинового состояния ионов Со³⁺ вблизи перехода металл-изолятор и выяснение природы метамагнитного поведения в слоистом кобальтите DyBaCo₂O_{5,50}.

Образцы и методики 2.

Поликристаллы DyBaCo₂O_{5.49(2)} были синтезированы твердофазным методом из исходных компонентов Dy₂O₃, BaCO₃ и Co₃O₄ ступенчатым отжигом на воздухе при $T = 900 - 1100^{\circ}$ С [1,10]. Образцы с содержанием кислорода $\delta \approx 0,50$ были приготовлены по методике, предложенной в работе [16]. При комнатной температуре поликристаллы DyBaCo₂O_{5.49} описываются орторомбической структурой (пространственная группа Pmmm, #47) с параметрами элементарной ячейки a = 3.871(0) Å, b = 7.827(9) Å, c = 7.527(8) Å. Значения структурных параметров образцов согласуются с литературными данными [16,17]. Измерения электросопротивления проведены четырехконтактным методом. Работа выполнена с использованием оборудования ЦКП "Испытательный центр нанотехнологий и перспективных материалов" ИФМ УрО РАН.

3. Магнитные свойства

На рис. 1 приведены температурные зависимости DyBaCo₂O_{5.49} в интервале 10-350 К для трех значе-

T, K 0.1 0 50 100 150 200 300 0 250 350 *T*, K Рис. 1. Температурные зависимости намагниченности DyBaCo₂O_{5.49} при H = 1, 10 и 50 kOe (кривые 1, 3 и 4 соответственно; кривая 2 — парамагнитный вклад свободного

иона Dy). Вставка: температурная зависимость спонтанной

намагниченности DyBaCo₂O_{5.49}.

ний магнитного поля: H = 1, 10 и 50 kOe (рис. 1). Намагниченность $M_{exp}(T)$, измеренная в магнитном поле 1 kOe после охлаждения в нулевом поле (сплошная кривая 1), резко увеличивается при температуре Кюри $T_{\rm C} \approx 290 \, {\rm K}$. Она существует в небольшом ($\sim 50 \, {\rm K}$) интервале температур, достигая максимума при температуре $T_{\rm max} \approx 267 \, {\rm K}$, ниже которой резко уменьшается, характеризуя о переходе из FM- (или скошенного AFM) в АFM-состояние при $T_N({
m Co}^{3+}) \le 200 \, {
m K}.$ Температура Кюри $T_{\rm C} = 290 \pm 1 \, {\rm K}$, оцененная по производной намагниченности dM/dT, согласуется с известными данными [1,16]. Кривые охлаждения в нулевом магнитном поле и охлаждения в поле (сплошная и пунктирная кривые 1 соответственно) близки и почти совпадают, что указывает на отсутствие FM-составляющей. Эти результаты указывают на совершенство кристалла и содержание кислорода δ в нем, близкого к $\delta \approx 0.50$. Видно, что РМ-вклад ионов Dy³⁺, определенный при параметрах свободного иона Dy, ниже $T \approx 150 \,\mathrm{K}$ (кривая 2 рис. 1) превышает экспериментальные значения намагниченности *M*_{exp}. (РМ-поведение намагниченности образца ниже 200 К при 10 и 50 kOe не показано для ясности изображений.)

При увеличении магнитного поля до 50 kOe температура максимума намагниченности T_{max} сдвигается в сторону низких температур примерно на 12-14 К, т.е. магнитное поле подавляет АFM- и усиливает FMсостояние, т.е. соединение DyBaCo₂O_{5.49} показывает признаки метамагнитного поведения.

На вставке рис. 1 приведена температурная зависимость спонтанной намагниченности M_s, полученная из экстраполяции намагниченности M(H) в магнитном поле до 90 kOe. Видно, что M_s возникает при $T_{\rm C} \approx 290$ K и исчезает при $200 \,\mathrm{K} \le T \le 220 \,\mathrm{K}$ в согласии с результатами нейтронных исследований [17]. При низких

Рис. 2. Температурные зависимости электросопротивления трех образцов DyBaCo₂O_{5+δ}. (см. текст). Вставка: температурный гистерезис намагниченности DyBaCo₂O_{5,49}.

температурах магнитные моменты ионов Со находятся в состоянии (IS, S = 1) и скошены в плоскости (a, b) в октаэдрическом и пирамидальном окружении [17]. Величина спонтанной намагниченности в FM-состоянии мала — $M_{\rm s} < 0.3\,\mu_{\rm B}$, и меньше ожидаемого значения $M_{\rm s} \approx 0.5\,\mu_{\rm B}$ для состояния (IS, S = 1) ионов Co³⁺ для двойниковой структуры образцов [2]. Результаты объясняются скошенной магнитной структурой ионов Co³⁺.

Из исследований намагниченности при 10 kOe (кривая 3 рис. 1) обнаружен температурный гистерезис намагниченности (вставка рис. 2). При нагреве выше T = 323 K остывание образца до T = 310 K идет при меньшей намагниченности. Температурный гистерезис является типичным свойством фазового перехода 1-го рода. Обычно такой переход является следствием структурного фазового перехода. В слоистых кобальтитах разности энергий между разными спиновыми состояниями ионов Со малы. Вследствие этого при изменении параметров среды (температуры, магнитного полями и др.) в кобальтитах могут легко происходить переходы ионов Со из одного спинового состояния в другое [2]. Эти переходы сопровождаются структурным фазовым переходом, исчезновением энергетической щели, изменением транспортных свойств и переходом к квазиметаллическому состоянию.

4. Электрические свойства

На рис. 2 приведены температурные зависимости электросопротивления для трех образцов DyBaCo₂O_{5+ δ}, где δ — содержание кислорода. Синтезированные при 1150°C твердофазным методом из исходных компонентов Dy₂O₃, BaCO₃ и Co₃O₄ порошки DyBaCo₂O_{5+ δ} проверялись на однофазность рентгеновскими методами, прессовались в таблетки и отжигались при 900°C в

атмосфере чистого аргона в течение 4-5h до значения $\delta \approx 0$. Далее таблетки подвергались различным термообработкам, и по изменению веса определялось содержание кислорода δ [2]. Образец № 1 с $\delta=0.50(2)$ был отожжен в потоке кислорода при 250°C в течение 10h и охлажден до комнатной температуры вместе с печью. Образец № 2 с $\delta = 0.49(2)$ был отожжен в потоке кислорода при 250°С в течение 10 h и закален. Образец № 3 с $\delta = 0.58(2)$ был отожжен при давлении 4 atm кислорода при 400 K и охлажден при 250 K до комнатной температуры вместе печью. В закаленном образце № 2 более резко выражен переход MI. В образце с $\delta = 0.58(2)$ переход MI не обнаружен. Температура фазового перехода $T = 323 \, {\rm K}$ (см. вставку рис. 2) с точностью до нескольких градусов совпадает с температурой перехода МІ. Переход металл-изолятор в DyBaCo₂O_{5.49} происходит вследствие фазового перехода 1-го рода при T = 323 К.

5. Спиновое состояние ионов Co³⁺ слоистого кобальтита DyBaCo₂O_{5.49}

В настоящее время при определении спинового состояния ионов Со полагают, что редкоземельные ионы в слоистых кобальтитах действуют как невзаимодействующий свободный ион. Однако магнитные моменты R^{3+} , определенные при низких температурах из магнитных данных $RBaCo_2O_{5.50}$, где R = Gd, Tb, Pr, Nd [5,6,10,19], меньше ожидаемых значений моментов для свободных ионов R^{3+} . Намагниченность ионов Tb³⁺ в монокристалле TbBaCo₂O_{5.50} при 2 K примерно в 2 раза меньше, чем момент свободных ионов Tb³⁺ [5]. При этом намагниченность TbBaCo₂O_{5.50} при высоких температурах хорошо описывается восприимчивостью свободного иона Tb³⁺ [5]. Аналогичное поведение магнитных свойств показано ниже в DyBaCo₂O_{5.49}.

Для выяснения природы РМ-вклада ионов Dy проведены измерения полевых зависимостей намагниченности DyBaCo₂O_{5.49} в широкой области температур T = 5-400 К в магнитном поле до 90 kOe. При низких температурах и больших магнитных полях намагниченность *M* невзаимодействующих редкоземельных ионов описывается функцией Бриллюэна $B_{\rm S}(x)$ [20]:

$$M = N_{\rm A} \cdot g \cdot \mu_{\rm B} \cdot J \cdot B_{\rm S}(x), \tag{1}$$

где $N_{\rm A}$ — число Авогадро, g — фактор Ланде, $\mu_{\rm B}$ — магнетон Бора, J — полный магнитный момент, $x = gJ \cdot \mu_{\rm B} \cdot H/(k_{\rm B}T), k_{\rm B}$ — постоянная Больцмана.

На рис. 3, *а* и *b* пустыми символами показаны результаты экспериментов, а пунктирными линиями I результаты расчетов намагниченности *M* поликристалла DyBaCo₂O_{5.49} по выражению (1) при параметрах для свободных ионов Dy³⁺: $J = 15/2 \mu_B$, g = 4/3. Согласно нейтронным исследованиям, ниже $T_N \approx 230$ K соединение DyBaCo₂O_{5.50} переходит в AFM-состояние. Спонтанный момент DyBaCo₂O_{5.49} ниже 200 K отсутствует,

Рис. 3. Намагниченность поликристалла DyBaCo₂O_{5.49} в зависимости от напряженности магнитного поля при a) 5 K и b) 50–160 K. Пустые символы — эксперимент, пунктирная линия 1 — расчет по выражению (1).

 $M_{\rm s} = 0$ (вставка рис. 1). Следовательно, намагниченность DyBaCo₂O_{5.49} ниже $T \approx 200$ K определяется исключительно вкладом ионов Dy³⁺.

При 5 К экспериментальные значения намагниченности M_{\exp} (символы 2 рис. 3, *a*) меньше ожидаемых (пунктирная кривая 1 рис. 3, *a*) почти в 2 раза. Видно (рис. 3, *b*), что с увеличением температуры при T = 50-160 К разница между экспериментальными и расчетными значениями намагниченности уменьшается, и только при $T \approx 160$ К экспериментальные значения намагниченности чуть превышают расчетные, характеризуя появление вклада ионов Со. Данные при T > 160 К не приведены для ясности изображений. Эти результаты показывают, что ионы Dy являются взаимодействующими при низких температурах и невзаимодействующими при высоких температурах.

Результаты объясняются зависящей от температуры неколлинеарной (скошенной) магнитной структурой редкоземельных ионов Dy³⁺. Предполагается, что при низких температурах ионы Dy упорядочены в неколлинеарную магнитную структуру. Вследствие скошенности ионов Dy магнитное поле действует не на полный магнитный момент Ј редкоземельного иона, а только на его компоненту Jz, и ионы показывают пониженные значения магнитного момента при низких температурах. Видно (сплошная линия 2 рис. 3, а), что экспериментальные значения намагниченности DyBaCo₂O_{5.49} при 5К хорошо описываются выражением (1) при $J = 4.65 \,\mu_{\rm B}$, что соответствует углу скоса около 53°. Изменение неколлинеарной структуры DyBaCo₂O_{5,49} до коллинеарной при повышении температуры объясняется конкуренцией антиферромагнитного диполь-дипольного взаимодействия редкоземельных ионов и их обменного взаимодействия с ионами Со. Для цели определения спинового состояния ионов Co³⁺ является важным, что выше $T \approx 160 \,\mathrm{K}$ ионы Dy можно рассматривать как невзаимодействующие, и РМ-вклад можно определить из выражения (1).

Предварительные эксперименты показали, что вклад ионов Co³⁺ в DyBaCo₂O_{5.49} существенно меньше (не более 5–6% от общей намагниченности) по сравнению с вкладами других соединений RBaCo₂O_{5.49}, где R =Gd, Tb, Nd или Pr [6,10,19,21]. Для получения надежных значений спинового состояния ионов Co³⁺ измерения намагниченности M(T) проведены при 50 kOe, а при H = 10 kOe — в режиме стабилизации температуры усреднением намагниченности из 3-х измерений.

На рис. 4 (правая ось) приведена температурная зависимость экспериментальных значений обратной РМвосприимчивости $\chi_{exp}^{-1}(T)$ образца DyBaCo₂O_{5.49}, измеренных в магнитном поле H = 10 и 50 kOe. В интервале 400-340 К наблюдается линейная зависимость $\chi^{-1}_{exp}(T)$, небольшой скачок ниже $T_{MI} \approx 330 \,\mathrm{K}$, далее явно нелинейная зависимость $\chi_{exp}^{-1}(T)$. Оцененное по закону Кюри-Вейса значение $\mu_{\rm eff} \approx 11.1 \, \mu_{\rm B}$ слишком высокое, чтобы быть отнесенным к спиновому состоянию Co³⁺. Величина $\mu_{\text{eff}} = 11.1 \, \mu_{\text{B}}$ соответствует эффективному магнитному моменту $\mu_{\rm eff} = 10.65 \,\mu_{\rm B}$ иона Dy³⁺ в основном состоянии ⁶Н_{15/2}. Для выделения вклада ионов Со³⁺ из общей намагниченности образца был вычтен вклад ионов Dy³⁺, согласно выражению (1), и пересчитан $\chi_{Co}^{-1}(T)$ для ионов кобальта (левая ось рис. 4). Учет вклада ионов Dy³⁺ увеличивает значения $\chi_{Co}^{-1}(T)$ в металлической фазе в 12–15 раз.

В интервале температур 390-340 K обратная $\chi_{\rm Co}^{-1}(T)$ РМ-восприимчивость имеет примерно линейную зависимость температуры. от Ниже $T \approx 340 \,\mathrm{K}$ начинается нелинейная $\chi_{Co}^{-1}(T)$: часть ниже $T_{\rm MI} \approx 335 \, {\rm K}$ происходит резкий скачок $\chi_{\rm Co}^{-1}(T)$, далее монотонное нелинейное уменьшение $\chi^{-1}(T)$ при понижении температуры. В интервале температур 390-340 К РМ-восприимчивость описывается законом Кюри-Вейса с РМ-температурой $\theta_{\rm PM} = -150\,{\rm K}$ и с $\mu_{\rm eff}/{
m Co} = 2.57 \pm 0.10\,\mu_{
m B}$ и $\theta_{
m PM} = -200 \pm 5\,{
m K}$ и с $\mu_{\rm eff}/{
m Co} = 2.43 \pm 0.10 \,\mu_{\rm B}$ в магнитном поле 10 и 50 kOe.

В области температур $T \approx 340-300 \,\mathrm{K}$ практически нельзя выделить линейный участок на зависимо-

Рис. 4. *а*) Температурная зависимость экспериментальных (правая ось) и с вычетом РМ-вклада ионов Dy (левая ось) значений обратной парамагнитной восприимчивости $\chi_{Co}^{-1}(T)$ поликристалла DyBaCo₂O_{5.49}. *b*) Температурные зависимости эффективного магнитного момента μ_{eff} /Со для H = 10 и 50 kOe — кривые 1 и 2 соответственно. Вставка: схема магнитной структуры слоистого соединения RBaCo₂O_{5.50}.

сти $\chi_{Co}^{-1}(T)$: значения резко уменьшаются. В небольшом интервале температур 300–315 К парамагнитную восприимчивость можно описать $\mu_{eff}/Co \approx 1.3 \mu_{B}$ и $\theta_{PM} = +298 \text{ K} \approx T_{C}$. Фактически это означает, что переход сопровождается изменением $\mu_{eff}(T)$ с температурой. Для подтверждения этого предположения в интервале температур 300–330 К были выделены линейные участки $\chi_{Co}^{-1}(T)$, и для каждого участка по закону Кюри–Вейса были определены дифференциальные значения μ_{eff} . Видно (символы *1* рис. 4, *b*), что значения $\mu_{eff}T$ достигают минимума и далее монотонно увеличиваются. Отрицательные и положительны значения θ_{PM} характеризуют конкуренцию FM- и AFMвзаимодействий. В металлическом состоянии ($T \approx 330-390$ K) среднему значению $\mu_{\rm eff}/{\rm Co} \approx 2.50 \pm 0.10 \,\mu_{\rm B}$ и $\theta_{\rm PM} \approx -175$ K из всех возможных состояний ионов Co³⁺ (рис. 4, b) ближе всех соответствует смесь IS-состояний ($t_{2g}^5 e_g^1$, S = 1) в октаэдрах и пирамидах с $\mu_{\rm eff}/{\rm Co} = 2.82 \,\mu_{\rm B}$ с одинаковым соотношением 1:1. Ниже $T_{\rm MI}$ вблизи $T_{\rm C}$ (T = 300-320 K) значение $\mu_{\rm eff}/{\rm Co} = 1.40 \pm 0.05 \,\mu_{\rm B}$ означает, что не более одной четверти ионов Co³⁺ находятся в IS-состоянии ($t_{2g}^5 e_g^1$, S = 1), остальные ионы находятся в LS-состоянии. Преобладание доли LS-состояния вблизи $T_{\rm MI}$ ТbBaCo₂O_{5.50} обнаружено и в работе [5].

Таким образом, спиновые состояния ионов Co^{3+} вблизи перехода металл—изолятор в DyBaCo₂O_{5.49} отличаются от кобальтитов с более крупным размерами редкоземельных ионов. Переход металл—изолятор в DyBaCo₂O_{5.49} происходит при изменении спинового состояния ионов Co³⁺ из IS-состояния в LS-состояние в октаэдрах без изменения IS-состояния в пирамидах. В *R*BaCo₂O_{5.50}, (*R* = Tb, Gd, Nd, Pr) переход металл—изолятор происходит при изменении спинового состояния ионов Co³⁺ из HS-состояния в LS-состояние в октаэдрах и из LS-состояния в LS-состояние в октаэдрах и из LS-состояния в IS-состояние в пирамидах [6,10,19,22].

На рис. 4 вертикальными линиями показаны нижняя и верхняя температуры фазового перехода 1-го рода. Видно, что переход металл—изолятор в DyBaCo₂O_{5.49} происходит ниже температуры фазового перехода 1-го рода и сопровождается резким уменьшением обратной PMвосприимчивости и спинового состояния ионов Co^{3+} .

6. Метамагнитное поведение

Из рис. 1 видно, что приложение магнитного поля DyBaCo₂O_{5.49} способствует установлению FM- из AFMсостояния при более низких температурах. Соединения, которые демонстрируют индуцированные магнитным полем переходы из AFM- в FM-состояние при низких температурах, называются метамагнетиками.

В монокристаллах GdBaCo₂O_{5.50} ниже температуры метамагнитного перехода $T_{\rm m} = 260$ К обнаружен резкий переход из AFM- в FM-состояние при приложении магнитного поля выше критического значения. Критическое поле растет примерно линейно с охлаждением и достигает величины порядка 200 kOe при T = 0. Предполагается, что в магнитном поле происходит переориентация слабосвязанных магнитных подрешеток. Результаты объяснены как метамагнитный переход [2].

Метамагнитное поведение намагниченности наблюдалось в монокристаллах EuBaCo₂O_{5.50} [15]. В работе [6] высказано предположение, что метамагнитное поведение в NdBaCo₂O_{5.47} при низких температурах вызвано большим размером ионов Nd. Результаты объяснены в метамагнитной модели Ландау [12] для слоистых AFMсоединений, в которой предполагается, что FM-слои упорядочены антиферромагнитно, взаимодействие в FMслоях сильнее, чем AFM-взаимодействие между слоями.

Рис. 5. Намагниченность *a*) DyBaCo₂O_{5.49} и *b*) TbBaCo₂O_{5.47} в зависимости от напряженности магнитного поля при разных температурах.

Мы провели некоторые дополнительные исследования, анализировали известные результаты и сделали заключение, что метамагнитное поведение в слоистых кобальтитах может определяться размером редкоземельных ионов. Для обоснования вышесказанного на вставке рис. 4 приведена схема структуры слоистого соединения RBaCo₂O_{5.50} вдоль *с*-оси. Соединения RBaCo₂O_{5.50} имеют слоистую структуру перовскита, состоящую из слоев, расположенных вдоль с-оси, в которой упорядоченные слои RO_{0.5} и BaO перемежаются слоями СоО₂ [1,2]. Разделенные ионами редкоземельного иона FM-слои Co³⁺ упорядочены антиферромагнитно. Замещение половины ионов R^{3+} в $RCoO_3$ более крупными немагнитными ионами Ba⁺² экранирует в RBaCo₂O_{5.50} магнитные слои Со³⁺-*R*³⁺-Со³⁺ от влияния соседних слоев ионов Co³⁺. Обменное AFM-взаимодействие между FM-слоями уменьшается с увеличением расстояния между ними. Вследствие этого АFM-взаимодействие между FM-слоями зависит от размера редкоземельного иона. В пользу этой модели свидетельствует то, что

в LaBaCo₂O_{5.50} с большим размером ионов La AFMсостояния вообще не существует [22].

Для выяснения влияния размеров *R*-иона на метамагнитное поведение определены критические поля для соединений DyBaCo₂O_{5.49} и TbBaCo₂O_{5.48} (рис. 5). Известно, что размеры ионов Tb и Dy меньше, чем размер ионов Gd [11]. Видно, что в магнитном поле происходит переход из AFM- в FM-состояние и критическое поле возрастает с понижением температуры. Анализ показывает, что критическое поле H_{cr} перехода линейно увеличивается с понижением температуры и описывается приблизительно одинаковыми численными выражениями для обоих соединений: H_{cr} , kOe = 250–0.98*T*.

Видно, что в соединениях $RBaCo_2O_{5.50}$, где R = Dy, Tb, Gd, критические поля увеличиваются с уменьшением размера R-ионов до нескольких сотен kOe. При уменьшении размера R-ионов в $RBaCo_2O_{5.50}$, где R = Eu [15], Nd [6] и Pr (не публиковано), критические поля H_{cr} уменьшаются от 50 до 30 kOe при 5 K в зависимости от размера редкоземельного иона. Результаты показывают влияние размера ионов на метамагнитное поведение и согласуются с предлагаемой моделью.

С другой стороны, размеры ионов Еи и Gd различаютса всего на 1%. Удивительно, что в монокристалле EuBaCo₂O_{5.50} индуцированный магнитным полем метамагнитный переход происходит в AF-фазе в магнитном поле $H_{\rm cr} \approx 50$ kOe при 5 K, существенно меньшим по сравнению $H_{\rm cr} \approx 200$ kOe в соединении с Gd. Обратим внимание, что с увеличением размера магнитный момент редкоземельных ионов уменьшается. Ионы Eu³⁺ не имеют магнитного момента, J = 0. Значения магнитных моментов ионов Nd и Pr $J \approx 3\mu_{\rm B}$ малы по сравнению $J \approx 10 \,\mu_{\rm B}$ для ионов Gd–Dy [23]. Можно предположить, что малые значения $H_{\rm cr}$ обусловлены ослаблением диполь-дипольных AFM-взаимодействий на фоне усиления FM-взаимодействий при увеличении размера редкоземельных ионов.

7. Заключение

1. Показано, что ион Dy в при высоких температурах можно рассматривать как свободный парамагнитный ион.

2. Показано, что спиновые состояния ионов Co^{3+} вблизи перехода в DyBaCo₂O_{5.49} отличаются от спиновых состояний кобальтитов с более крупным размерами редкоземельных ионов. Переход металл—изолятор происходит при изменении спинового состояния ионов Co^{3+} из IS- в LS-состояние в октаэдрах, без изменения IS-состояния в пирамидах. При этом в других редкоземельных кобальтитах спиновое состояния ионов Co^{3+} меняется из HS- в LS-состояние в октаэдрах и из LS- в IS-состояние в пирамидах.

3. Переход металл-изолятор в DyBaCo₂O_{5.49} и уменьшение спинового состояния ионов Co³⁺ сопровождается фазовым переходом 1-го рода. 4. Предполагается, что метамагнитное поведение редкоземельных кобальтитов *R*BaCo₂O_{5.50} обусловлено их слоистой структурой и определяется размером редкоземельного иона.

Благодарности

Авторы благодарят Д.А. Шишкина и А.В. Королева за проведение магнитных измерений.

Финансирование работы

Работа выполнена в рамках государственного задания Минобрнауки РФ (тема "Спин", г.р. 122021000036-3).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- A. Maignan, C. Martin, D. Pelloquin, N. Nguyen, B. Raveau. J. Solid State Chem. 142, *2*, 247 (1999).
- [2] A.A. Taskin, A.N. Lavrov, Y. Ando. Phys. Rev. B 71, 13, 134414 (2005).
- [3] C. Frontera, J.L. García-Muñoz, A. Llobet, M.A.G. Aranda. Phys. Rev. B 65, 18, 180405(R) (2002).
- [4] Y. Moritomo, T. Akimoto, M. Takeo, A. Machida, E. Nishibori, M. Takata, M. Sakata, K. Ohoyama, A. Nakamura. Phys. Rev. B 61, 20, R13325(R) (2000).
- [5] C.M. Baran, V.I. Gatalskaya, R. Szymczak, S.V. Shiryaev, S.N. Barilo, K. Piotrowski, G.L. Bychkov, H. Szymczak. J. Phys.: Condens. Matter 15, 50, 8853 (2003).
- [6] Н.И. Солин, С.В. Наумов. Письма в ЖЭТФ 114, 3, 179 (2021).
 [N.I. Solin, S.V. Naumov. JETP Lett. 114, 3, 150 (2021)].
- [7] В.А. Рыжов, А.В. Лазута, В.П. Хавронин, П.Л. Молканов, Я.М. Муковский, А.Е. Пестун. ФТТ 56, *1*, 74 (2014).
 [V.A. Ryzhov, A.V. Lazuta, V.P. Khavronin, P.L. Molkanov, Ya.M. Mukovskii, A.E. Pestun. Phys. Solid State 56, *1*, 68 (2014)].
- [8] P. Miao, X. Lin, S. Lee, Y. Ishikawa, S. Torii, M. Yonemura, T. Ueno, N. Inami, K. Ono, Y. Wang, T. Kamiyama. Phys. Rev. B 95, 12, 125123 (2017).
- [9] A. Maignan, V. Caignaert, B. Raveau, D. Khomskii, G. Sawatzky. Phys. Rev. Lett. 93, 2, 026401 (2004).
- [10] Н.И. Солин, С.В. Наумов, С.В. Телегин. Письма в ЖЭТФ 107, 3, 206 (2018). [N.I. Solin, S.V. Naumov, S.V. Telegin. JETP Lett. 107, 3, 203 (2018)].
- [11] E.-L. Rautama, M. Karppinen. J. Solid State Chem. 183, 5, 1102 (2010).
- [12] Л.Д. Ландау. Phys. Zs. Sowjet. 4, 675 (1933).
- [13] A. Jarry, H. Luetkens, Y.G. Pashkevich, M. Stingaciu, E. Pomjakushina, K. Conder, P. Lemmens, H.-H. Klaus. Physica B 404, 5–7, 765 (2009).
- [14] S. Ganorkar, K.R. Priolkar, P.R. Sarode, A. Banerjee. J. Appl. Phys. **110**, *5*, 053923 (2011).
- [15] M. Baran, S.N. Barilo, G.L. Bychkov, V.I. Gatalskaya, L.A. Kurochkin, S.V. Shiryaev, R. Szymczak, H. Szymczak. Acta Physica Polonica A 105, *1–2*, 209 (2004).

- [16] H.D. Zhou, J.B. Goodenough. J. Solid State Chem. 177, 10, 3339 (2004).
- [17] J.-E. Jørgensen, L. Keller. Eur. Phys. J. B 66, 4, 445 (2008).
- [18] Yu.P. Chernenkov, V.P. Plakhty, A.G. Gukasov, S.N. Barilo, S.V. Shiryaev, G.L. Bychkov, V. Hinkov, V.I. Fedorov, V.A. Chekanov. Phys. Lett. A 365, 1–2, 166 (2007).
- [19] Н.И. Солин, С.В. Наумов, В.А. Казанцев. ЖЭТФ 157, 5, 824 (2020). [N.I. Solin, S.V. Naumov, V.A. Kazantsev. JETP 130, 5, 690 (2020)].
- [20] С.В. Вонсовский. Магнетизм, гл. 9. Наука, М. (1971).
- [21] E.-L. Rautama, V. Caignaert, Ph. Boullay, A.K. Kundu, V. Pralong, M. Karppinen, C. Ritter, B. Raveau. Chem. Mater. 21, *1*, 102 (2009).
- [22] Н.И. Солин, С.В. Наумов, А.В. Королев, В.Р. Галахов.
 ЖЭТФ 164, 5, 770 (2023). [N.I. Solin, S.V. Naumov, A.V. Korolev, V.R. Galakhov. JETP 137, 5, 664 (2023)].
- [23] Дж. Смарт. Эффективное поле в теории магнетизма. Мир, M. (1968). [J.S. Smart. Effective field theories of magnetism. Saunders, Philadelphia (1966)].

Редактор Е.В. Толстякова