
Physics of the Solid State, 2024, Vol. 66, No. 8

01,07

Magnetovolume effects and thermal expansion anomalies during a phase

transition in a chiral ferromagnet MnSi with topological features

of the electronic structure

© A.A. Povzner, T.A. Nogovitsyna, E.I. Lopatko

Ural Federal University after the first President of Russia B.N. Yeltsin,

Yekaterinburg, Russia

E-mail: a.a.povzner@urfu.ru

Received April 1, 2024

Revised June 5, 2024

Accepted June 5, 2024

Within the framework of the theory of band magnetism and in the Heine model for the dependence of the

electronic spectrum on volume, magnetovolume effects in the chiral quantum ferromagnet MnSi, with topological

features of the electronic structure, are studied. New mechanisms of magnetovolume effects associated with the

spin short-range order arising during a phase transition in fragments of right- and left-chiral spin helices with fixed

Berry phases are considered. The calculated temperature dependences of the volumetric coefficient of thermal

expansion (VTCE) describe the observed anomalies β(T ) and show that the disappearance of chiral spin charges

associated with the Dzyaloshinsky−Moriya interaction is accompanied by a change in the sign of the VTCE. In

this case, the fluctuation phase considered corresponds to that observed during small angle scattering of polarized

neutrons.
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1. Introduction

The spin-orbit antisymmetric Dzyaloshinskii−Moryia

(DM) interaction arises in strongly correlated band fer-

romagnet MnSi with a cubic non-centrosymmetric crystal

structure without an inversion center (type B20). In

neutron diffraction studies (see, e. g., [1,2]), twisting of

magnetic moments Mν at nodes ν into so-called spin helices

(Figure 1) with magnetic moments [3,4]

M(x)
ν = MS cos(q0ν), M(y)

ν = ±MS sin(q0ν), (1)

and wave vector q0 directed along axis z , which is

related to magnetic period λ = π/|q0|, is observed in

the region of ferromagnetic long-range order. Jensen

and Bak [5] have demonstrated that the formation of spin

helices is caused by the competition between symmetric

inhomogeneous exchange interaction and antisymmetric

Dzyaloshinskii−Moryia interaction.

Ab initio calculations of the ground state for MnSi [6]
yield a magnetic moment magnitude that differs notably

from the one obtained in experiments. This discrepancy

was rectified in [7], where it was attributed to anomalously

large zero-point fluctuations in the ground state of MnSi.

At the same time, a crossover of a magnetic first-order

phase transition, which is accompanied by a change in

the sign of the inter-mode interaction parameter in the

Ginzburg−Landau functional, and a quantum transition

leading to the suppression of zero-point spin fluctuations

was found. Expressions for the root-mean-square ampli-

tudes of zero-point and thermodynamic spin fluctuations,

which were determined using the fluctuation-dissipative

theorem, were obtained in [7].

The results of neutron diffraction studies suggested

that (1) is inapplicable to the fluctuation phase (Jensen−Bak

”
catastrophe“). It was demonstrated in [3,4] that vortex spin

microstructures are topologically protected fragments of left-

chiral spin helices [1,2]:

M(x)
ν = MS cos(q0ν + φ), M(y)

ν = −MS sin(q0ν + φ), (2)

and helices with chirality fluctuations [8]:

M(x)
ν = MS cos(q0ν + φ), M(y)

ν = ±MS sin(q0ν + φ). (3)

Fragments of spin helices are found in the regions of spin

correlations with fixed Berry phases [3,4]. Berry protec-

torates on the Fermi surface of MnSi were found in [9].

Magnetic contributions to the thermophysical properties

at phase transitions in band magnets have been examined

numerous times within the spin-fluctuation theory formu-

lated in [10]. However, the thermodynamic model does

not provide an unambiguous explanation for the observed

complex pattern, since it has not been taken into account yet

that the examined phase transition should be accompanied

by volume effects. It was demonstrated in [11] that a

second-order transition in MnSi should
”
break down“ to

a first-order one due to the interaction of spin and lattice

degrees of freedom. This is evidenced by smearing of

the lambda-like anomaly of temperature dependences of

the heat capacity and the coefficient of thermal expansion
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Figure 1. Flat helicoidal helix.

near the Curie temperature observed in experiments (see,
e. g., [12]).

In the present study, the existing crossover model of

quantum and thermodynamic first-order phase transitions

in MnSi [3,4,7] is augmented by introducing the inter-

dependence of local magnetization and volume, which

induces magnetovolume effects. The obtained results are

indicative of the presence of a hidden topological electronic

transition (TEP) in the ground state of MnSi that proceeds

due to the suppression of zero-point spin fluctuations in

transition to the fluctuation phase. The experimentally

observed anomalous magnetic contribution to the volumetric

coefficient of thermal expansion (VCTE) is analyzed.

2. Model

Let us consider the electronic structure of the ground

state of the MnSi band ferromagnet with account for the

dependence of energy spectrum of strongly correlated d
electrons εk on unit cell volume V , which is characterized

by the well-known Heine formula [13]:

εk(V ) = θ−1εk(V0), θ
(

≡ θ(V )
)

= (V/V0)
5/3,

where V0 = 95.01 Å3 is the cell volume in the ground state.

Coulomb correlations in the system of d electrons are

taken into account with the use of the Hubbard Hamiltonian

with the added chiral DM interaction. Following [3,4]
and using the coupling of spin (Sν) and charge (nν)
density operators at node ν with the operators of secondary

quantization of d electrons (a+
k,σ , ak,σ ) in the state with a

quasi-momentum and spin, we present the Hamiltonian of

the system in the form

H = H0 −U
∑

ν

(S2
ν − n2

ν/4) +
∑

ν ,ν′

d[Sν × Sν′ ], (4)

where

H0 =
∑

k,σ

εk(V )a+
k,σ ak,σ− (5)

is the term of band motion of electrons, U is the Hubbard

interaction constant, and d is the parameter of the DM

interaction, which, owing to its relativistic smallness, is

characterized by the mean field at node ν :

h
(D)
ν =

∑

ν′

[

dν,ν′〈Sν′〉
]

. (6)

The partition function of a system of strongly correlated

electrons is characterized using the Matsubara technique for

complex variables [14]:

Z = Sp Tτ

{

−

T−1
∫

0

dτ H(τ )

}

,

H(τ ) = exp(H0τ )H exp(−H0τ ).

To examine the fluctuation pattern of the phase transition,

we use the Hubbard−Stratonovich transformations [10] in

calculation of the partition function:

exp(−|A|2) =

∫

dζ exp(−|ζ |2 + Aζ ),

where

(ζ = ξ, η, A = Sν , nν),

which allow one to reduce the many-body problem arising

at the introduction of terms of Hamiltonian (4) quadratic in

spin (Sν) and charge (nν) density operators to the analysis

of electron motion in exchange and charge ξ and η-fields

fluctuating in space and time

Z(ξ, η) = Z0

{
∫

(dξdη) exp
(

−8(ξ, η)
)

}

, (7)

where Z0 = Z(0, 0) is the partition function of band motion

of d electrons with Hamiltonian H0,

(dηdξ) = dξ0dη0

[

∏

q 6=0, j

dξ ( j)
q dη( j)

q

]

;

T is the temperature in energy units; q = (q, ω2n), q is the

quasi-momentum; and ω2n and ω2n+1 are the Matsubara

Bose and Fermi frequencies.

It can be demonstrated that the free energy functional of

electrons moving in fluctuating fields

8(ξ, η) = 80(ξ, η) + 18, (8)
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consists, in accordance with [10], of the term characterized

in the approximation of homogeneous local fields

80(ξ , η) =

β
∫

0

dτ
∑

να(=±1)

∫

g0(ε) ln
(

1 + exp T−1

×
(

µ − ε + αc|ξ ν(τ )| + ic η̃ν(τ )
)

)

dε,

and corrections to the vertex parts of the second order of

the series in ξ , which specify an anomalous dependence

of the Stoner factor (D0(q,V, T )) on the quasi-momentum

and frequency in a magnetic phase transition:

18 = −T ln

∞
∫

−∞

(dξ, dη)

× exp

(

−
∑

q

(

Xq|ηq|
2 + Xq|ξq − c−1hq|

2
)

)

,

where h
(γ)
q = (hδq,0 + h

(D)
q )δq,q, h is a homogeneous exter-

nal magnetic field,

D0(q,V, T ) =
(

1−Uχ(0)
q (q,V, T )

)−1
,

χ(0)
q (q,V, T ) =

∑

(

f
(

εk(V ) − µ
)

− f
(

εk+q(V ) − µ
)

(

εk(V ) − εk+q(V )
)

)

,

and µ is the chemical potential.

To obtain a consistent description of changes in the state

of the spin system and volume, we take into account the

well-known relation between the partition function and the

free energy: F = T lnZ−µN. The free energy of a system

of strongly correlated electrons is supplemented by a term

related to the elastic deformation energy of the crystal lattice

with isothermal compressibility parameter K. Thus, the free

energy is

F = T lnZ(ξ, η) − µT + K(1V )2/2, (9)

where 1V = V −V0.

3. Magnetic state and magnetovolume
effects

Let us consider the conditions of minimization of free

energy (9) with account for the relation of the equilibrium

values of spin and charge variables and the modulus of the

wave vector of the spin structure with volume. We use here

the saddle point conditions in fluctuating field variables

ξ (γ)
q = r (γ)

q exp(φq,γ ),

r (γ)
q = |ξ (γ)

q | and ξ
(γ)
q = |ξ

(γ)
q | exp(φq,γ ), (q 6= q0),

tied to local magnetizations and pairwise spin correlators by

known relations [14],

M(γ)
q = (U−1)ξ

(γ)
q − h(γ)

q , |ξ (γ)
q |2 = 2−1

(

〈Tτ |S
(γ)
q |2〉 + 1

)

,

γ is the index of spatial coordinate axes.

From the minima conditions, we derive an equation of

state consisting of the equation for magnetization projec-

tions onto the coordinate system axes

M(γ)
q

(

D−1 + κ
(

M2
S + 〈m2〉/3

)

+ X(q, 0)
)

= 2h
(γ)
q /U,

(10a)
and the equation for volume

ω = 1V (T )/V0 = K−1U−1
(

M2
q0

+ (2U)−1〈δM2〉 + 〈m2〉
)

.

(10b)
The resulting equations feature exchange enhancement

factor

D = D(V, T ) =
(

1−Uθχ(⊥) + 3−1θκ〈m2〉
)−1

, (10c)

inter-mode coupling parameter

κ = κ(V, T ) = U〈m2〉−2(χ(⊥) − χ(‖)), (10d)

mean square of local magnetization

MS = 〈δM〉1/2, 〈δM2〉 =
∑

q

|Mq|
2,

and mean-square amplitude of thermodynamic zero-point

and thermal spin fluctuations

〈m2〉 = 〈m2〉0 + 〈m2〉T = (4πU)−1

×
∑

qγ

∞
∫

0

(

1/2+ f B(ω/T )
)

Im
(

D−1+2κ|M(γ)
q0 |+Xq

)−1
dω,

(11)
where the term with the Bose−Einstein function corre-

sponds to thermal fluctuations and the term with
”
1/2“

corresponds to zero-point ones.

Transverse and longitudinal susceptibilities found in (10d)
are given by

χ(⊥) = lim
q→0

∑

(

f
(

εk(V ) − µ
)

− f
(

εk+q(V ) − µ
)

/
(

εk(V ) − εk+q(V )
)

)

,

χ(‖) = lim
q→0

∑

f
(

εk(V ) − µ
)

− f
(

εk+q(V ) − µ
)

/
(

εk(V ) − εk+q(V )
)

.

Solving equation of state (10a), we find that local mag-

netization and the magnetovolume effect (1V ) arise in

the considered system not only in the case of helicoidal
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helices (1) with wave vector |q0| = d/U2g(θ, µ) (long-
range order region), but also in the fluctuation phase with

fragments of spin helices (2), (3).
1. At negative values of the exchange enhancement

factor (10c) and positive values of the inter-mode interaction

parameter (10d), long-range order with chiral ferromagnetic

helices is established in the studied system. At T < Tc

(Curie temperature) and V < Vc(= V (Tc)), this ordering

leads to a relative volume change

ω1 = (Vc −V0)/V0 ≈ K−1U−1[M2
S + 〈m2〉], (12)

where local magnetization squared

M2
S = M2

S(V, T )

= (2κ)−1
(

(

D−1 + X(q0, 0)
)2

−
(

d|q0|/U
)2
)1/2

.

2. When the sign of the inter-mode interaction parameter

changes, ferromagnetism loses its stability and short-range

order is established with pairwise spin-spin correlators

〈Sν , Sµ〉 ∼ exp(|ν−µ|/Rc). According to the phase tran-

sition theory, their radius is Rc =
(

Ug(µ,V )A
)1/2

|D|−1/2,

where parameter A characterizes the nonuniformity of the

Lindhard function (χ0(q) = χ0 + Aq2).
Fragments of spin helices (2), (3) with fixed Berry

phases (φ) emerge within the spatial regions of spin

correlations [3,4].
Note that one needs to distinguish between left-chiral

ferromagnetic short-range order with D < 0 and the region

of mixed (right and left) chirality of helices with D > 0 [3,4]
found at Tc < T < TextS and volume ranging from Vc to Vs

(= V (TS)).
2a). In the region of chiral ferromagnetic short-range

order, we obtain the solutions for left-chiral helices (2),
which lead to a relative change in volume

ω2 = (Vs − Vc)/V0 ≈ K−1U−1[M2
s + 〈m2〉]. (13)

2b). In the region of mixed chirality (3) arising from

the D sign change at TS < T < TDM within the interval

from VS to VDM (= V (TDM)), we find

ω3 = (VDM −Vs)/V0 ≈ K−1U−1[M2
s + 〈m2〉T ]. (14)

Here, the values of TDM and VDM correspond to the upper

phase boundary of chiral spin short-range order.

As in [3], it may be demonstrated for the entire examined

fluctuation phase that non-zero values of triple spin corre-

lators, which are interpreted as chiral topological charges,

arise in an external magnetic field with magnetization M(z )
0 :

χc =
∑

ν1,ν 2,ν 3

〈Sν 1
[Sν2

× Sν 3
]〉

= ±2M(z )
0 M2

S(|q0|Rc)
−1 sin2(|q0|Rc).

Sign
”
−“ should be used in the region with fluctuations of

left-chiral helices, and topological charges of both signs
”
+“

are found in the region of mixed chirality.

The emergence of topological charges implies the preser-

vation of spin chirality effects in the fluctuation phase

and provides direct evidence of TEP, which can only be

associated with volume changes (magnetovolume effects)
in the ground state of the spin short-range order phase.

In this case, chemical potential µ and the Fermi energy

(equal to µ at T = 0) are determined by the conditions of

electroneutrality for the numbers of s(p) and d electrons

(written with account for the saddle point conditions in

charge variable η0):

Ne = NS +
∑

α=±1

∫

dε f (ε − µ + αUm)g(ε,V ). (15)

Here, Ne is the total number of electrons, NS is the number

of s electrons, f (ε) is the Fermi−Dirac function, and

m = (〈m〉20 + M2
s + 〈m2〉T )1/2 .

4. Model of the electronic structure

In numerical analysis of the ground state with ac-

count for electroneutrality condition (15), we examine

the density of electronic states found earlier in [4] using

the GGA+U approximation in the Elk software package

(http://elk.sourceforge.net).
The density of electronic states from [4] is shown

in Figure 2 alongside with the Fermi energy shifts associated

with volume changes (see Section 5 below). The results of

numerical analysis with account for the DOS found in [4]
reveal that, owing to a change in volume, the Fermi level in

the ground state of the fluctuation phase falls into the Berry

curvature region [9], and the inter-mode coupling parameter

in this region is negative.

The boundaries of long-range order regions with heli-

coidal spin helices and regions of the fluctuation phase
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Figure 2. Fragment of the density of d electronic states in MnSi

calculated in the GGA+U approximation [4]: 1 — position of the

Fermi level in the ground state with zero-point spin fluctuations;

2 — position of the Fermi level in the ground state of the

fluctuation phase.
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are determined at a temperature shift of the chemical

potential with account for electroneutrality condition (15).
The paramagnetic phase, where local magnetization M2

S
vanishes, is obtained by shifting the chemical potential level

beyond the region with negative inter-mode coupling.

5. Magnetic contribution to thermal
expansion

Comparing the obtained data on magnetic and volume

effects with experimental results, we analyze the observed

temperature dependences of VCTE, which provide not only

supplementary, but also the most accurate techniques for

experimental determination of temperatures and volumes.

The temperature dependence of the volumetric coefficient

of thermal expansion was determined through the tempera-

ture derivative of the relative volume change (10b):

β = ∂ω/∂T.

Both magnetic (βmag) and non-magnetic (phonon
βoph [15] and electronic βoel) contributions to VCTE were

evaluated:

β = ∂ω/∂T = βoel + βoph + βmag. (16)

Estimates of the phonon component (βoph ∼ (T/TD)3,
where Debye temperature TD = 450K) and the contribution

associated with electronic Fermi excitations (βoel ∼ (T/TF),
where Fermi temperature TF ∼ 104 K) demonstrate that

they are negligible (β(T ) ≈ βmag(T )) in the consid-

ered temperature range of the phase magnetic transition

(T < TDM = 32K).
The magnetic contribution to VCTE was found nu-

merically by solving the equations resulting from saddle

point conditions. The effective mass approximation for the

Lindhard function was used for calculating the amplitudes

of spin fluctuations (11):

X(q, ω) = U
(

χ(0)(0, 0) − χ(0)(q, ω)
)

=
(

Aq2 − iBωθ(ω0 − ω)/|q|
)

,

where Lindhard function parameters A = 0.07, B = π/2.45

were taken from [3,4]. These parameters were determined

there by comparing the results of calculations of magnetic

susceptibility to experimental data with experimental Tc

values used as a parameter.

The numerically determined temperature dependence of

the magnetic contribution to VCTE is shown in Figure 3.

The results of calculation of the magnetic VCTE component

reveal that the emergence of the fluctuation phase is accom-

panied by the suppression of zero-point spin fluctuations at

Curie temperature (Tc) [7]. This leads to a βmag anomaly

near Tc ; a sharp βmag(T ) increase associated with a change

in volume (13) is observed in the fluctuation phase with

fragments of helices (2) within an extremely narrow range

from Tc = 28.74 to TS = 29.1K. A distinct
”
shoulder“
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Figure 3. Temperature dependence of the volumetric coefficient

of thermal expansion of MnSi: 1 — experimental data [12]; 2 —
calculation of the magnetic contribution in the present study. The

temperature dependence of local magnetization of MnSi is shown

in the inset.

forms in the interval of weak temperature dependence

of M2
S at TS < T < TDM (TDM = 32K) in the region of

mixed spin chirality ((3), (14)). According to equation of

magnetic state (10a), an approximate quadratic dependence

of local magnetization is established in transition to the

paramagnetic phase:

M2
S ≈ M2

S(TS)
(

1− (T/TDM)2
)

,

and the negative VCTE becomes positive at TDM.

Integrating the β(T ) dependence following from the

considered model, we find that at long-range order

phase temperatures T < Tc ω1 ≈ 2.2 · 10−5; Tc < T < TS,

ω2 ≈ 1.4 · 10−5; and at TS < T < TDM ω3 ≈ 3.4 · 10−5 .

6. Conclusion

Thus, the magnetization and volume changes in strongly

correlated chiral ferromagnet MnSi with a crystal structure

without an inversion center are interdependent. This results

in chiral spin short-range order in the fluctuation phase,

which is consistent with the results of experiments on

small-angle scattering of polarized neutrons [1,2,8] and the

observed VCTE anomalies.

Features of the VCTE temperature dependence arising in

the fluctuation phase lead to the emergence of a lambda-like

anomaly and a
”
shoulder“ in the dependence of negative

βmag(T ) and to a change in its sign when the chemical

potential shifts beyond the region with negative inter-mode

coupling.

It is obvious that the observed lambda-like anomaly

and
”
shoulder“ in the temperature dependence of heat ca-

pacity at constant pressure [11], which differs from the heat

capacity at constant volume by a correction proportional

to β, have similar causes.
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The phase transitions examined here using the example

of a prototype spintronic topological material (MnSi) are

also possible in doped Weyl semimetals (based, e. g.,

on CoSi [16]), where skyrmion-like microstructures are

observed in the room temperature range.
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[9] M.A. Wilde, M. Dodenhöft, A. Niedermayr, A. Bauer,

M.M. Hirschmann, K. Alpin, A.P. Schnyder, C. Pfleiderer.

Nature 594, 374, (2021).
[10] T. Moriya. Spin Fluctuations in Itinerant Electron Magnetism.

Springer (1985).
[11] S.A. Pikin. JETP Lett. 106, 12, 793 (2017).
[12] S.M. Stishov, A.E. Petrova, S. Khasanov, G.Kh. Panova,

A.A. Shikov, J.C. Lashley, D. Wu, T.A. Lograsso. Phys. Rev. B

76, 052405 (2007).
[13] V. Heine. Phys. Rev. 153, 673 (1967).
[14] A.A. Abrikosov, L.P. Gor’kov, I.E. Dzyaloshinskii. Metody

kvantovoi teorii polya v statisticheskoi fizike. Fizmatgiz, M.

(1962). (in Russian).
[15] A.N. Filanovich, A.A. Povzner. Rus. Phys. J. 60, 10, 1769

(2018).
[16] B. Balasubramanian, P. Manchanda, R. Pahari, Z. Chen,

W. Zhang, S.R. Valloppilly, X. Li, A. Sarella, L. Yue,

A. Ullah, P. Dev, D.A. Muller, R. Skomski, G.C. Hadjipanayis,

D.J. Sellmyer. Phys. Rev. Lett. 124, 057201 (2020).

Translated by D.Safin

5∗ Physics of the Solid State, 2024, Vol. 66, No. 8


