02

Спектры инфракрасного отражения и комбинационного рассеяния света кристаллов со структурой белоусовита из первых принципов

© Ю.Н. Журавлев

Кемеровский государственный университет, Кемерово, Россия e-mail: zhur@kemsu.ru

Поступила в редакцию 03.07.2024 г. В окончательной редакции 26.08.2024 г. Принята к публикации 27.08.2024 г.

> В полноэлектронном и псевдопотенциальном базисе локализованных атомных орбиталей с обменнокорреляционным функционалом РВЕ и дисперсионной поправкой D3 программного кода CRYSTAL выполнен расчет кристаллической структуры, тензора диэлектрической проницаемости, ТО-LO-расщепления мод, спектров инфракрасного отражения и комбинационного рассеяния света минерала белоусовита и его синтетических аналогов с формулой AZnSO4X (A=K, Rb, Cs, Tl; X=Cl, Br, I). Подтверждено наличие в структуре тетраэдров SO₄, ZnO₃X и полиэдров AO_nX_m (n = 5, 6, 7; m = 2, 3). Внутренние — валентные и деформационные, и внешние — либрационные колебания для сульфатных групп проявляются в колебательных спектрах всех соединений. В спектрах отражения выделяются полосы высокой интенсивности от 900 до 1160 cm⁻¹, образованные внутримолекулярными колебаниями v_1 и v_3 . В диапазоне ниже 150 cm⁻¹ выделяются колебания с участием атомов катионов. Установлены отдельные моды, имеющие большую величину TO-LO-расщепления. В спектре комбинационного рассеяния света самыми интенсивными также будут моды v_1, v_3 . Первая группа (v_1) состоит из четырех мод, среди которых самая интенсивная при 900-920 cm⁻¹ образована в большей мере колебаниями отдельных неэквивалентных атомов кислорода, а три другие — атомами серы и других атомов. Наоборот, моды v₃ с волновыми числами выше 1100 ст имеют подавляющий вклад атомов кислорода О4 с кратчайшим расстоянием S-O4 и A-O4. Для этих и других мод v2, v4 установлены с высоким коэффициентом корреляции линейные зависимости волновых чисел от структурных параметров.

> Ключевые слова: белоусовит, синтетические кристаллы, *ab initio*, диэлектрическая проницаемость, спектры инфракрасного отражения, спектры комбинационного рассеяния света.

DOI: 10.61011/OS.2024.08.59035.6851-24

Введение

Природный минерал белоусовит обнаружен на вулкане Толбачик (полуостров Камчатка) [1]. Он встречается в виде зерен неправильной формы и микрокристаллических масс, связанных с другими минералами. Всего в фумаролах Толбачика идентифицировано около 350 видов минералов, в том числе 123 минерала, впервые открытых здесь.

Видовое разнообразие и специфика этой минерализации обусловлены уникальным сочетанием физикохимических условий и механизмов ее формирования: высокими температурами, атмосферным давлением, сверхвысокой фугитивностью кислорода, газопереносом большинства химических элементов и прямым отложением многих высокотемпературных минералов из вулканических газов со специфическим геохимическим составом [2].

Эмпирическая формула белоусовита $K_{0.97}Rb_{0.01}Zn_{1.00}S_{1.01}O_{4.03}C_{l0.97}$, а идеальная KZnSO₄Cl. Это моноклинный кристалл с пространственной группой $P2_1/c$, структура которого детально исследована в [1]. В [3] показано, что кристаллическая структура

белоусовита фактически является архетипом для большого семейства образующих морфотропную серию изоструктурных синтетических соединений AZnTO₄X (A = K, Rb, Cs, Tl, NH₄; T = S, Se; X = Cl, Br, I), которые были получены методами плавления и испарения путем реакции AX и ZnTO₄ либо при высоких температурах, либо в горячих водных растворах. Из них только два синтетических соединения (RbZnSO₄Cl и TlZnSO₄Cl) были описаны ранее [4].

Поскольку структуры AZnSO₄X получены относительно недавно, экспериментальные исследования оптических свойств отсутствуют. В этой связи актуальными являются методы компьютерного моделирования на основе первых принципов. Такой подход обеспечивает практическую предсказуемость микроструктур и макросвойств функциональных кристаллических материалов, поскольку он позволяет определять микроскопические атомные и электронные характеристики материалов и на этой основе дает единое описание их макроскопических свойств. Он также может быстро получить большой объем информации о свойствах материала и эффективно моделировать экстремальные условия, которые трудно достичь экспериментально. Наконец, такой подход позволяет проектировать материалы и моделировать их свойства в соответствии с намерениями исследователей, чтобы предоставлять возможности для последующего экспериментального поиска [5,6]. Методы *ab initio* широко применяются для анализа колебательных спектров кристаллов [7–9].

Колебательная спектроскопия (инфракрасное (ИК) отражение и комбинационное рассеяние света (КРС)) является мощным методом идентификации сульфатных минералов [10], изучения деталей структуры и химической связи сульфатов щелочных и щелочно-земельных металлов экспериментальными [11–14] и теоретическими [15] методами. Как правило, описание спектров проводится в предположении о разделении колебаний на внутренние — валентные и деформационные для [SO₄] и внешние — трансляционные для катионов, анионов и либрационные для сульфатных групп. Теоретикогрупповой анализ дает распределение колебаний свободного аниона по неприводимым представлениям точечной группы симметрии T_d и их активности в спектрах ИК и КРС:

$$\Gamma_{\text{кол}} = A_1(\text{KPC}) + E(\text{KPC}) + 2F_2(\text{ИК}, \text{KPC}),$$

которые соответствуют внутримолекулярным модам v_1, v_2, v_3, v_4 . Для полносимметричного валентного колебания $v_1(A_1)$ свободного иона $[SO_4]^{2-}$ значение частоты равно [16] 971–993 сm⁻¹, для трижды вырожденного валентного колебания $v_3(F_2) - 1070-1190$ сm⁻¹. Деформационные колебания характеризуются более низкими частотами: дважды вырожденное $v_2(E) - 445-490$ сm⁻¹ и трижды вырожденное $v_4(F_2) - 613-648$ сm⁻¹. В водном сульфат-анионе обнаружены [17] четыре особенности ИК поглощения при ~ 1105, ~ 983, ~ 611 и ~ 450 сm⁻¹, что соответствует асимметричному растяжению v_3 , симметричному растяжению v_3 соответствует ласиметричному растяственно.

В спектрах кристаллов, содержащих сульфат-анионы, значения частот колебаний испытывают сдвиг в зависимости от природы катионов, их электроотрицательности, массы, ионного радиуса и кристаллического строения. Последнее определяет симметрию групп [SO₄], число формульных единиц в кристаллической решетке, возможное расщепление вырожденных мод и резонансное взаимодействие колебаний, что увеличивает число полос в спектрах и создает значительные трудности при их интерпретации.

Таким образом, структурные особенности являются важными аспектами формирования колебательных свойств галогенидов двойных сульфатов, а компьютерные методы служат удобным инструментом для их исследования. Поэтому целью настоящей работы является установление корреляций между структурными особенностями и колебательными свойствами кристаллических сульфатов со структурой белоусовита AZnSO₄X (A = K, Rb, Cs, Tl; X = Cl, Br, I).

Метод расчета

Колебательные свойства исследуемых в работе кристаллов изучались методами теории функционала плотности (DFT) в сочетании с приближением Хартри-Фока в пакете программного обеспечения CRYSTAL [18]. Здесь кристаллические орбитали задаются линейными комбинациями локализованных атомных орбиталей гауссова типа, экспоненты и коэффициенты которых определяются из полноэлектронного набора для атомов кислорода в [19], серы [20], цинка [21], хлора [22]. Для атомов брома, йода использовались псевдопотенциальные наборы [23], а для атомов щелочных металлов и таллия — наборы двойной и тройной дзета-валентности с поляризацией (DZVP и TZVP) [24,25]. В обобщенноградиентном приближении DFT использовался обменнокорреляционный функционал одной из самых распространенных форм РВЕ [26], дополненный эмпирической дисперсионной поправкой в форме D3(BJ) [27]. Функционал PBE+D3 дает хорошие результаты по структурным параметрам, но уступает гибридным в точности расчета колебательных спектров [28]. Пороги, контролирующие точность кулоновских и обменных рядов, установлены равными 8, 8, 8, 8, 16 [29]. Обратное пространство дискретизируется с использованием сетки Монхорста-Пака [30] с 30 независимыми к-точками в неприводимой части зоны Бриллюэна. Точность процедуры самосогласования была не меньше, чем 10^{-9} a.u. (1 a.u. = 27.21 eV).

Кристаллические структуры были оптимизированы с использованием аналитических градиентов энергии как по параметрам элементарной ячейки, так и по координатам атомов в рамках квазиньютоновской схемы в сочетании с алгоритмом Бройдена–Флетчера–Гольдфарба– Шенно (BFGS) [31–34]. Сходимость проверялась как по градиентным компонентам, так и по ядерным смещениям, для которых были выбраны значения по умолчанию [29].

Частоты колебаний были получены путем диагонализации динамической матрицы, рассчитанной численным дифференцированием аналитического градиента полной энергии относительно декартовых координат атомов. Подробности о расчете частот гармонических колебаний можно найти в [35,36]. Использовалась оптимизированная равновесная геометрия.

Поперечные оптические (TO) частоты $\nu_{\text{TO},n}$ колебаний в точке Γ ($\mathbf{k} = 0$, центр первой зоны Бриллюэна) получаются из диагонализации масс-взвешенной матрицы Гессе

$$W_{lpha i,eta j} = rac{H_{lpha i,eta j}}{\sqrt{M_{lpha} M_{eta}}}$$

Здесь $H_{\alpha i,\beta j}$ — вторая производная энергии, которая вычисляется численно из аналитических градиентов, M_{α} и M_{β} — атомные массы; греческие и латинские индексы соответственно относятся к атомам и декартовым координатам. Продольные оптические (LO) частоты $\nu_{\text{LO},n}$ можно рассчитать, учитывая, что динамическая матрица

в ионных и полуионных соединениях представляет собой сумму двух слагаемых:

$$W_{lpha i, eta j} = W_{lpha i, eta j} + W^{NA}_{lpha i, eta j} (\mathbf{k} o \mathbf{0}).$$

Неаналитическая поправка [37] к динамической матрице возникает из-за параллельной поляризации и фононного волнового вектора. LO-частоты затем получаются путем диагонализации полной (т.е. аналитической плюс неаналитической) динамической матрицы. Зная их, можно вычислить TO–LO-расщепление. TO- и LO-частоты вычисляются как максимумы $\varepsilon_2(\nu)$ и минимумы $(-1/\varepsilon_2(\nu))$ (функции потерь) мнимой части комплексной диэлектрической проницаемости $\varepsilon(\nu) = \varepsilon_1(\nu) + i\varepsilon_2(\nu)$.

Силы осцилляторов

$$f_{n,ij} = \frac{1}{4\pi\varepsilon_0} \frac{4\pi}{V} \frac{Z_{n,i}Z_{n,j}}{\nu_{\mathrm{TO},n}^2}$$

рассчитывались для каждой ТО-моды с помощью вектора Борна

$$Z_{n,i} = \sum_{\alpha,i} t_{n,\alpha j} Z_{\alpha,ij}^* \frac{1}{\sqrt{M_{\alpha}}}$$
 [38].

Здесь ε_0 — диэлектрическая проницаемость вакуума, V — объем элементарной ячейки, $t_{n,\alpha i}$ — элемент матрицы собственных векторов гессиана W, $Z^*_{\alpha,ij}$ — атомные эффективные тензоры Борна, которые вычисляются с помощью фазового подхода Берри [39].

Тензор диэлектрической проницаемости $\varepsilon(v)$ определяется для каждого неэквивалентного направления поляризации на основе классической модели Друде-Лоренца:

$$\varepsilon(v) = \varepsilon_{\infty,ii} + \varepsilon_{0,ii} = \varepsilon_{\infty,ii} + \sum_{n} \frac{(f_{n,ii}v_{\text{TO},n}^2)}{v_{\text{TO},n}^2 - v^2 - iv\gamma_n}$$

где *ii* обозначает направление поляризации, $\varepsilon(\infty)$ — тензор статической диэлектрической проницаемости при $\lambda \to \infty$, v_n , f_n и n — частота TO, сила осциллятора и коэффициент затухания для *n*-й моды колебаний соответственно. Кривая коэффициента отражения R(v) вычисляется для каждого неэквивалентного направления поляризации с помощью формулы

$$R_{ii}(\nu) = \left|\frac{\sqrt{\varepsilon_{ii}(\nu) - \sin^2 \theta - \cos \theta}}{\sqrt{\varepsilon_{ii}(\nu) - \sin^2 \theta} + \cos \theta}\right|^2,$$

где θ — угол между падающим лучом и нормалью к поверхности кристалла [40].

Электронные компоненты статического тензора диэлектрической проницаемости связаны с соответствующими компонентами поляризуемости *α* следующим образом:

$$\varepsilon_{\infty,ij} = \delta_{ij} + \frac{a_{ij}}{\varepsilon_0 V},$$

Оптика и спектроскопия, 2024, том 132, вып. 8

где δ_{ij} — дельта-символ Кронекера, а поляризуемость вычисляется с помощью метода сопряженных возмущений Хартри-Фока (СРНF) [41]. Электронные компоненты практически не зависят от частоты в ИК диапазоне, поскольку энергии электронных переходов очень велики по сравнению с колебательными энергиями. Тензор диэлектрической проницаемости является симметричным тензором второго ранга. Если привести его к диагональному виду, то квадратные корни из собственных значений $n_i = \sqrt{\varepsilon_i}(i = 1, 2, 3)$ будут соответствовать основным показателям преломления среды. Ионные вклады в диэлектрическую проницаемость ε_0 вводятся как сумма сил осцилляторов [42].

Относительные интенсивности рамановских пиков вычисляются аналитически путем использования схемы, которая представляет собой расширение аналитического расчета интенсивности ИК поглощения [43].

Кристаллическая структура

Для оценки корректности ab initio расчета кристаллической структуры AZnSO₄X (A = K, Rb, Cs, Tl; X = Cl, Br, I) использовалось среднеквадратичное отклонение Δ теоретических от экспериментальных данных [3] по 27 структурным параметрам, в том числе постоянным решетки a, b, c, моноклинному углу β , объему V, четырем расстояниям R_{A-O} , R_{S-O} , трем R_{Zn-O} , по одному R_{A-X}, R_{Zn-X} и девяти углам O-A-O, O-Zn-X, O-S-O. Максимальное отклонение было не более 2.9%, что является удовлетворительным результатом для таких сложных соединений. Большой вклад в Δ вносят расстояния S-O в сульфат ионе, которые различаются для четырех неэквивалентных атомов кислорода О1-О4. Поскольку именно эти расстояния играют важную роль во внутримолекулярных колебаниях, мы привели их в табл. 1 для всех кристаллов типа белоусовита.

Кристаллические структуры белоусовита и его синтетических аналогов (далее — AZSX) содержат одну симметрично независимую группу [SO₄]. Тетраэдры искажены, наименьшее расстояние получено для S-O4, наибольшее для S-O2 в сульфат-хлоридах (далее — AZSC): KZnSO4Cl (далее — KZSC), RbZnSO4Cl (далее — RZSC), CsZnSO₄Cl (далее — CZSC), TlZnSO₄Cl (далее — TZSC); S-O3 в сульфат-бромидах (далее — AZSB): KZnSO₄Br (далее — KZSB), RbZnSO₄Br (далее — RZSB), CsZnSO₄Br (далее — CZSB), TlZnSO₄Br (далее — TZSB) и в сульфат-йодидах AZSI: RbZnSO₄I (далее — RZSI), CsZnSO₄I (далее — CZSI). Атомы Zn имеют тетраэдрическую координацию ZnO₃X, в которой кратчайшими расстояниями будут Zn-O1 (KZSC, RZSC), Zn-O2 (CZSC, TZSC), Zn-O3 в AZSB, AZSI. Расстояния Zn-X увеличиваются с ростом ионного радиуса галогенида X (Cl, Br, I). Полиэдры атомов металла А (K, Rb, Cs, Tl) имеют окружение AO₅X₃ в KZSC, AO₆X₃ в KZSB, RZSC, RZSB, CZSB, TZSB, AO₇X₃ в CZSC, TZSC и уникальные RbO₆I₂, CsO₇ в йодидах. Во всех

Crystal	Method	<i>a</i> , Å	<i>b</i> , Å	<i>c</i> , Å	β , grad	R _{S-O4}	R _{S-O1}	R _{S-O3}	R _{S-O2}
KZnSO ₄ Cl	Exp	6.9324	9.606	8.2227	96.524	1.430	1.479	1.479	1.480
	PBE-D3	6.9770	9.6655	8.2640	96.732	1.4712	1.5225	1.5272	1.5275
KZnSO ₄ Br	Exp	7.0420	9.7207	8.4233	98.201	1.435	1.484	1.487	1.483
	PBE-D3	7.0759	9.7524	8.4468	98.391	1.4699	1.5239	1.5321	1.5250
RbZnSO ₄ Cl	Exp	7.2692	9.6261	8.3178	95.524	1.4337	1.4826	1.4779	1.4858
	PBE-D3	7.3817	9.7368	8.3623	94.831	1.4724	1.5225	1.5249	1.5318
RbZnSO ₄ Br	Exp	7.3573	9.7091	8.5753	97.820	1.4330	1.4800	1.4852	1.4837
	PBE-D3	7.4831	9.7625	8.7012	98.079	1.4695	1.5234	1.5324	1.5275
RbZnSO ₄ I	Exp	7.5036	9.8981	8.8015	99.175	1.433	1.487	1.492	1.482
	PBE-D3	7.5803	9.9704	8.8752	99.255	1.4684	1.5268	1.5367	1.5260
CsZnSO ₄ Cl	Exp	7.6854	9.6794	8.4492	95.303	1.431	1.478	1.476	1.477
	PBE-D3	7.8732	9.7065	8.2733	93.227	1.4753	1.5210	1.5217	1.5378
CsZnSO ₄ B	Exp	7.7892	9.7910	8.7355	97.290	1.430	1.478	1.480	1.482
	PBE-D3	7.8579	9.8412	8.8578	97.674	1.4708	1.5232	1.5314	1.5277
CsZnSO ₄ I	Exp	9.449	8.311	9.393	96.982	1.444	1.481	1.486	1.484
	PBE-D3	9.5371	8.3104	9.4411	97.640	1.4760	1.5220	1.5356	1.5231
TlZnSO ₄ Cl	Exp	7.341	9.622	8.1632	94.012	1.451	1.498	1.484	1.504
	PBE-D3	7.5034	9.5621	8.0490	92.910	1.4762	1.5192	1.5238	1.5374
TlZnSO ₄ Br	Exp	7.3746	9.7060	8.3810	96.370	1.434	1.480	1.475	1.480
	PBE-D3	7.5375	9.7782	8.6777	98.258	1.4707	1.5230	1.5331	1.5273

Таблица 1. Постоянные решетки a, b, c, угол β и расстояния между атомами серы и кислорода R_{S-O} (Å) моноклинных кристаллов AZnSO₄X, рассчитанных с функционалом PBE-D3 и измеренных экспериментально [3] (Exp)

АZSX кратчайшее расстояние приходится на A-O4, и в ряду X оно увеличивается с ростом ионного радиуса катиона. Следующими расстояниями будут A-O3 (KZSC, KZSB, RZSC, RZSB, RZSI, TZSB), A-O1 (CSZC, TZSC), A-O2 (CZSB, CZSI). Расстояние A-X в ряду галогенидов растет с увеличением ионного радиуса катиона. С учетом координационного окружения катионов A и галогенидов X их средний ионный радиус R_{AX} [44] возрастает в рядах хлоридов, бромидов, йодидов. Это позволяет записать некоторые структурные параметры в виде линейной зависимости, например

$$V(\text{Å}^3) = 342.9 + 53.4R_{\text{AX}}^3$$
.

Диэлектрические свойства

Оптический отклик материала описывается его диэлектрической функцией $\varepsilon_{ij}(\nu$ [45]. Для моноклинной системы она представляет симметричный тензор, который в опорных осях x, y и z имеет отличные от нуля компоненты $\varepsilon_{xx}, \varepsilon_{yy}, \varepsilon_{zz}, \varepsilon_{xz} = \varepsilon_{zx}$. Элемент ε_{xz} отвечает за поворот диэлектрических осей, он достаточно мал для электронной части ($|\varepsilon_{\infty,xz}| < 0.04$ в AZSC, CZSB, CZSI, TZSB и < 0.08 в остальных) и больше для ионной ($|\varepsilon_{0,xz}| < 0.1$ в KZSB, RZSI, CZSC, CZSI и > 0.1 в остальных). Угол между оптическими осями будет максимальным в TZSB, где он равен C60.9°, в RZSC — 46.2°, TZSC — 36.3°. Его наименьшее значение приходится на KZSC — 5.0° и CZSI — 7.8°. Поскольку ε — симметричный тензор, его можно записать в диагональной форме с компонентами $\varepsilon_x, \varepsilon_y, \varepsilon_z$. Диагональные

Таблица 2. Диагональные компоненты электронного ε_{∞} и ионного ε_0 диэлектрического тензора кристаллов со структурой белоусовита

Crystal	$\varepsilon_{\infty,x}$	$\varepsilon_{\infty,y}$	$\varepsilon_{\infty,z}$	$\varepsilon_{0,x}$	$\varepsilon_{0,y}$	$\varepsilon_{0,z}$
KZnSO ₄ Cl	2.36	2.26	2.26	2.08	3.53	3.95
KZnSO ₄ Br	2.50	2.31	2.29	2.05	3.60	3.81
RbZnSO ₄ Cl	2.19	2.11	2.12	2.08	3.25	3.77
RbZnSO ₄ Br	2.29	2.12	2.12	1.86	3.04	3.18
RbZnSO ₄ I	2.46	2.18	2.19	2.18	3.21	2.93
CsZnSO ₄ Cl	2.42	2.33	2.34	2.88	3.74	4.40
CsZnSO ₄ Br	2.48	2.31	2.30	1.86	3.04	3.18
CsZnSO ₄ I	2.63	2.22	2.22	2.64	3.26	6.96
TlZnSO ₄ Cl	2.97	2.82	2.81	4.08	4.69	8.14
TlZnSO ₄ Br	2.97	2.80	2.75	3.27	4.68	4.36

компоненты диэлектрического электронного тензора ε_{∞} и ионного ε_0 приведены в табл. 2.

Диэлектрические свойства исследуемых кристаллов экспериментально не исследованы, поэтому данные табл. 2 имеют предсказательный характер. Теоретические методы широко используются для предсказания диэлектрических свойств новых материалов [46]. Здесь же можно найти значения диэлектрических тензоров многих кристаллов. В качестве примера для сравнения приведем данные расчета (эксперимента) [40] для компонентов диэлектрического тензора орторомбического кристалла арагонита CaCO₃: $\varepsilon_{\infty,xx} = 2.181$ (2.33), $\varepsilon_{\infty,yy} = 2.66$ (2.81), $\varepsilon_{\infty,zz} = 2.674$ (2.82), $\varepsilon_{0,xx} = 6.406$ (6.74), $\varepsilon_{0,yy} = 15.588$ (10.41), $\varepsilon_{0,zz} = 8.087$ (7.78). В кри-

Рис. 1. Частотная зависимость *x*-, *y*-, *z*-компонент мнимой части диэлектрического тензора $\varepsilon_2(v)$ (сверху) и функции потерь $-1/\varepsilon_2(v)$ (снизу) в KZnSO₄Cl.

сталлах со структурой белоусовита, так же как и в известном арагоните, имеет место сильная анизотропия диэлектрических свойств.

Компоненты тензора диэлектрической проницаемости ε_{∞} определяются электронной подсистемой кристалла. Об этом свидетельствуют зависимости тензора от её параметров. Для поликристаллов средняя величина, которая, согласно [46], определяется как

$$\varepsilon_{\infty,av} = (\varepsilon_{\infty,x} + \varepsilon_{\infty,y} + \varepsilon_{\infty,z})/3,$$

линейно зависит от энергии связи E_b , рассчитываемой как разность полной энергии элементарной ячейки и энергии составляющих её атомов $\varepsilon_{\infty,av} = 9.97 + 0.04\Delta E_b(0.86)$ или составляющей дисперсионной энергии $\varepsilon_{\infty,av} = -0.27 - 0.54E_{\rm disp}(0.89)$. Здесь энергии измеряются в электронвольтах, а коэффициенты разложения задаются так, чтобы получилась безразмерная величина проницаемости. В скобках указаны коэффициенты корреляции такой зависимости. Так же как и в [46], установлена с высоким коэффициентом корреляции 0.93 зависимость от ширины запрещенной: $\varepsilon_{\infty,av} = 3.57 - 0.57\Delta E_g$.

На рис. 1 приведена частотная зависимость диэлектрического тензора, его мнимой части $\varepsilon_2(\nu)$ и функции потерь $-1/\varepsilon_2(\nu)$ для *x*-, *y*- и *z*-компонент в KZSC. Максимумы $\varepsilon_2(\nu)$ и минимумы функции потерь соответствуют ТО- и LO-частотам соответственно.

В области колебаний v_3 атомов сульфат-иона будут активны две ТО-моды симметрии B_u с волновыми числами 1162, 1056 сm⁻¹ и две ТО-моды симметрии A_u с 1164, 1020 сm⁻¹, которые проявляются в спектрах $\varepsilon_2(v)$ с разной интенсивностью. LO-моды имеют только A_u -симметрию, и их значения для этой области 1165, 1052 сm⁻¹. Таким образом, TO–LO-расщепления равны

-1.1 и -32.2 сm⁻¹. В диапазоне колебаний v_1 две активные моды имеют также различное ТО-LО-расщепление. Так, LO-мода $1002 \, \text{cm}^{-1}$ имеет расщеплением $41.5 \, \text{cm}^{-1}$, тогда как мода на $910 \,\mathrm{cm}^{-1}$ — всего $0.4 \,\mathrm{cm}^{-1}$. Степень расщепления зависит от коэффициента взаимодействия, который можно характеризовать перекрытием между собственными векторами LO- и ТО-мод. Собственный вектор для каждой моды представляет собой количественные х-, у-, z-смещения каждого атома в элементарной ячейке. Так, собственные векторы моды с волновым числом 910 cm⁻¹ перекрываются на 99% с ТО-модой $910 \, {\rm cm}^{-1}$, и поэтому соответствующее расщепление составило такую малую величину. Для колебаний типа *v*₄ в спектре будут наблюдаться близко расположенные ТО-моды симметрии В_и, А_и с волновыми числами 641, $637 \,\mathrm{cm}^{-1}$ и LO-мода на 640 cm⁻¹. Для области ν_2 наблюдается серия пиков низкой интенсивности с ТО-модами симметрии B_u 551, 530, 485 cm⁻¹, а для A_u -симметрии 552 (TO-LO-расщепление равно $-1.5 \,\mathrm{cm}^{-1}$), 528 (3.6), $487 (0.0) \text{ cm}^{-1}$.

В табл. 3 приведены LO-частоты интенсивных колебаний v1-v4 и соответствующие LO-TO-расщепления (указаны в скобках) кристаллов AZSX. Волновые числа LO-мод обычно больше, чем у TO, поэтому сдвиг TO-LO отрицательный. Для удобства в табл. 3 приведены положительные значения -(TO-LO). В некоторых случаях, однако, появляются инверсии. Так, в RZSC LOмода с волновым числом 1005 ст⁻¹ имеет перекрытие собственных векторов с ТО-модами 966 и $1016 \, {\rm cm}^{-1}$ на 64 и 76%. Все моды с большими расщеплениями ТО-LO показывают перекрытие, равное или меньше 75%. Причина в том, это перекрытие связано с большими диагональными (W) и недиагональными (W^{NA}) вкладами. Так, во всех десяти кристаллах AZSX одна мода с самым высоким волновым числом v3 показывает почти 100% перекрытие собственных векторов, соответствующих LO- и ТО-модам. Это обстоятельство обусловлено тем, что собственные векторы соответствующих LO- и TOмод образованы подавляющим вкладом х-, z-смещений атомов кислорода О4 и существенно меньшим вкладом атомов серы.

ИК спектры отражения

Инфракрасная спектроскопия (ИКС) щироко используется в различных областях физики и химии для установления структуры соединений, в том числе определения наличия функциональных групп и других фрагментов. Как было установлено ранее, в исследуемых кристаллах AZnSO₄X выделяются сульфат-анион [SO₄], фрагменты ZnO₃X, AO_nX_m. Представляет интерес построить теоретические спектры ИК отражения и установить, как в них проявляются эти структурные особенности. Такие данные будут иметь предсказательную силу для последующих экспериментальных исследований.

Crystal	ν_3	ν_1	ν_4	ν_2
KZnSO ₄ Cl	1165(1.1), 1052(32.2)	1002(41.5), 910(0.4)	640(2.5)	552(1.5), 531(3.6)
KZnSO ₄ Br	1169(3.7), 1040(20.0)	996(48.1), 905(0.0)	631(1.5)	559(0.7), 538(5.2)
RbZnSO ₄ Cl	1163(0.1), 1005(-11.5)	1053(86.6), 910(0.4)	643(2.3)	546(2.4), 523(1.0)
RbZnSO ₄ Br	1173(3.0), 1035(16.8)	997(51.2), 904(0.0)	631(1.4)	558(0.7), 536(4.8)
RbZnSO ₄ I	1174(3.7), 1028(11.2)	988(51.5), 898(0.2)	622(0.7)	560(0.7), 537(4.6)
CsZnSO ₄ Cl	1148(1.7), 1000(-2.1)	1039(66.0), 905(0.3)	635(1.7)	545(3.2), 532(0.2)
CsZnSO ₄ Br	1162(1.7), 1035(17.0)	991(44.1), 907(0.0)	632(1.8)	555(0.7), 532(3.5)
CsZnSO ₄ I	1162(24.2), 1025(4.7)	970(18.9), 889(0.0)	609(8.9)	588(1.4), 547(0.2)
TlZnSO ₄ Cl	1128(0.8), 994(-0.0)	1024(60.7), 900(0.2)	628(1.5)	546(3.6), 533(0.3)
TlZnSO ₄ Br	1148(2.6), 1027(16.7)	979(39.2), 904(0.0)	628(1.8)	553(0.5), 529(3.8)

Таблица 3. Волновые числа колебательных LO-мод (-(TO-LO)-расщепление) в кристаллах AZnSO₄X. Все значения приведены в cm⁻¹

Теоретические ИК спектры отражения получены гауссовым уширением интенсивностей нормальных длинноволновых ($\mathbf{k} = 0$) колебаний по методологии, описанной в [47].

Спектры отражения R(v) вычисляются из диэлектрической функции, которая строится на основе набора затухающих осцилляторов (по одному на каждую нормальную моду), характеризующихся частотами (волновыми числами v_j), силами осцилляторов f_j и коэффициентами затухания γ_j . Последние недоступны из первоначальных расчетов и должны быть выбраны в соответствии с известными экспериментальными критериями. Если таковые отсутствуют, то выбирается некое усредненное для литературных данных значение. В настоящем моделировании использовалось значение $\gamma = 5 \text{ cm}^{-1}$ для всех кристаллов. На рис. 2 приведены спектры ИК отражения KZSC в интервале от 0 до 1250 cm⁻¹.

Спектр R(v) для x-, z-направлений определяется ТО-модами симметрии В_и. В обоих спектрах будут проявляться колебания с волновыми числами 1162, $969 \,\mathrm{cm}^{-1}$, однако интенсивность их будет различной. Кроме того, для области v₃, v₁ в *z*-направлении также будут колебания с волновыми числами 1056 и 910 cm⁻¹ Наоборот, колебание v_4 с волновым числом $641 \,\mathrm{cm}^{-1}$ будет заметно только в х-поляризации. Моды v4 будут иметь волновые числа 551, 530, $485 \,\mathrm{cm}^{-1}$, из которых два последних будут заметны в обоих спектрах. Для решеточной области менее 400 ст-1 можно выделить два колебания 381, 356 cm⁻¹ с интенсивностями в поляризации и в z, а также колебания 266, 149 и 138 cm⁻¹. Два последних колебания имеют высокую интенсивность в *х*-поляризации. Наоборот, колебания с волновыми числами 128, 110 ст⁻¹ будут заметны только в *z*-поляризации.

Каждая колебательная мода характеризуется вектором поляризации, который указывает направление смещения атомов, а нормированный квадрат амплитуды — их относительный вклад в суммарное отклонение. Так, например, волновому числу 110 cm^{-1} отвечают колебания атомов цинка (9%), хлора (14%), кислородов O1, O4

Рис. 2. Спектры отражения KZnSO₄Cl для поляризаций E $\parallel x,$ E \parallel y, E $\parallel z.$

(по 22%) и О2, ОЗ (по 15%). В колебании на 128 сm⁻¹ принимают участие атомы калия (12%), цинка (8%), хлора (21%), серы (8%) и всех кислородов, кроме ОЗ. Для мод 138 и 149 сm⁻¹ доля атомов калия составляет примерно 37%, а доля атомов кислорода О2, О3 — 20% и О1, О4 — тоже 20%. В первом заметна доля цинка (8%), во втором — серы (6%). В моде с волновым числом 266 сm⁻¹ доминируют атомы О4 (50%), О2 (19%), а также участвуют цинк и сера (по 7%). Активная только в -поляризации мода 308 сm⁻¹ образована колебаниями атомов цинка (12%) и хлора (59%) с небольшим участием атомов О1, О3. Наконец, моды 381 и 356 сm⁻¹ определяются подавляющим участием

Таблица 4. Волновые числа интенсивных ТО-мод симметрии Au (-(TO-LO)-расщепления) и B_u в решеточной области кристаллов AZnSO₄X. Все значения приведены в сm⁻¹

Crystal	A_u	B_u
KZnSO ₄ Cl	389(9.3), 351(10.5), 123(35.6)	308, 266, 149, 138
KZnSO ₄ Br	389(3.5), 349(15.9), 101(7.9)	351, 259, 152, 104
RbZnSO ₄ Cl	386(11.4), 341(8.8), 115(34.0)	309, 268, 131, 106
RbZnSO ₄ Br	386(1.9), 347(17.2), 112(17.8)	349, 260, 128, 104
RbZnSO ₄ I	385(0.3), 333(18.9), 146(11.1)	331, 254, 122, 106
CsZnSO ₄ Cl	390(6.7), 326(11.6), 108(-4.4)	335, 254, 131, 106
$CsZnSO_4Br$	380(1.9), 346(15.4), 112(9.8)	347, 260, 125, 91
CsZnSO ₄ I	326(12.5), 134(10.6)	330, 265, 196, 183
TlZnSO ₄ Cl	329(6.0), 307(9.1), 117(34.7)	338, 263, 130, 112
TlZnSO ₄ Br	381(2.5), 347(12.9), 105(5.7)	347, 266, 128, 95

атомов кислорода с большим вкладом O1, O3 в 52 и 63% соответственно.

у-поляризованный спектр R(v) характеризуется колебаниями симметрии A_u . Самой интенсивной, принятой за 100%, здесь будет полоса при 961 сm⁻¹, образованная колебаниями атомов серы (27%) и кислородов O1 (30%) и O3 (41%). Слева и справа располагаются полосы меньшей интенсивности ~ 38% при 910, 1020 сm⁻¹, образованные преимущественно колебаниями атомов O2, O3 и O1, O2 соответственно. Колебания в области 390, 351 сm⁻¹ образованы смещениями атомов преимущественно кислородов O1, O3, а для последнего заметна (6%) доля атомов цинка. Решеточные моды высокой интенсивности при 123, 109 сm⁻¹ образованы колебаниями атомов калия (21%), цинка (7%) и кислорода, где выделяется вклад (30%) O2.

На рис. 3 для удобства сравнения приведены нормированные на единицу спектры отражения всех десяти кристаллов AZnSO₄X. В табл. 4 указаны волновые числа интенсивных решеточных колебаний.

Полученные значения волновых чисел колебаний атомов в кристаллах AZnSO₄X находятся в пределах ранее выполненных измерений для других сульфатов. По данным [17] особенности внутренних колебаний проявляются при ~ 1050–1250 (ν_3), ~ 1000 (ν 1), ~ 500–700 (ν_4) и ~ 400-500 (ν_2) сm⁻¹. В области < 400 сm⁻¹ проявляются колебания решетки, включая металл-кислородные, либрационные, а также трансляционные. Так, в [48] измерены волновые числа ИК активных колебаний водного раствора ZnSO₄: $v_3 - 1102$, 1153, 1185 cm⁻¹, $v_1 - 997$, 1010, 1020 cm⁻¹, ν_4 — 605, 624, 656, 667 cm⁻¹ и для v_2 очень слабый пик при $420 \,\mathrm{cm}^{-1}$. По данным [16] в SrSO₄ для v₃ получены частоты 1195, 1130, 1095 сm⁻¹, *v*₁ — 990 сm⁻¹ и *v*₄ — 639, 610 сm⁻¹, а в [17] к набору значений 1238, 1128, 991, 648, 614 ст⁻¹ подключается и 471 cm⁻¹. Были также проведены измерения ИК спектров [49] твердых растворов $K_2Zn(SO_4)_2 \cdot 6H_2O$ и $Rb_2Zn(SO_4)_2 \cdot 6H_2O$ в симметрии $P2_1/C$, которые подтверждают ранее установленные закономерности. В первом случае для $v_3(v_1)$ зафиксированы значения 1141,

1108, 1102 ст⁻¹ (982 ст⁻¹) и во втором 1139, 1111, 1099 ст⁻¹ (984 ст⁻¹). Таким образом, полученные в настоящих расчетах волновые числа колебаний кристаллов со структурой белоусовита находятся в согласии с измеренными экспериментально для щелочных сульфатов и сульфата цинка.

Спектры КРС

Спектроскопия КРС является эффективным методом химического анализа, изучения состава и строения веществ. Активные в КРС моды кристаллов AZnSO₄X симметрии $P_{2_1/c}$ относятся к симметрии A_g и B_g . Тензор интенсивности для монокристаллов в симметрии A_g имеет отличные от нуля компоненты xx, xz, yy, zz, тогда как B_g — xy и yz. Как правило, интенсивность для A_g -мод выше, чем для B_g .

Ранее исследования КРС были проведены в водных растворах ZnSO₄ [48], где обнаружены четыре полосы v_3 в диапазоне 1138–1056 сm⁻¹, три v_1 — 854.5–992.5 сm⁻¹, v_4 — 625, сm⁻¹ и v_2 — 506 и 423 сm⁻¹. Для кристаллических K₂SO₄, Rb₂SO₄, Cs₂SO₄ детальные исследования выполнены в [50]. Для мод симметрии A_g при температуре 78 К в K₂SO₄ получены значения v_3 1152 и 1092 сm⁻¹, v_1 989 сm⁻¹, v_4 630 и 617 сm⁻¹ и v_2 450 сm⁻¹. Для Rb₂SO₄ в спектре КРС также преобладает интенсивная полоса v_1 при 980 сm⁻¹, а в Cs₂SO₄ v_1-v_4 имеют значения в диапазоне 442–1119 сm⁻¹. Другие измерения [12] показывают подобные результаты.

В спектрах КРС KZSC выделяется пик при $919 \,\mathrm{cm}^{-1}$, образованный полносимметричными А_g-колебаниями атомов кислорода вдоль линий связи S-O. Его интенсивность принята за 100%. К такому же типу относятся моды с интенсивностью 10% при 955 и 978 сm⁻¹ и мода симметрии B_g при 978 сm⁻¹ (рис. 4). Вместе они образуют группу колебаний v1. Как и в случае ИК спектров, вклад атомов кислорода оказывается различным. Для самого интенсивного это преимущественно О2 и О1 с 43% и 25% соответственно. В остальные колебания вносят вклад также атомы серы (~ 25%) и другие атомы кислорода, в том числе ОЗ с более чем 60% вкладом. Группу v3 образует интенсивное (31%) колебание с волновым числом 1174 сm $^{-1}$ и два других симметрии B_g при 1042 и 1171 ст⁻¹. Первое образовано смещениями атомов кислорода О4 (66%) и серы (27%) и второесеры и О1 (47%), О2 (16%). Область деформационных колебаний v₂ представлена двумя слабоинтенсивными с волновыми числами 639, 644 ст⁻¹, образованными преимущественно атомами О1-О3. В деформационных колебаниях v₄ сульфат-иона выделяется интенсивное колебание при 483 cm⁻¹, в котором при 20% участии атомов О1, О3, О4 выделяется О2 с 30% вкладом. Для другого колебания с волновым числом 529 cm⁻¹ доминируют с 25% вкладом атомы О1, О2.

Рис. З. Спектры отражения кристаллов со структурой белоусовита с Е || у (слева) и Е || z (справа) поляризацией.

Решеточные колебания, в которых заметную роль играют атомы металлов и хлора, имеют низкую интенсивность, поэтому на рис. 4 они указаны отдельной вставкой. Среди них выделяется мода симметрии A_g с волновым числом 322 cm^{-1} , образованная на 23% колебаниями атомов цинка и 72% атомов хлора. Такой же симметрии колебание при 259 cm^{-1} отвечает смещени-

ям атомов цинка и кислорода О4. Атомы калия на 15%, цинка 27%, хлора 16% и кислорода О4 на 24% образуют колебательную моду с волновым числом 133 сm⁻¹.

В табл. 5 приведены волновые числа активных в КРС колебаний симметрии A_g и B_g . Во всех соединениях самой интенсивной является мода симметрии A_g при ~ 910 сm⁻¹. Однако строение спектра в области v_3

Рис. 4. Спектры КРС кристаллов со структурой белоусовита.

Таблица 5. Волновые числа (сm⁻¹) внутримолекулярных колебательных мод $v_1 - v_4$ симметрии A_g и B_g в спектрах КРС кристаллов со структурой белоусовита

Crystal	<i>v</i> ₃		ν_1		ν_4	ν_2	
	A_g	B_g	A_g	B_{g}	A_g	A_g	B_g
KZnSO ₄ Cl	1174	1171, 1042	919, 955, 978	978	639	483, 529, 558	556
KZnSO ₄ Br	1177	1175, 1040	915, 949, 974	971	629	475, 533,564	562
RbZnSO ₄ Cl	1170	1166, 1041	916, 953, 976	973	644	483, 525, 548	527
RbZnSO ₄ Br	1180	1177, 1043	913, 947, 974	968	629	473, 531, 563	561
RbZnSO ₄ I	1180	1177, 1035	908, 940, 964	958	620	461, 532, 562	561
CsZnSO ₄ Cl	1156	1146, 1036	908, 951, 975	967	640	468, 534, 541	535
CsZnSO ₄ Br	1169	1164, 1040	916, 947, 971	966	629	472, 528, 558	557
CsZnSO ₄ I	1137	1149, 1044	893, 958, 970	968	600	471, 555, 584	599
TlZnSO ₄ Cl	1139	1125, 1029	905, 938, 976	957	636	462, 535, 540	536
TlZnSO ₄ Br	1155	1151, 1030	916, 938, 966	957	626	474, 525, 557	556

различается прежде всего интенсивностью линий. Это связано с изменением расстояний S-O и A-O. Так, в RCZI окружение атома цезия включает в себя семь

атомов кислорода: по два О4, О2, О3, один О1, а атомы йода находятся на большем удалении, чем сера. Интенсивность мод v₃ здесь не превышает 10%, и они образованы на 27% колебаниями атомов серы, 66% атомов О4 для волновых чисел 1149, 1137 ст⁻¹ и 29% О1, 40% О2 для 1044 сm $^{-1}$. Два колебания ν_1 симметри
и A_g при 970, 958 сm $^{-1}$ также образованы н
а $\sim 25\%$ смещениями атомов серы, и первая — на 60% атомами О2, а вторая — на 54% атомами О1. Самая интенсивная мода при 893 cm⁻¹ образована колебаниями атомов кислорода с наибольшим вкладом 52% ОЗ. Примерно такой же вклад имеют атомы кислорода и в колебании симметрии B_g при 888 сm⁻¹. В отличие от CZSI в TZSB интенсивность мод v_3 значительно больше. Так же, как и в предыдущем случае, они образованы на 27% атомами серы, 67% атомов О4 и (нижняя) 49% атомов О1. Атомы О1 на 60% и ОЗ на 47% доминируют в колебательных модах v_1 при 967 и 957 сm⁻¹. Строение КРС в области частот v3, v1 имеет качественно подобный вид для всех соединений с бромом.

Связь колебательных спектров и структурных параметров

Внутримолекулярные моды v_1 , v_3 образуются колебаниями атомов серы и кислорода O1-O4, вклад которых является различным. Причиной этого являются хотя и незначительные, но различные RS-O-расстояния, а также развороты SO₄ относительно катионов A (K, Rb, Cs, Tl), что приводит к их различному анионному окружению R_{A-O} . Это позволяет предположить, что между частотами отдельных колебательных мод и расстояниями R_{S-O} будет иметь место линейная зависимость. При известных междуатомных расстояниях из неё можно определять частоты и, наоборот, по известным частотам определять расстояния.

Для активных в ИК спектрах колебаний v₁ и v₃ будут проявлять заметную интенсивность моды в порядке возрастания волнового числа, обозначенные как $1v_{1Bu}$, 2*v*_{1*Au}, 2<i>v*_{1*Bu*} и 1*v*_{3*Au*}, 1*v*_{3*Bu*}, 2*v*_{1*Bu*}, 2*v*_{1*Au*}. Так, для моды</sub> *v*_{1*Au} установлена следующая зависимость рассчитанных</sub>* волновых чисел от рассчитанных расстояний между атомами серы и кислорода ОЗ: $v_{1Au} = 4359 - 2226R_{S-O3}$ с коэффициентом корреляции 0.92. Для экспериментальных значений R_{S-O3} и теоретических частот коэффициент корреляции будет естественно ниже. Здесь v_1 измеряется в ст⁻¹, а расстояния — в Å. Соответственно первый коэффициент задан в ст⁻¹, а второй имеет размерность ст⁻¹/Å. Для примера, в CZSC $R_{S-O3} = 1.5217$ Å (табл. 1), тогда ν_1 получится 971 ст⁻¹. Точный расчет дает 973 ст⁻¹. Обратная формула имеет $R_{\text{S-O3}} = 1.895 - 0.0004 v_{1Au}$ вид $1v_{3Bu} = 5476 - 2900R_{S-O3} (0.91).$ Для моды Здесь коэффициент корреляции указан скобках. в Для получим зависимости других мод v_3 $1v_{3Au} = 3402 - 1562R_{S-O2} (0.882),$ $2v_{3Bu} = 4929 -$ $2\nu_{3Au} = 7841 - 4542R_{\text{S-O4}} \ (0.87).$ $-2466R_{S-O2}(0.82),$ Аналогичные формулы можно получить и для других мод и расстояний S-O, но с меньшими коэффициентами корреляции. Например, для самого интенсивного колебания $2\nu_{3Bu} = -7885 + 5938R_{\text{S-O1}} (0.77).$

Для спектров КРС также можно установить линейные зависимости между волновыми числами и межатомными расстояниями S-O. Здесь использована следующая последовательность мод: $1\nu_{1Ag}$, $2\nu_{1Ag}$, $3\nu_{1Ag}$, $1v_{1Bg}$ и $1v_{3Ag}$, $1v_{3Bg}$, $2v_{3Bg}$ в порядке следования табл. 4. Для самого интенсивного колебания зависимость получилась с низким коэффициентом $1v_{1Ag} = 3527 - 1777R_{S-O4}$ 0.64: корреляции И другого $3v_{1Ag} = 2041 - 699R_{\text{S-O3}} (0.77).$ лля Лля *v*₃ коэффициенты корреляции будут выше: мол $v_{3Ag} = 8592 - 5046R_{\text{S-O4}}(0.89),$ $1v_{3Bg} = 8753 -5158R_{S-O4}$ (0.86). Можно также установить корреляцию $v_{4Ag} = 3621 - 1956R_{\text{S-O3}} (0.81).$

Известно, что волновые числа колебательных мод зависят от атомных масс и радиусов катионов. Их значения $M_{\rm AX}$, $R_{\rm AX}$ рассчитывались как среднее значение для катиона A и галогена X. Для активных в КРС мод v_1 и v_3 такие зависимости имеют коэффициенты корреляции выше 0.55, и наибольшее значение получено для зависимостей $v_{1Bg} = 982 - 0.17M_{\rm AX}$ (0.83) и $3v_{1Ag} = 1027 - 31.5R_{\rm AX}$ (0.73).

Заключение

Расчетами *ab initio* теории функционала плотности с обменно-корреляционным функционалом PBE с дисперсионной поправкой D3 проведены вычисления минерала белоусовита и его синтетических аналогов с формулой AZnSO₄X (A = K, Rb, Cs, Tl; X = Cl, Br, I) в симметрии $P2_1/c$ и показано, что структурные особенности кристаллов проявляются в диэлектрических свойствах, спектрах ИК отражения и КРС.

Диагональные компоненты электронного статического диэлектрического тензора удовлетворяют условию $\varepsilon_{\infty,x} > \varepsilon_{\infty,y}$, $\varepsilon_{\infty,z}$ и убывают в ряду галогенов I > Br > Cl обратно ширине запрещенной зоны. Максимальные значения $\varepsilon_{\infty,x}$ приходятся на соединения с таллием. Диагональные компоненты ионного диэлектрического тензора подчиняются условию $\varepsilon_{0,z} > \varepsilon_{0,y} > \varepsilon_{0,x}$.

Высоко интенсивные в KZnSO₄Cl продольные оптические LO-моды ν_3 при 1052 cm⁻¹ и ν_1 при 1002 cm⁻¹ имеют большое TO–LO-расщепление в –32 и –41 cm⁻¹. Для ν_3 -моды оно имеет инверсные значения 11.5, 2.1, 0.0 cm⁻¹ в AZnSO₄Cl (A = Rb, Cs, Tl), а для ν_1 — максимальные 86.6, 66.0, 60.7 cm⁻¹. Для остальных LO-мод $\nu_2 - \nu_4$ TO–LO-расщепление не превышает –4 cm⁻¹, а для ν_1 — менее –1 cm⁻¹.

В области меньше 400 cm^{-1} для xz-поляризации активны две моды симметрии B_u и две в *у*-поляризации симметрии A_u , которым отвечают трансляционные колебания атомов кислорода с разной долей участия. Колебания атомов с участием катиона А лежат в области ниже 150 cm^{-1} , и в KZnSO₄Cl это будут моды с волновыми числами 149, 138, 128 и 109 cm⁻¹ для xz- и

123, 108 сm⁻¹ для *у*-поляризации. В других соединениях интенсивности этих линий существенно различаются, что объясняется участием катионов разной атомной массы.

В спектре КРС самыми интенсивными будут внутримолекулярные моды v_1 , v_3 . Первая группа состоит из трех колебаний симметрии A_g и одного B_g , из которых самое интенсивное (при 900–920 cm⁻¹) образовано в большей мере атомами О1 и О3, а три другие атомами серы и другими кислородами. Наоборот, моды с волновыми числами выше 1100 cm⁻¹ имеют подавляющий вклад атомов кислорода О4. Разное участие неэквивалентных атомов кислорода обусловливает отличия в спектрах соединений этой области. Для колебаний сульфат-иона v_4 , v_2 в спектрах выделяются четыре пика, из которых заметную интенсивность имеют колебания с волновыми числами 460–480 cm⁻¹.

Волновые числа колебательных мод зависят от межатомных расстояний, атомных масс и радиусов катионов A и анионов X. Так, для мод v_3 феноменологически установлены линейные зависимости волновых чисел от расстояний между атомами серы и кислорода O4: $v_{3Ag} = 8592 - 5046R_{S-O4}$, $v_{3Bg} = 8753 - 5158R_{S-O4}$. Для моды v_1 показана линейная зависимость от средней атомной массы катиона A и аниона X: $v_{1Bg} = 982 - 0.17M_{AX}$. Полученные формулы могут быть использованы для предсказания соответствующих экспериментальных зависимостей в идентификации соединений, для определения частот по известным расстояниям и расстояний по известным частотам.

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

Список литературы

- O.I. Siidra, E.V. Nazarchuk, E.A. Lukina, A.N. Zaitsev, V.V. Shilovskikh. Mineral. Mag., 82, 1079 (2018). DOI: 10.1180/minmag.2017.081.084
- [2] И.В. Пеков, А.А. Агаханов, Н.В. Зубкова, Н.Н. Кошлякова, Н.В. Щипалкина, Ф.Д. Сандалов, В.О. Япаскурт, А.Г. Турчкова, Е.Г. Сидоров. Геология и геофизика, **61** (5–6), 826 (2020). DOI: 10.15372/GiG2019167 [I.V. Pekov, A.A. Agakhanov, N.V. Zubkova, N.N. Koshlyakova, N.V. Shchipalkina, F.D. Sandalov, V.O. Yapaskurt, A.G. Turchkova, E.G. Sidorov. Russian Geology and Geophysics., **61** (5–6), 675 (2020).DOI: 10.15372/RGG2019167].
- [3] A.S. Borisov, O.I. Siidra, D.O. Charkin, K.A. Zagidullin, R.K. Burshtynovich, N.S. Vlasenko. Acta Crystallogr. B, 78, 499 (2022). DOI: 10.1107/S2052520622003535
- [4] B. Bosson. Acta Crystallogr. B, 32, 2044 (1976).
- [5] A. Oganov. Faraday Discuss., 211, 643 (2018).
- DOI: 10.1039/C8FD90033G [6] C. Richard, A. Catlow. IUCr J., **10** (2), 143 (2023).
- DOI: 10.1107/S2052252523001835
- [7] С.А. Климин, Б.Н. Маврин, И.В. Будкин, В.В. Бадиков, Д.В. Бадиков. Опт. и спектр., **127** (7), 20

Оптика и спектроскопия, 2024, том 132, вып. 8

(2019). DOI: 10.21883/OS.2019.07.47925.66-19 [S.A. Klimin, B.N. Mavrin, I.V. Budkin, V.V. Badikov, D.V. Badikov. Opt. Spectrosc., **127** (1), 14 (2019).

DOI: 10.1134/S0030400X19070130].

- [8] В.А. Чернышев, П.А. Агзамова, А.В. Архипов. Опт. и спектр., 128 (11), 1668 (2020).
 DOI: 10.21883/OS.2020.11.50170.124-20 [V.A. Chernyshev, P.A. Agzamova, A.V. Arkhipov. Opt. Spectrosc., 128 (11), 1800 (2020). DOI: 10.1134/S0030400X20110090].
- [9] Ю.Н. Журавлев. Опт. и спектр., 131 (9), 1199 (2023).
 DOI: 10.61011/OS.2023.09.56606.4667-23
- [10] J.J. Wylde, G.C. Allen, I.R. Collins. Appl. Spectrosc., 55, 1155 (2001). https://opg.optica.org/as/abstract.cfm?URI=as-55-9-1155
- [11] H. Takahashi, S. Meshitsuka, K. Higasi. Spectrochim. Acta A: Molec. Spectrosc., 31 (11), 1617 (1975). DOI: 10.1016/0584-8539(75)80102-4
- [12] K. Ben Mabrouk, T.H. Kauffmann, H. Aroui, M.D. Fontana.
 J. Raman Spectrosc., 44 (11), 1603 (2013).
 DOI: ff10.1002/jrs.4374ff
- [13] J. Qiu, X. Li, X. Qi. IEEE Photonics J., 11 (5), 6802612 (2019). DOI: 10.1109/JPHOT.2019.2939222
- [14] A.P. И.Р. Алиев, Ахмедов, M.F. Какагасанов, 3.A. Алиев. ΦTT, **61**(8), 1513 (2019). A.R. DOI: 10.21883/FTT.2019.08.47980.382 Aliev. I.R. Akhmedov, M.G. Kakagasanov, Z.A. Aliev. Phys. Solid State, 61 (8), 1464 (2019). DOI: 10.1134/S1063783419080043].
- [15] D.V. Korabel'nikov, Yu.N. Zhuravlev. J. Phys. Chem. Solids, 119, 114 (2018). DOI: 10.1016/j.jpcs.2018.03.037
- [16] K. Omori. Mineral. J., 5 (5), 334 (1968).
- [17] M.D. Lane. American Mineralogist, 92 (1), 1 (2007).
 DOI: 10.2138/am.2007.2170
- [18] R. Dovesi, A. Erba, R. Orlando, C.M. Zicovich-Wilson, B. Civalleri, L. Maschio, M. Rérat, S. Casassa, J. Baima, S. Salustro, B. Kirtman. WIREs Comput. Mol. Sci., 8 (4), e1360 (2018). DOI: 10.1002/wcms.1360
- [19] L. Valenzano, F.J. Torres, K. Doll, F. Pascale, C.M. Zicovich-Wilson, R. Dovesi. Zeitschrift für Physikalische Chemie, 220 (7), 893 (2006). DOI: 10.1524/zpch.2006.220.7.893
- [20] T. Bredow, P. Heitjans, M. Wilkening. Phys. Rev. B, 70 (11), 115111 (2004). DOI: 10.1103/PhysRevB.70.115111
- [21] J.E. Jaffe, A.C. Hess. Phys. Rev. B, 48 (11), 7903 (1993).
 DOI: 10.1103/PhysRevB.48.7903
- [22] E. Apra, M. Causa, M. Prencipe, R. Dovesi, V.R. Saunders.
 J. Phys. Condens. Matter., 5 (18), 2969 (1993).
 DOI: 10.1088/0953-8984/5/18/019
- [23] K. Doll, H. Stoll. Phys. Rev. B, 57 (8), 4327 (1998).
 DOI: 10.1103/PhysRevB.57.4327
- [24] J. Laun, D.V. Oliveira, T. Bredow. J. Comput. Chem., 39 (19), 1285 (2018). DOI: 10.1002/jcc.25195
- [25] J. Laun, T. Bredow. J. Comput. Chem., 42 (15), 1064 (2021).
 DOI: 10.1002/jcc.26521
- [26] J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett., 77, 3865 (1996). DOI: 10.1103/PhysRevLett.77.3865
- [27] S. Grimme, S. Ehrlich, L. Goerigk. Comput. Chem., 32 (7), 1456 (2011). DOI: 10.1002/jcc.21759
- [28] Е.М. Рогинский, Ю.Ф. Марков, А.И. Лебедев. ЖЭТФ, 155 (5), 855 (2019). DOI: 10.1134/S0044451019050092
 [E.M. Roginskii, Y.F. Markov, A.I. Lebedev. J. Experiment. Theor. Phys., 128 (5), 727 (2019). DOI: 10.1134/S1063776119030208].
- [29] R. Dovesi, V.R. Saunders, C. Roetti, R. Orlando, C.M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll,

N.M. Harrison, I.J. Bush, P. D'Arco, M. Llunell, M. Causà, Y. Noël, L. Maschio, A. Erba, M. Rerat, S. Casassa. *CRYSTAL17 User's Manual* (University of Torino, Torino, 2017).

- [30] H.J. Monkhorst, J.D. Pack. Phys. Rev. B, 13 (11), 5188 (1976).
 DOI: 10.1103/PhysRevB.13.5188
- [31] C.G. Broyden. IMA J. Appl. Math., 6, 76 (1970).
- [32] R. Fletcher. Comput. J., 13, 317 (1970).
- [33] D. Goldfarb. Math. Comput., 24, 23 (1970).
- [34] F. Shanno. Math. Comput., 24, 647 (1970).
- [35] F. Pascale, C.M. Zicovich-Wilson, F. Lopez, B. Civalleri, R. Orlando, R. Dovesi. J. Comput. Chem., 25 (6) 888 (2004).
 DOI: 10.1002/jcc.20019
- [36] C.M. Zicovich-Wilson, F. Pascale, C. Roetti, V.R. Saunders,
 R. Orlando, R. Dovesi. J. Comput. Chem., 25 (15), 1873 (2004). DOI: 10.1002/jcc.20120
- [37] P. Umari, A. Pasquarello, A. Dal Corso. Phys. Rev. B, 63 (9), 094305 (2001). DOI: 10.1103/PhysRevB.63.094305
- [38] X. Gonze, C. Lee. Phys. Rev. B, 55 (16), 10355 (1997).
 DOI: 10.1103/PhysRevB.55.10355
- [39] R. Resta. Rev. Mod. Phys., 66 (3), 899 (1994).DOI: 10.1103/RevModPhys.66.899
- [40] C. Carteret, M. De La Pierre, M. Dossot, F. Pascale, A. Erba, R. Dovesi. J. Chem. Phys., **138**, 014201 (2013).
 DOI: 10.1063/1.4772960
- [41] M. Ferrero, M. Rérat, R. Orlando, R. Dovesi. J. Chem. Phys., 128, 014110 (2008). DOI: 10.1063/1.2817596
- [42] A. Erba, R. Dovesi. Phys. Rev. B, 88 (4), 045121 (2013).
 DOI: 10.1103/PhysRevB.88.045121
- [43] L. Maschio, B. Kirtman, M. Rerat, R. Orlando, R. Dovesi.
 J. Chem. Phys., 139, 164102 (2013). DOI: 10.1063/1.4824443
- [44] R.D. Shannon. Acta Cryst. A, 32, 751 (1976).
- [45] В.М. Фридкин, Т.Г. Головина, А.Ф. Константинова, Е.А. Евдищенко. Кристаллография, 67 (4), 532 (2022). DOI: 10.31857/S0023476122040087 [V.M. Fridkin, T.G. Golovina, A.F. Konstantinova, E.A. Evdishchenko. Crystallography Reports, 67 (4), 494 (2022). DOI: 10.1134/s1063774522040083].
- [46] I. Petousis, D. Mrdjenovich, E. Ballouz, M. Liu, D. Winston, W. Chen, T. Graf, T.D. Schladt, K. Persson, F.B. Prinz. Sci. Data, 4, 160134 (2017). DOI: 10.1038/sdata.2016.134
- [47] R. Demichelis, H. Suto, Y. Noel, H. Sogawa, T. Naoi, C. Koike, H. Chihara, N. Shimobayashi, M. Ferrabone, R. Dovesi. Mon. Not. R. Astron. Soc., 420, 147 (2012). DOI: 10.1111/j.1365-2966.2011.20018.x
- [48] W.W. Rudolph, M.H. Brooker, P.R. Tremaine. J. Solution Chem., 28 (5), 621 (1999). DOI: 10.1023/A:1022691117630
- [49] V. Karadjova, D. Stoilova. J. Crystall. Process and Technology, 3, 136 (2013). DOI: 10.4236/jcpt.2013.34022
- [50] D. Liu, H.M. Lu, J.R. Hardy, F.G. Ullman. Phys. Rev. B., 44 (14), 7387 (1991). DOI: 10.1103/PhysRevB.44.7387