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Features on the graphs of thermal characteristics of metals

in the absence and presence of phase transitions
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It is shown that the model of a two-phase system for the first time made it possible not only to calculate the

temperature dependences of the heat capacities and thermal expansion coefficients of a number of metals in the

ranges of the studied temperatures, but also to calculate their values outside these intervals. The relationship

between the appearance of features in the form of
”
peaks“ and

”
pits“ on the graphs with the course of phase

transitions and processes in phase subsystems has been established. It has been demonstrated that in the region

close to absolute zero, compression of crystals of metals of hexagonal and cubic syngonies is possible with an

increase in temperature in the direction perpendicular to the axis of the applicate.
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1. Introduction

Experimental studies of thermal expansion and heat

capacity of metals in wide temperature range are accom-

panied by monitoring of features of their behaviour [1–5].
They manifest in form of

”
peaks“ and

”
pits“, occurred in

region of implementation of one or another phase (poly-
morphous, magnetic, aggregate transition.

”
Approximation

of experimental data is performed by different methods:

using combination of Debye and Einstein functions, using

spline functions, polynomial dependencies etc.“ [6, p. 8].
But no one of the proposed theoretical constructions

describes the heat capacity graphs in the presence of phase

transition [6; 7, p. 183].
In paper [8] a simple thermodynamic model of two-phase

system is presented, using it thermo- and chronochanges

of amorphous alloys [9–13] were adequately described, as

well as base lines of temperature dependences of heat

capacities and thermal expansion coefficients of different

substances [14].
This paper objective is description based on ratio [14] of

graphs of heat capacity of metals upon presence in region

of experimental study of phase transition and behaviour of

main components of tensor of coefficients of linear thermal

expansion of anisotropic crystals of hexagonal and cubic

crystal systems near absolute zero, as well as changes in

the indicated thermal characteristics in wide temperature

ranges.

2. Features on graph of heat capacity
of metals

Substantial heat capacity of a substance taking into

account
”
kinetic“ contribution is calculated as per [14] by

formula

C(T, x , u) = k1T + k2x + k3Tu, (1)

where T — temperature, x — bulk proportion of formed

phase, u = dx/dT — its first derivative with respect to

temperature, k i (i = 1, 2, 3) — coefficients. Constancy of

function f (x , u) in formula (19) of paper [14] is associated
with the supposition that main contribution to its value is

provided by point of phase transition determining height

(depth) of extremum. This is associated with limitation of

function f (x , u) in temperature range of implementation of

kinetic formation of
”
peak“ (

”
pit“). The bulk proportion x

is calculated from ratio [8]:

x(T ) = 0.5[1− thϕ(T )], (2)

where argument ϕ(T ) = a((Tx/T ) − 1), a = 2Tx ux —
model parameter, ux = u(Tx ) — extreme value of derivative

dx/dT , calculated at temperature Tx of maximum heat

release.

During experimental study of substance the total mani-

festation is considered: redistribution of atoms in space,

presence of volatile components and phase transitions,

progress of chemical reactions etc. These kinetic processes

can change the temperature dependence of substance

heat capacity. Figure 1 demonstrated curves of heat

capacity (1) of model substance at values of parameters

a = 10, Tx = 125K, k1 = 0.05, k2 = 40 and k3: 1 — (−6),
2 — 0, 3 — 6.

Said processes occur not only in basic phase, but in its

subsystems of quasiparticles (phonons, magnons etc.). Their
effect on the experimental curves is manufested as

”
peaks“

and
”
pits“, which extremums are located near temperature

of phase transitions. If in the new phase the effect of its

own kinetic processes is insignificant, and the subsystem of
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Table 1. Parameters of theoretical model to calculate temperature dependences of metal heat capacity

Metal a a(1/2) Tx K Tx(1/2) K Tpl
◦C k1/(1/2) · 10

4 k2/(1/2) k3/(1/2)

Ag 0.65 10.0 73 1293 1274 49.5/0 32.0/0 0/0.52

Ni 0.56 13.8 156 562 (631∗) 1455 50/0 38.7/0 0/1.4

Rh 0.85 − 115 − 1963 62 31.54 −

Ti∗∗∗ 0.53 6.0/10.0 153 1288/1844 (1156∗∗) 1941 46/0/0 37.9/0/0 0/−0.9/0.6

No t e. ∗ — Curie temperature [15, p. 192]
∗∗ — polymorphic transformation temperature α → β [16, p. 242]
∗∗∗ — heat capacity of Ti was calculated considering polymorphic transformation sequence as per formula (4).

the type i contributes only to
”
kinetic“ (k) component of

formula (1), i. e.

Ck(i) = k3(i)Tu(i), (3)

then graphs of temperature dependence of heat capa-

city at values of model parameters a = 2.5, Tx = 100K,

k1 = 0.05, k2 = 40, a (i) = 20, Tx(i) = 250K, k1(i) = 0.05,

k2(i) = 30 and k3(i): 1 — (−1.5), 2 — 0, 3 — 2.5 are

shown in Figure 2.

Most often, this type of dependence of heat capacity on

temperature is observed in pure metals. Table 1 presents the

parameters of the model of four metals for which in the ex-

perimental study interval (Figure 3): a — there are no phase

transitions (black circles — data [1], black squares — [3],
white triangles — [4]); b — change in the aggregate state

is observed (squares — data [1], circles — [3], triangles —
[4]); c — polymorphic transformations occur (squares —
data [1], circles — [3]); d — a magnetic phase transition

occurs (squares — data [1], circles — [3]).
Figure 3 shows experimental data and calculations of

theoretical temperature dependences of heat capacities of

metals (lines of dots in graphs indicate path of base curve

of heat capacity upon feature absence). Note that graph of
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Figure 1. Heat capacity of model substance vs. temperature upon

presence of kinetic processes.
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Figure 2. Graph of heat capacity of model substance upon

implementation of phase transition in subsystem i at temperature

T = 250K.

heat capacity for titanium Ti (Figure 3, c) was plotted as per

formula

C = k1T + k2x + k3(1)Tu(1) + k3(2)Tu(2), (4)

where values in equation (4) are set by ratio

u(1) = dx (1)/dT, x (1)T = 0.5[1 − th, ϕ1(T )],

ϕ1(T ) = a (1)

(

(Tx(1)/T ) − 1
)

, u(2) = dx (2)/dT,

x (2)T = 0.5[1− th, ϕ2(T )], ϕ2(T ) = a (2)

(

(Tx(2)/T ) − 1
)

,

k3(2) = 0.6, a (2) = 10.0, Tx(2) = 1844K.

Thus, Figure 3 demonstrates applicability of theoretical

model to describe experimental data in wide range of

temperatures. Features in the temperature dependences

of the heat capacity and the thermal expansion coefficient

(TEC) can manifest themselves not only in the form

of
”
peaks“ and

”
pits“. Their appearance is determined

by the phenomena and processes occurring in the phase

subsystems: changes in their compositions; removal of

internal stresses; subsystems transition to metastable state;
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Figure 3. Temperature dependence of heat capacity: a — rhodium Rh in the absence of phase transitions; b — silver Ag in the presence

of transition to new aggregate state; c — titanium Ti taking into account the sequence of polymorphic transformations; d — nickel Ni

during magnetic phase transition.

rearrangement of components, defects and quasiparticles

in space; occurrence of vector fields, etc. From the

mathematical point of view, they influence the shape of the

temperature curves through expressions such as the second

and third terms in the calculation formula (1). Hence,

the experimental data on the temperature dependences of

the TEC are influenced by: elastic stresses, if the sample

was not pre-annealed; defects (e.g. vacancies), which at

room temperature are in
”
frozen“ state; impurities and

quasiparticles that can contribute to the occurrence of

”
static“ and/or

”
kinetic“ effects. In this relation let’s consider

TEC calculation for some metals.

3. Effect of subsystems on thermal
expansion of anisotropic crystals

Isotropic solid bodies are characterized by same value of

TEC in all directions. Major of crystals are anisotropic and

upon heating demonstrate uniform deformation εi j [17,18].

Upon change in sample temperature by value 1T tensor of

deformations is

εi j = αi j1T, (5)

where αi j — symmetric tensor of second rank of linear

TEC. If we select main directions of tensor of deformations

εi j as coordinate axes then tensor (5) accepts the diagonal

appearance. The main diagonal contains the components

ε1 = α111T, ε2 = α221T, ε3 = α331T, (6)

here αii(i = 1, 2, 3) — own values of tensor of linear TEC.

”
For crystals of hexagonal and trigonal crystal systems, the

expansion coefficient is determined in two directions —
parallel and perpendicular to the axis of the sixth (third)
order. At that α11 = α22 = α⊥, α33 = α‖“ [18, c. 32],
αc p = (2α⊥ + α‖)/3.
According to Neumann principle [17,18] upon absence of

phase transformations the thermal expansion (compression)
has crystal symmetry both during heating, and during

Physics of the Solid State, 2024, Vol. 66, No. 7
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Table 2. Parameters of theoretical model to calculate temperature dependences of metal LTEC

Metal a1/(2) a(1) Tx1/(2) , K Tx(1), K Tpl,
◦C q1/(1/2) · 10

4 q2/(1/2) q3/(1/2)

Cd
α‖ 0.750 0 52 0 321 17 39 0

α⊥ 0.490 0 60 0 321 600 12 −20.6

Zn
α‖ 0.729 6.30 59 693 419.5 0/37/0 0/37.4/0 0/1.2/0

α⊥ 0.900 0 61 0 419.5 0/0/240 0/0/8.1 0/0/ (−14.2)

Cr 0.800 0.44 180 43 1890 28/0 9.8/0 0/(−1.44)

α-Mn
[5] 0.940 0.98 106 16 1245 209 25 0/(−12.0)/(−1.7)

[20] 0.790 0 120 0 1245 220.8 23 0
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Figure 4. LTEC of cadmium Cd (a) and zinc Zn (b) vs.

temperature: 1 — α‖; 2 — α⊥.

cooling. In other words, regardless of temperature the

crystal relates to one or another crystallographic class.

The eigenvalues of the tensor of linear TEC are generally

determined by different temperature dependences. Note that

in the vicinity of absolute zero, where even thermal fluctu-

ations
”
freeze out“ the graphs of the principal components

of the TEC tensor may have features due to
”
static“ and/or

”
kinetic“ effects.

Considering Gruneisen second ratio (see, for exam-

ple, [18, p.13; 19, p. 26]) and formula (1) the linear thermal

expansion coefficient (LTEC) in any direction can be
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Figure 5. Temperature dependence of LTEC of chromium Cr (a)
and region increasing in vicinity of absolute zero (b).
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Figure 6. LTEC of magnesium α-Mn vs. temperature (a) and

region increasing in vicinity of absolute zero (b).

calculated by formula

α(T, x , u) = q1T + q2x + q3Tu, (7)

where qi (i = 1, 2, 3) — model coefficients. In formula (7)
first term describes effect on thermal expansion of body

of electronic subsystem; second — change in composition

of phase i. e. is responsible for
”
static“ effects; third —

describes contribution to LTEC of
”
kinetic“ processes

associated with
”
rate“ (first derivative of phase composition

with respect to temperature) change of bulk proportion of

phase.

As examples Table 2 shows model parameters of four

metals to calculate their LTEC by formula (7). Crystals

of cadmium Cd and zinc Zn relate to hexagonal crystal

system. Their temperature dependences of LTEC are shown

in Figure 4. For cadmium Cd: α‖ (1) (white squares —
data [1]) and α⊥ (2) (black circles — data [18]) —
in Figure 4, a; for zinc Zn: α‖ (1) (white squares —
data [20], black triangles — [1]) and α⊥ (2) (white circles —

data [18]) — in Figure 4, b respectively. Figure 4, a, b shows

effect of
”
kinetic“ process of phase composition change on

temperature course α⊥ . Figure 4, b shows feature as
”
peak“,

its occurrence is associated with zinc Zn transition to new

aggregate state at temperature 693K (Tpl. = 419.5 ◦C).
Crystals of chromium Cr and manganese α-Mn have

body-centered cubic lattice (cubic crystal system). Figure 5

shows the temperature dependence of LTEC of chromium

Cr (Figure 5, a : black squares — data [5], white circles —
[18]), while the enlarged region in the vicinity of absolute

zero (Figure 5, b) demonstrates the influence of
”
kinetic“

rearrangement of the subsystem, the heat release extremum

of which is at temperature T = 43K. Figure 6 shows

course of temperature curves of LTEC of manganese

α-Mn (Figure 6, a : black triangles — data [5]; white

circles — [20]) and region increasing in vicinity of absolute

zero (Figure 6, b). For theoretical description of data [20] it
was necessary to consider both own

”
kinetic“, and

”
static“

effects, i. e. calculate as per formula

α = q1T + q2x + q3Tu + q2(1)x (1), (8)

where x (1)(T ) = 0.5[1 − th, φ(1)(T )], φ(1)(T ) =
= a (1)((Tx(1)/T ) − 1), q2(1) = −1.7, a (1)=0.98, Tx(1)=16K.

The appearance of the
”
static“ effect is apparently

associated with the
”
freezing“ of thermal fluctuations or

the displacement of defects and other nonequilibrium states

to the crystal boundaries.

4. Conclusion

One of the unsolved problems of solid body physics is the

theoretical description of the thermal characteristics of mat-

ter not only in the intervals of experimental study, but also

outside this area. Besides, the appearance of
”
peaks“ and

”
pits“ on the temperature dependences of heat capacities

and thermal expansion coefficients of various substances,

the occurrence of negative values of the relative elongation

of samples in any direction in the vicinity of absolute zero

significantly complicate the formulated problem. So, in

present paper we first suggests the approach to calculation

of thermal heat capacities and thermal expansion coefficients

based on ratios of thermodynamic model of two-phase

system. Good agreement between theoretically calculated

curves and experimental data indicates the reliability of the

initial assumptions of the model and the wide range of its

applicability.
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