07.3

Зависимость длины волны генерации от оптических потерь в лазере на квантовых точках

© Н.В. Крыжановская¹, И.С. Махов¹, А.М. Надточий^{1,2}, К.А. Иванов¹, Э.И. Моисеев¹, И.А. Мельниченко¹, С.Д. Комаров¹, С.А. Минтаиров², Н.А. Калюжный², М.В. Максимов³, Ю.М. Шерняков², А.Е. Жуков¹

¹ Национальный исследовательский университет "Высшая школа экономики", Санкт-Петербург, Россия

² Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия

³ Санкт-Петербургский национальный исследовательский Академический университет им. Ж.И. Алфёрова РАН, Санкт-Петербург, Россия

E-mail: zhukale@gmail.com, aezhukov@hse.ru

Поступило в Редакцию 26 июня 2024 г. В окончательной редакции 11 июля 2024 г. Принято к публикации 12 июля 2024 г.

Исследована зависимость положения линии лазерной генерации от оптических потерь в полосковых лазерах, содержащих различное число слоев плотных массивов квантовых точек InGaAs/GaAs (квантовых ям-точек). Получено аналитическое выражение, устанавливающее в явном виде связь положения максимума спектра усиления с величиной усиления в максимуме для массива с гауссовской плотностью состояний. Продемонстрировано хорошее согласие предсказаний модели с экспериментальными данными. Насыщенное модовое усиление оценено как 51 сm⁻¹ на слой.

Ключевые слова: квантовые точки, полупроводниковый лазер, спектр усиления, неоднородное уширение.

DOI: 10.61011/PJTF.2024.21.58962.20039

Прогресс в реализации полупроводниковых микролазеров и лазеров на кремнии во многом обусловлен использованием в качестве активной области эпитаксиальных массивов квантовых точек (КТ) [1-3]. Важное значение для практики имеет знание соотношений между плотностью тока накачки, величиной оптического усиления и спектральным положением максимума усиления, так как они устанавливают основные приборные характеристики лазера (пороговую плотность тока, длину волны генерации) в зависимости от оптических потерь. Для лазеров на основе КТ было детально исследовано влияние накачки на оптическое усиление и предложено несколько аппроксимирующих выражений, позволяющих учесть линейную зависимость на начальном участке и последующее насыщение усиления [4,5]. Для нахождения формы спектра усиления КТ было предложено использовать функцию Гаусса для плотности состояний массива КТ [6]. В то же время отсутствует какая-либо модель, позволяющая в явном виде описать связь спектрального положения максимума усиления с величиной усиления в максимуме. В настоящей работе мы исследуем как экспериментально, так и с помощью полученного аналитического выражения зависимость положения линии генерации плотного массива КТ InGaAs/GaAs от оптических потерь в полосковых лазерах с резонатором Фабри-Перо.

Исследуемые гетероструктуры были синтезированы методом газофазной эпитаксии из металлоорганических соединений на подложках n^+ -GaAs, отклоненных на 6° от плоскости (100). Активная область содержала $N_{\rm QD} = 2$, 4 или 6 слоев КТ, формируемых осаждением

In_{0.4}Ga_{0.6}As (около 2 nm), разделенных спейсерами GaAs толщиной 40 nm. Такие KT, также называемые квантовыми ямами-точками, характеризуются высокой плотностью и, как следствие, высоким материальным усилением (около $1.5 \cdot 10^4$ cm⁻¹ на один слой [7]), более характерным для квантовых ям, благодаря чему и получили свое название. Общая толщина волноводного слоя составляла около $0.8 \,\mu$ m. Эмиттерные слои Al_{0.4}Ga_{0.6}As имели толщину по $1.5 \,\mu$ m и были градиентно легированы Zn (*p*) и Si (*n*). Для такой конструкции лазерного волновода фактор оптического ограничения составляет около 0.37% на один слой KT [7], что позволяет оценить величину насыщенного модового усиления G_{sat} около 55 cm⁻¹.

Полосковые лазеры имели ширину $100 \,\mu$ т и длину *L* в диапазоне от 0.25 до 4 mm. Грани формировались скалыванием и не покрывались диэлектриком. На рис. 1, *a* показаны измеренные при комнатной температуре пороговая плотность тока J_{th} и длина волны излучения на пороге лазерной генерации λ_{th} в зависимости от длины резонатора. Наблюдается увеличение J_{th} и коротковолновый сдвиг λ_{th} при уменьшении *L*. Лазерные диоды с бо́лышим числом слоев КТ обладают большей пороговой плотностью тока и более длинноволновой линией излучения.

Были вычислены потери на вывод излучения: $\alpha_{out} = \ln(R^{-1})/L$, где коэффициент отражения граней Rполагали равным 0.3. Исходя из зависимости внешней дифференциальной эффективности от L были определены внутренние потери $\alpha_{in} = 1.0$, 1.5 и $1.9 \,\mathrm{cm}^{-1}$ для $N_{\rm OD} = 2, 4$ и 6. Затем было вычислено значение модового

Рис. 1. Зависимости пороговой плотности тока (квадраты) и длины волны на пороге генерации (кружки) от длины резонатора (*a*) и модового усиления от плотности тока (*b*) для лазеров с числом слоев КТ $N_{\text{QD}} = 2$ (*1*), 4 (*2*) и 6 (*3*).

усиления, требуемое для начала лазерной генерации в расчете на один слой КТ: $G_{th} = (\alpha_{out} + \alpha_{in})/N_{\rm QD}$. Оно показано на рис. 1, *b* в зависимости от плотности тока накачки, приходящейся на один слой КТ: $j_{th} = J_{th}/N_{\rm QD}$. В лазерах с $N_{\rm QD} = 2$ и 4 эти зависимости близки друг к другу и не демонстрируют заметного насыщения. Как мы полагаем, это связано с тем, что измеренные значения G_{th} заметно меньше G_{sat} , что делает невозможным определение значения последнего. Лазеры с $N_{\rm QD} = 6$ характеризуются более высокими плотностями тока, что может быть связано с более сильной безызлучательной рекомбинацией в этой эпитаксиальной структуре. Таким образом, зависимости $G_{th}(j_{th})$ не носят универсального характера для лазеров с различным $N_{\rm QD}$, несмотря на номинальную идентичность всех КТ.

Рис. 2 иллюстрирует взаимосвязь между энергией фотонов E_{th}, отвечающей линии генерации, и модовым усилением G_{th} на пороге генерации. Как видно, рост E_{th} вызывает увеличение G_{th} . При этом для лазерных структур с различным N_{QD} зависимости оказываются весьма близкими (в пределах ±2 meV). В лазере с резонатором Фабри-Перо (а также в дисковом лазере не слишком малого диаметра) оптические потери не зависят от длины волны, а спектральное расстояние между соседними модами резонатора мало. В этом случае значение E_{th} задается максимумом спектра модового усиления G(E), при том что усиление в максимуме уравновешивает потери, т.е. $G(E_{th}) = G_{th}$. В свою очередь спектр усиления определяется спектральной формой приведенной плотности состояний ансамбля КТ $\rho(E)$ и степенью инверсии заселенности: $G(E) = G_{sat}\rho(E)[f_e(E_e) + f_h(E_h) - 1]$. Здесь $f_{e(h)}$ и E_{e(h)} — степень заполнения и энергия электронного (дырочного) уровня КТ, причем $E = E_e - E_h$. Наличие разброса размеров (а также других параметров) КТ ведет к неоднородному уширению плотности состояний вблизи Е₀ — средней энергии оптического перехо-

Рис. 2. Модовое усиление на пороге генерации на один слой КТ в зависимости от энергии излучения. Символы — эксперимент: $N_{\text{QD}} = 2$ (1), 4 (2) и 6 (3), линия — аппроксимация выражением (3). На вставке — спектр фототока (линия) и аппроксимация функцией Гаусса (квадраты).

да. Когда массив КТ близок к полному заполнению $(f_{e,h} \approx 1)$, максимум спектра усиления приближается к E_0 , а усиление в максимуме — к G_{sat} .

Для описания в явном виде связи между спектральным положением линии генерации E_{th} и усилением G_{th} (оптическими потерями) положим, что $\rho(E)$ хотя бы с длинноволновой стороны (для $E < E_0$) описывается функцией Гаусса $\rho(E) = \exp[-(E - E_0)^2/(2\sigma^2)]$, где σ отражает величину неоднородного уширения. Допустим также, что заполнение ансамбля КТ имеет равновесный характер [6] и $f_{e,h}$ могут быть выражены через энергии Ферми $F_{e,h}$ электронов (дырок): $f_{e,h} = [1 + \exp(\pm(E_{e,h} - F_{e,h})/E_T)]^{-1}$, E_T — тепловая

энергия; знак "плюс" соответствует электронам, знак "минус" — дыркам. Наконец, потребуем выполнения локальной электронейтральности $f_e(E_e) = f_h(E_h)$, что эквивалентно $(E_e - F_e) = -(E_h - F_h)$. С учетом принятых допущений нормированный спектр усиления принимает вид

$$g = \exp\left(-\frac{\varepsilon^2}{2s^2}\right) \left(\frac{2}{1 + \exp\left(\frac{\varepsilon - \varphi}{2}\right)} - 1\right), \qquad (1)$$

 $g \equiv G/G_{sat}$, $\varepsilon \equiv (E - E_0)/E_T,$ гле $s \equiv \sigma/E_T$, усиления $\varphi \equiv (F_e - F_h - E_0)/E_T.$ Форма спектра проиллюстрирована на вставке к рис. 3. Неоднородное приводит тому, максимум уширение к что $\varepsilon_{th} \equiv (E_{th} - E_0)/E_T$ спектра усиления сдвинут влево относительно центра плотности состояний, т.е. $\varepsilon_{th} < 0$. По мере увеличения нормированной энергии Ферми φ усиление $g_{th} \equiv G_{th}/G_{sat}$ растет, приближаясь к единице, а ε_{th} стремится к нулю.

Приравнивая $dg/d\varepsilon = 0$, получаем

$$\frac{\xi}{(1+\xi)^2} + \frac{\varepsilon_{th}}{s^2} \left(\frac{2}{1+\xi} - 1\right) = 0.$$
 (2)

Здесь $\xi \equiv \exp((\varepsilon_{th} - \varphi)/2)$. Решая (2) относительно ξ и подставляя затем в (1), находим в явном виде искомое соотношение между g_{th} и ε_{th} :

$$g_{th} = \left(\frac{4}{2 + s^2/\varepsilon_{th} + \sqrt{4 + s^4/\varepsilon_{th}^2}} - 1\right) \exp\left(-\frac{\varepsilon_{th}^2}{2s^2}\right).$$
(3)

Чем больше нормированное уширение плотности состояний *s*, тем дальше сдвинут максимум спектра ε_{th} относительно нуля при одном и том же значении g_{th} (рис. 3). Когда $|\varepsilon_{th}| \gg s^2$, предэкспоненциальный множитель в (3) упрощается к виду $-s^2/(4\varepsilon_{th})$, а когда $|\varepsilon_{th}| \ll s^2$ — к виду $(1 + \varepsilon_{th}/s^2)/(1 - \varepsilon_{th}/s^2)$. Эти предельные случаи показаны на рис. 3 штриховой и пунктирной линиями соответственно. Если также $\varepsilon_{th}^2 \ll s^2$, экспонента может быть заменена на единицу.

На вставке к рис. 2 показан спектр фототока [8] волноводного фотодиода длиной 0.2 mm, изготовленного из гетероструктуры, аналогичной исследованным и содержащей один слой КТ. При малой длине поглощающей области форма спектра фототока определяется формой спектра поглощения, которая в свою очередь $\propto \rho(E)$. Подгонка длинноволнового края спектра с помощью функции Гаусса позволила определить $E_0 = 1179 \pm 2 \,\mathrm{meV}$ и $\sigma = 35 \pm 2 \,\mathrm{meV}$ (s = 1.353). Для расчета с помощью (3) абсолютных значений G_{th} и *Е_{th}* требуется также знание величины насыщенного усиления G_{sat}. Наилучшее согласие расчетных значений со всей совокупностью экспериментальных результатов было получено для $G_{sat} = 51 \, \text{cm}^{-1}$ на слой (рис. 2). Неточность определения Е0 ведет к ошибке в определении G_{sat} около 5 сm⁻¹.

Таким образом, обнаружено, что зависимость порогового усиления (на один слой КТ) от положения

Рис. 3. Зависимость нормированного усиления от нормированной энергии. Символы — расчет (3) для различных значений величины уширения *s*, линии — предельные случаи для s = 1.3. На вставке — спектры усиления, рассчитанные (1) для различной нормированной энергии Ферми φ .

линии генерации воспроизводится при изменении числа слоев плотных массивов КТ (квантовых ям-точек) InGaAs/GaAs. Предложена модель, позволяющая описать в аналитическом виде эту зависимость для КТ любого типа, обладающих гауссовской плотностью состояний. Наклон зависимости определяется отношением энергетического уширения оптического перехода КТ к тепловой энергии. Выполненные расчеты удовлетворительно описывают экспериментальные данные, в том числе и для лазеров, для которых зависимость усиления от плотности тока отклоняется от общего поведения. Единственным подгоночным параметром является величина насыщенного модового усиления, которое оценено как $51 \pm 5 \,\mathrm{cm}^{-1}$ на слой. Модель позволяет предсказать спектральное положение линии излучения при модификации лазерного резонатора, а кроме того, оценить величину оптических потерь по положению линии генерации. Последнее важно для тех случаев, когда соотношение между параметрами конструкции резонатора и потерями точно неизвестно (например, для микродисковых резонаторов).

Финансирование работы

Измерения пороговых токов и длины волны генерации выполнены в рамках Программы фундаментальных исследований НИУ ВШЭ. Расчет модового усиления и моделирование зависимости усиления от длины волны выполнены за счет гранта Российского научного фонда № 22-72-10002, https://rscf.ru/project/22-72-10002/.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- C. Shang, Y. Wan, J. Selvidge, E. Hughes, R. Herrick, K. Mukherjee, J. Duan, F. Grillot, W.W. Chow, J.E. Bowers, ACS Photon., 8, 2555 (2021).
 DOI: 10.1021/acsphotonics.1c00707
- [2] A.E. Zhukov, N.V. Kryzhanovskaya, E.I. Moiseev, M.V. Maximov, Light Sci. Appl., 10, 80 (2021).
 DOI: 10.1038/s41377-021-00525-6
- [3] V. Cao, J.-S. Park, M. Tang, T. Zhou, A. Seeds, S. Chen, H. Liu, Front. Phys., 10, 839953 (2022).
 DOI: 10.3389/fphy.2022.839953
- [4] A.E. Zhukov, A.R. Kovsh, V.M. Ustinov, A.Yu. Egorov, N.N. Ledentsov, A.F. Tsatsul'nikov, M.V. Maximov, Yu.M. Shernyakov, V.I. Kopchatov, A.V. Lunev, P.S. Kop'ev, D. Bimberg, Zh.I. Alferov, Semicond. Sci. Technol., 14, 118 (1999). DOI: 10.1088/0268-1242/14/1/020
- [5] H. Su, L.F. Lester, J. Phys. D: Appl. Phys., 38, 2112 (2005).
 DOI: 0.1088/0022-3727/38/13/006
- [6] L.V. Asryan, R.A. Suris, Semicond. Sci. Technol., 11, 554 (1996). DOI: 10.1088/0268-1242/11/4/017
- [7] N.Yu. Gordeev, M.V. Maximov, A.S. Payusov, A.A. Serin, Yu.M. Shernyakov, S.A. Mintairov, N.A. Kalyuzhnyy, A.M. Nadtochiy, A.E. Zhukov, Semicond. Sci. Technol., 36, 015008 (2021). DOI: 10.1088/1361-6641/abc51d
- [8] A.M. Nadtochiy, N.Yu. Gordeev, A.A. Kharchenko, S.A. Mintairov, N.A. Kalyuzhnyy, Yu.S. Berdnikov, Yu.M. Shernyakov, M.V. Maximov, A.E. Zhukov, J. Lightwave Technol., **39**, 7479 (2021). DOI: 10.1109/JLT.2021.3116261

60