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High-current field emission nanostructure with a ribbon beam
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The issues of the achievability of high current densities of the order 1010-1012 A/m2 and the integral current of

a ribbon electron beam of the order 1−10A for vacuum electronic devices are considered. A resonant tunneling

nanostructure and an electron gun design based on it are proposed.
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High-current electron guns with wide ribbon elec-

tron beams [1,2] are needed for traveling wave tubes

(TWTs) operating in the millimeter and terahertz ranges.

It was demonstrated in [3,4] that current densities up

to 1012−1013 A/m2 may be achieved in resonant-tunneling

nanostructures with one or two quantum wells (grids)
and two or three humps (barriers) at structure sizes up

to 10 nm and anode and grid voltages up to 20V. It is

convenient to fabricate such nanoscale heterostructures in

the form of alternating dielectric and conductive layers with

their thickness ranging from 1 to 2−3 nm. Crystalline

diamond with permittivity ε = 5.6 and an exceptionally high

thermal conductivity is the optimum dielectric material. It

is technologically convenient to use CVD (chemical vapor

deposition) carbon, in particular amorphous diamond with

an s p3 bond fraction up to 88% [5–7], as a dielectric

and highly conductive carbon with predominant s p2 hy-

bridization as metallic layers. Specifically, six-layer graphene

has a thickness of 2 nm. The permittivity of amorphous

diamond is 4.8−5.6. The barriers are then lowered by a

factor of approximately 5. In a diode structure, this raises

the current by 2–4 orders of magnitude (depending on the

barrier height). In a resonant-tunneling structure, this allows

one to achieve a several-fold reduction in anode voltage.

Another possibility is the use of thicker films. A thin film is

metallic if Debye screening length LD =
√
εε0kBT/N/e is

significantly smaller than its thickness. In semiconductors

with a carrier density of N ∼ 1020−1024 m−3, screening

occurs at distances from 1 to 100 nm; in metals, over

a single atomic layer. Densities higher than 1024 m−3

correspond to metallic properties at a thickness of 1 nm.

Specifically, LD = 1.5 · 10−11 m for copper. A high ribbon

beam current may be obtained from a large emitting surface,

but beam compression is required. It is also possible to use

trajectory rotation [8]. The beam current then increases with

length and width of the emitting structure. Its advantage is

that emission proceeds from both sides. The disadvantage

of this structure is a high thermal load (due mostly to

the Nottingham effect in resonant tunneling, which may be

initiated at levels lying significantly lower than the Fermi

level, and to Joule heating). A massive thermostat at the

cathode and pulsed operation are required in this case.

The diagram of a TWT with a slow-wave structure of the

symmetrical comb type with the discussed field emission

structure is shown in Fig. 1. Trajectories were analyzed

in CST Studio Suite. The solution of the 1D Schrödinger

equation (SE) with quantum potential V (s) distributed

along the trajectories of electrons and with summation over

them was used to calculate the current. We assume that the

density of electrons moving normally to the grid is uniform.

Quantum potential profile V (s) was plotted using the

method of multiple images, which was discussed in detail

in [2,4,9]. These profiles for different trajectories remain

virtually identical up to the transit through the grid region

and diverge only after this transit (Fig. 2, a; a small part

of the change in potential near the electron emission points

in Fig. 1 is shown). Following transit, an electron moves

between the grid with potential Ug and the first anode with

potential Ua and is affected by the image force potential

and potential Va(s) = −eUg − e(Ug −Ua)(s − s0)/d(z ). In
this formula, s0 = td + tg — size of the cathode structure

(td is the dielectric material thickness and tg is the grid

thickness), coordinate s is measured along the trajectories,

and d(z ) — length along the trajectory corresponding to

coordinate z of its origin at the cathode. Coordinate s is

measured along the motion trajectory; z = 0 corresponds

to the furthest point (and the maximum trajectory length),
while z = lc corresponds to the nearest point. The image

forces are characterized by potential V0(s), and the overall

potential is V (s) = V0(s) + Va(s). Let us denote the length

of the emitting cathode region as lc and the cathode–anode
distance as la ; D(E, z ) is the transparency (coefficient of

tunneling through potential V (s)) corresponding to point z .
The current density around point z is then

J(z ) =
eme

2π2~3

EFc
∫

0

D(E, z )(EFc − E)dE. (1)

Here, EFc is the Fermi energy at the cathode, and the

temperature is considered to be zero. If the width of
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Figure 1. Diagram of a TWT with a ribbon beam. 1 — Cathode with a pulling grid, 2 — focusing electrode, 3 — anode, 4 — cathode

thermostat, 5 — second anode with a slow-wave structure of the symmetrical comb type, 6 — ribbon electron beam, and 7 — collector.

the structure (along the normal to the plane of Fig. 1) is

w, its total current is I = 2w
lc
∫

0

J(z )dz . Thus, the main

task is to determine the transparency for different electron

energies E at the cathode and different barrier structure

profiles shown in Fig. 2, a, which correspond to various

trajectories. This is done by solving the SE by the method of

transformation of wave impedance ρ(s) = ±iψ±(s)/ψ′
±(s),

where ψ±(s) = A± exp(±iks) are the direct and inverse

wave functions constructed for a constant section of po-

tential V . Two fundamental solutions of the SE are given

here. Thus, k(s) =
√

2me(E −V )/~. At the cathode, the

wave number and the impedance are kc =
√
2meE/~ and

ρc = 1/kc ; at the anode, the corresponding parameters

are ka =
√

2me(E − EFa + eUa)/~ and ρa = 1/ka . The

transformation of wave impedance ρa at the anode to

input impedance Zin at the cathode with the impedance

transformation formula yields the following coefficient of

reflection at the cathode: R = (Zin − ρc)/(Zin + ρc). Since
|R|2 is the probability of particle reflection and the number

of particles remains constant, the transparency is determined

as D = 1− |R|2. A more sophisticated matrix method for

independent determination of R and D was used in [3]. A
stepwise approximation of V (s) with 200 sections was used

for numerical calculations. The exact formula of function

V (s) in the case of two electrodes (cathode at s = 0 and

anode at s = d) was approximated using the expression

from [3,4] V0(z ) ≈ EFc + Wc(1− α/d)[1− (2z/d − 1)4]/ε
and a more accurate expression

V0(z ) ≈ EFc + Wc
(1− α/d)(1 + δc/d)2

ε(1− δc/d)2

×
[

1− δc/d
(

z + δc(1− z/d)
)

(d − z + δcz/d)

]

. (2)

They were obtained for a flat cathode and anode made of

the same material (i.e., with identical work functions (WFs)
Wc = Wa) for coordinate z = s normal to the surfaces.

Formula (2) with the appropriate substitutions was also

used for the grid−anode gap.. Thus, δc = 1/(16πε0Wc).
Constant α corresponds to the Schottky effect and assumes a

value of α ≈ 2.731δc . With WF Wc = 3.6 eV, δc = 0.1 nm.

This is the characteristic distance at which the image

forces become inactive. Formula (2) is fairly accurate

for narrow and wide barriers and defines symmetrical

barrier V0(0) = V0(d) = EFc with a maximum height of

V0(d/2) = EFc + Wc(1− α/d)/ε, which is approximately

equal to EFc + Wc/ε for wide barriers. Other parabolic

approximations (Fig. 2, b) are less accurate (exact results

are denoted with asterisks). The formulae correspond to

the potential measured relative to the bottom of the cathode

conduction band. If the anode voltage is nonzero, formula

V (z ) = V0(z ) − eUa z/d should be used for the potential.

The barrier then becomes asymmetric. In the case of a

vacuum diode, one needs to set ε = 1. We used formula

V (s) = V0(s) − eUa s/d(z ) for the cathode−grid gap at

ε = 5, s = x (vertical coordinate in Fig. 1), and d(z ) = td

and the grid−anode gap with ε = 1 on the assumption that

s ≈ z ′ is the current coordinate along the trajectory and

d(z ) = lc + la − z , where z is the coordinate tied to the

origin of the trajectory and specifying transparency D(E, z )

along it. With the transparency values determined, the cur-

rent was calculated using formula (1). Thus, the anode–grid

potential is Va(z ′) = −eUg − e(Ug −Ua)z ′/(lc + la − z ).

The approximation becomes more accurate as la increases;

its error at td/lc ≪ 1 is on the order of lc/la . A

more accurate treatment of trajectory lengths leads to

complex formulae. The values of lc = 100 nm, w = 10 µm,

la = 1000 nm, Ug = 5V, Ua = 1500V, td = tg = 2 nm,

Wc = Wa = 4.36 eV, and EFc = EFa = 7 eV (copper) were

used to estimate the current. Figure 2 shows the quantum

potential profiles in the initial sections (within 10 nm) for

different voltages, sizes, and emission points (a) and a

comparison of the approximations of V (b). It can be seen

that the shape of potential V (s) between the cathode and

the grid is governed by the grid voltage, while the shape

grid–anode potential is set by the anode voltage and the

grid−anode distance, which specify the slope and length

of a nearly triangular barrier. An electron moves quasi-

classically in the sloped region, but the phase incursion

in the wave function is accurately accounted for in the

SE solution. At a large grid−anode distance, the barrier

transparency values corresponding to different emission

points are virtually equal, simplifying the calculation of the

current.
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Figure 2. a — Distribution of quantum potential V in the structure shown in Fig. 1 along the trajectories with distance s from the

emission point. td = tg = 2 nm, ε = 5 at Ug = 5 (1−5) and 7V (6) for the structure with lc = 10 nm, la = 100 nm (1−4, 6) and the

structure with lc = 100 nm, la = 1000 nm (5). Voltages Ua = 200 (1, 3, 4, 6), 100 (2), and 1500V (5) were set. Curves 1, 2, 5, 6 were

plotted for emission point z = 0; curve 3, for z = lc/2; curve 4, for z = lc . b — Approximation of the variation of quantum potential V
with length z in a resonant tunneling structure with two wells according to formula (5) (curve 1) and by parabolas of the second (2),
fourth (3), and sixth (4) orders. td = tg = 1 nm, Ug = Ua = 0, and ε = 1. EFc = 7 eV and Wc = 4.36 eV in both panels.
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Figure 3. Transparency D as a function of ratio E/EFc for

potential configurations represented by curves 1 (1) and 6 (2)
in Fig. 2, a. Line 3 corresponds to curve 4 in Fig. 2, a with a

platinum grid used.

Figure 3 shows the transparency of barriers for curves 1

and 6 in Fig. 2, a (lines 1 and 2, respectively) and curve 4 in

Fig. 2, a with a platinum grid used (line 3; the WF is 5.5 eV).

Integration in (1) was performed by the Simpson method

with the use of several thousand points, which provides

high accuracy. The formulae for resonant frequencies

and quality factors were given in [3,10], and the authors

of [10] have isolated resonance regions in the integral in

the form of a sum with integration over a region without

resonances. The current–voltage curves are close to similar

curves for nanostructures presented in [3,4]. The barrier

heights (curve 1 in Fig. 2, a) for the copper grid are not

aligned. When a platinum grid with a WF of 5.5 eV is

used instead of the copper one, the second barrier gets

raised by 1.2 eV, and the current increases significantly.

The calculated current value is I = 12.1A (for curve 5 in

Fig. 2, a, w = 100 µm). This is a fairly strong current for an

emission nanostructure with a beam power of 18 kW. It may

be raised via a several-fold increase in voltage at the second

anode; a relativistic beam may be obtained in this case. The

interelectrode distance may also be increased several times

by focusing the beam with a strong magnetic field. A tightly

focusing field has an estimated strength of the order of 1 T.

In the considered structure, the grid actually serves as the

first accelerating electrode, and the anode is the second

electrode. The beam current may be adjusted by varying

the grid voltage. It is impractical to alter the anode voltage,

since the anode and the focusing electrode voltages in the

structure (Fig. 1) are instrumental to ensuring the beam

passage. The main problem is synthesis of the electrode

configuration of the electron-optical system. It is convenient

to set Ug > EFc to secure the possibility of tunneling of

electrons with an arbitrary energy at the cathode. In a

similar vein, one may consider resonant tunneling with a

double or even multi-electrode grid, but, in order to ensure
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ballistic transport, the overall size should not exceed 10 nm,

which makes it impossible to use more than three or four

electrodes. The use of a quasi-periodic Bragg superlattice

with a large number of electrodes (quantum wells) and the

production of a wide resonant tunneling region require low

temperatures.

Thus, a field emission structure with an atomically

smooth emitting surface and a pulling grid with a high-

current high-power ribbon electron beam for pulsed TWTs

operating in the millimeter and terahertz ranges and other

applications was proposed. The grid protects the cathode

from ion bombardment and allows one to modulate the

beam current with a low voltage on the order of a few

volts.
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