О механизме селективного заселения уровня 3*p*₁ атома неона в He–Ne-плазме

© В.А. Иванов, Ю.Э. Скобло

01

Санкт-Петербургский государственный университет, Санкт-Петербург, Россия e-mail: v.a.ivanov@spbu.ru

Поступила в редакцию 06.09.2023 г. В окончательной редакции 02.04.2024 г. Принята к публикации 18.05.2024 г.

В спектроскопических исследованиях гелий-неоновой плазмы, проведенных ранее, была обнаружена ярко выраженная селективность заселения уровня $3p_1$ (по Пашену), верхнего из группы уровней конфигурации $2p^54p$ атома Ne. По мере роста давления гелия в линии $352.05 \text{ nm} (3p_1 \rightarrow 1s_2)$ концентрировалось до 60% интенсивности всех переходов $2p^54p \rightarrow 2p^53s$. В настоящей работе предложен механизм роста относительной населенности уровня $3p_1$ при увеличении давления He, связанный с особенностями столкновительной кинетики состояний $3p_i$ конфигурации $2p^54p$. Причиной значительно более быстрого опустошения нижних уровней $3p_i$ ($i \ge 2$) по сравнению с $3p_1$, по-видимому, являются особенности взаимного расположения адиабатических термов системы Ne $(2p^54p) + \text{He}(1s^{2\,1}S_0)$. Механизм формирования селективного заселения уровня $3p_1$, рассмотренный в данной работе, может реализоваться в смеси гелия с неоном и не может реализоваться в чистом неоне, что соответствует результатам спектроскопических исследований. Проведены модельные расчеты части спектра, относящейся к переходам $3p_1$, $3p_4$, $3p_2 \rightarrow 1s_j$, при фиксированном распределении потоков заселения состояний $3p_1$, $3p_4$, $3p_2$ и различных давлениях гелия. Наблюдается хорошее соответствие результатов численного моделирования.

Ключевые слова: гелий-неоновая плазма, селективное заселение, неупругие столкновения атомов, адиабатические термы, численное моделирование заселения возбужденных состояний.

DOI: 10.61011/OS.2024.07.58890.5540-24

Введение

Селективное заселение отдельных возбужденных состояний атомов и молекул, как правило, является необходимым условием для того, чтобы газовая среда была способна усиливать проходящую через нее световую волну. В работе [1] была рассмотрена возможность селективного заселения возбужденных состояний атома неона конфигурации $2p^54s$: $2s_2$, $2s_3$, $2s_4$, $2s_5$ (в обозначениях Пашена) вследствие передачи возбуждения при столкновениях метастабильных атомов $\text{He}(1s2s\ ^{3}S_{1})$ с атомами неона в основном состоянии. Двумя годами позже был продемонстрирован первый газовый лазер [2], активной средой которого была плазма разряда в смеси гелия с неоном и генерация в котором происходила на инфракрасном переходе 1152.3 nm ($2p^54s$, $2s_2 \rightarrow 2p^5 3p, 2p_4$). Верхний лазерный уровень заселялся в ходе неупругих столкновений метастабильных атомов в триплетном состоянии $\text{He}(1s2s^{3}S_{1})$ с атомами Ne [3]:

$$\operatorname{Ne}(2p^{6}) + \operatorname{He}(1s2s^{3}S_{1}) \to \operatorname{Ne}(2p^{5}4s, 2s_{2}) + \operatorname{He}(1s^{2}S_{0})$$

Генерация гелий-неонового лазера в видимой области на красной линии 632.8 nm $(2p^55s, 3s_2 \rightarrow 2p^53p, 2p_4)$ была получена в работе [4]. Верхний уровень $3s_2$ заселялся в результате передачи возбуждения от метастабильных атомов гелия в синглетном состоянии He $(1s2s^{1}S_{0})$ [3]:

$$Ne(2p^6) + He(1s2s \ {}^1S_0) \rightarrow Ne(2p^55s, 3s_2) + He(1s^2 \ {}^1S_0)$$

Создание гелий-неонового лазера послужило побудительным мотивом к бурному росту количества теоретических и экспериментальных исследований неупругих процессов в смеси гелия с неоном. Обзор результатов этих исследований можно найти в работе [5]. Несмотря на имеющуюся в литературе обширную информацию о неупругих процессах в гелий-неоновой плазме, далеко не все задачи в данной области оказываются решенными.

Так, в экспериментах [6] по исследованию процессов, формирующих спектры излучения плазмы в гелии с малой примесью неона, была обнаружена ярко выраженная селективность заселения верхнего из группы уровней $Ne(2p^54p)$ (рис. 1). Авторы настоящей работы не располагают сведениями о существовании работ, в которых исследовалась бы данная селективность и прежде всего концентрация светового потока переходов $3p_i \rightarrow 1s_j$ в линии 352.05 nm $(3p_1 \rightarrow 1s_2)$ с ростом давления гелия.

В работе [6] эксперименты проводились в диапазоне давлений гелия $p_{\rm He} = 0.08 - 20$ Torr, неона $p_{\rm Ne} = 0.0005 - 0.003$ Torr. Плазма создавалась низкочастотным (40–160 Hz) импульсным разрядом с двумя диэлектрическими барьерами (конструкция разрядной трубки показана на рис. 2), что устраняло эффект катафоретического разделения смеси He-Ne.

С ростом давления Не в линии 352.05 nm $(3p_1 \rightarrow 1s_2)$ концентрировалось более 60% всего светового потока, излучаемого во всех переходах с уровней конфигура-

Рис. 1. Система энергетических уровней атома неона.

Рис. 2. Разрядная трубка диаметром 3.8 cm, длина горизонтальной части разряда 25 cm. О — кварцевые окна, D — диафрагма диаметром 5 mm, T — импульсный трансформатор, El₁, El₂ — электроды в виде медной фольги на внешней поверхности стеклянной трубки.

ции $2p^54p$ (рис. 3). В работе [6] была возможность регистрировать излучение плазмы с высоким временным разрешением как в фазе разряда, так и в фазе послесвечения. Концентрация излучения переходов с уровней $3p_i$ в линии 352.05 nm наблюдалась не только в фазе послесвечения (рис. 3), но и в фазе разряда.

Данный факт на первый взгляд представляется неожиданным, поскольку рост давления и, следовательно, увеличение концентрации атомов и частоты столкновений должны приводить к ускорению релаксации в системе энергетических уровней. Эксперимент, напротив, показывает, что переход к большему давлению гелия

Рис. 3. Спектры послесвечения разряда в смеси He-Ne (a, b, c) и в чистом неоне (d).

приводит к увеличению населенности верхнего уровня $3p_1 2p^54p$ -конфигурации по отношению к населенностям уровней $3p_i$ $(i \ge 2)$, лежащих ниже. Очевидно, что селективное заселение какого-либо уровня может быть обусловлено либо большим потоком заселения данного уровня, либо более интенсивными процессами

Рис. 4. Квазимолекулярные термы системы $Ne(2p^54p, 3p_i) + He$ [7]. Энергия выражена в атомных единицах. Ω — квантовое число проекции полного момента электронной оболочки на ось молекулы, *i* — номер атомного уровня $3p_i$ в обозначениях Пашена.

опустошения других уровней, либо обеими этими причинами. Цель данной работы состояла в том, чтобы исследовать влияние второго варианта реализации селективного заселения. Распределение потоков заселения считалось фиксированным и прослеживалось изменение населенностей, обусловленное ростом давления и, следовательно, скорости переходов между возбужденными состояниями конфигурации $2p^54p$ атома неона вследствие столкновений.

Модель заселения верхних уровней атома Ne конфигурации 2*p*⁵4*p*

Причина менее эффективного девозбуждения состояния $3p_1$ атома Ne при столкновениях с атомами He, чем девозбуждение состояний $3p_i$ $(i \ge 2)$ той же конфигурации, но с меньшей энергией, может быть связана с особенностями взаимного расположения квазимолекулярных термов системы Ne $(2p^54p, 3p_i)$ + He $(1s_2 \, {}^1S_0)$ [7]¹ (рис. 4).

Видно, что верхний квазимолекулярный терм, коррелирующий с состоянием Ne(3p₁), удален от остальных термов системы Ne(2p⁵4p, 3p_i) + He ($i \ge 2$). Как указывается в обзоре [5], из картины взаимного расположения квазимолекулярных термов (рис. 4) следует, что вероятность переходов $3p_1 \rightarrow 3p_i$ ($i \ge 2$) должна быть мала при столкновениях Ne(2p⁵4p, 3p₁) с атомами He. В той же работе говорится, что столкновения

$$Ne(2p^{5}4p, 3p_{i}) + He(1s^{2} {}^{1}S_{0}) \xrightarrow{\sigma_{i_{f}}} Ne(2p^{5}4p, 3p_{f}) + He(1s^{2} {}^{1}S_{0})$$
(1)

значительно более эффективны для переходов между группой уровней $3p_4$, $3p_2$, $3p_5$ и группой $3p_6$, $3p_7$, $3p_8$, $3p_9$. Это подтверждается результатами эксперимента (табл. 1). Сечения σ_{if} достигают значений $10^{-16} - 10^{-15}$ сm² для переходов $i = 2, 4 \rightarrow f = 2, ..., 10$.

Здесь уместно упомянуть, что для конфигурации $2p^53p$ точно так же, как для конфигурации $2p^54p$, малы вероятности переходов с верхнего уровня на нижние $2p_1 \rightarrow 2p_2, 2p_3, \ldots, 2p_{10}$ при тепловых столкновениях $Ne(2p^53p)$ с атомами $He:\langle \sigma_{1f}(T \sim 300 \text{ K}) \rangle \ll 10^{-16} \text{ cm}^2$, поскольку терм системы $Ne(2p_1) + He$ не приближается к термам $Ne(2p_i, i \geq 2) + He$ [5].

Авторы настоящей работы полагают, что причиной увеличения населенности уровня $3p_1$ относительно населенностей лежащих ниже уровней с ростом давления гелия в гелий-неоновой плазме может быть чрезвычайно малая скорость девозбуждения Ne $(3p_1)$ при столкновениях с атомами He, обусловленная особенностями взаимодействия атомов Ne $(2p^54p)$ и He. Оценки показывают, что при давлениях гелия более 3 Тогг скорость столкновительного перемешивания (1) начинает превосходить скорость радиационного распада состояний $2p^54p$ для всех уровней, кроме верхнего $3p_1$. По данным [5] (табл. 1) усредненные по максвелловскому распределению сечения $\langle \sigma_{i1} \rangle$ передачи возбуждения на уровень $3p_1$ составляют 10^{-18} сm². Соответствующие им константы скорости могут быть вычислены по формуле

$$k_{q1} = \langle \sigma_{q1} \rangle \sqrt{\frac{8k_{\mathrm{B}}T}{\pi \mu}}$$

где q = 2, 4; $k_{\rm B}$ — постоянная Больцмана; T — температура газа; μ — приведенная масса сталкивающихся частиц, в данном случае атомов гелия и неона.

Константы скорости k_{14} , k_{12} обратных переходов $3p_1 \rightarrow 3p_4$, $3p_1 \rightarrow 3p_2$, пересчитанные по принципу детального равновесия:

$$k_{1q} = k_{q1} \frac{g(3p_q)}{g(3p_1)} \exp\left[\frac{E(3p_1) - E(3p_q)}{k_{\rm B}T}\right], \qquad (2)$$

остаются на 1-2 порядка меньше констант скорости переходов между нижними уровнями $3p_i$, i = 2, ..., 10.

 $^{^1}$ В дальнейшем для краткости будем опускать символы $1s^{2\,1}S_0$ для основного состояния атома Не.

f	Состояние	Состояние,	ΔE_{4f} , eV	$\langle \sigma_{if} angle, \ 10^{-16} { m cm}^2$	
	по Пашену	<i>jl-</i> связь		<i>i</i> = 4	i = 2
1	3 <i>p</i> ₁	(1/2)[1/2]0	0.0716	10^{-2}	10 ⁻²
4	3 <i>p</i> ₄	(1/2)[3/2]2	0	—	10.6 ± 1.0
2	3 <i>p</i> ₂	(1/2)[1/2]1	-0.0001	7.25 ± 0.45	-
5	3 <i>p</i> ₅	(1/2)[3/2]1	-0.0064	6.72 ± 0.45	9.45 ± 0.90
3	3 <i>p</i> ₃	(3/2)[1/2]0	-0.0381	0.60 ± 0.03	0.77 - 0.06
6	3 <i>p</i> ₆	(3/2)[3/2]2	-0.0831	1.42 ± 0.02	2.22 ± 0.20
7	3 <i>p</i> ₇	(3/2)[3/2]1	-0.0863	0.86 ± 0.03	1.29 ± 0.10
8	3 <i>p</i> ₈	(3/2)[5/2]2	-0.1004	1.80 ± 0.03	2.18 ± 0.20
9	3p9	(3/2)[5/2]3	-0.1089	1.98 ± 0.04	2.72 ± 0.25
10	3 <i>p</i> ₁₀	(3/2)[1/2]0	-0.1477	1.02 ± 0.05	0.72 ± 0.07

Таблица 1. Усредненные по максвелловскому распределению сечения $\langle \sigma_{if}(T \sim 350 \,\mathrm{K}) \rangle$ переходов $3p_i \rightarrow 3p_f$ при столкновениях (1) [5,8], ΔE_{4f} — уровень энергии $3p_f$ относительно уровня $3p_4$

В формуле (2) q = 2 или 4, $g(3p_q)$ и $g(3p_1)$ — кратности вырождения уровней $3p_q$ и $3p_1$ соответственно, $E(3p_1) - E(3p_q)$ — разность уровней энергии $3p_1$ и $3p_q$.

Для проверки возможности объяснения наблюдаемой селективности заселения уровня $3p_1$ были проведены расчеты населенностей N_{3p_1} , N_{3p_4} , N_{3p_2} трех верхних уровней $3p_1$, $3p_4$, $3p_2$ конфигурации $2p^54p$ на основе уравнений баланса:

$$\begin{split} \Gamma_{3p_{1}} &= -N_{3p_{1}} \Big\{ \Sigma_{L} A_{3p_{1} \to L} + \Sigma_{f} [\text{He}] k_{1f} \Big\} + N_{3p_{4}} [\text{He}] k_{41} \\ &+ N_{3p_{2}} [\text{He}] k_{21}, \end{split} \tag{3a}$$

$$\Gamma_{3p_{4}} &= -N_{3p_{4}} \Big\{ \Sigma_{L} A_{3p_{4} \to L} + \Sigma_{f} [\text{He}] k_{4f} \Big\} + N_{3p_{1}} [\text{He}] k_{14} \\ &+ N_{3p_{2}} [\text{He}] k_{24}, \end{aligned} \tag{3b}$$

$$\Gamma_{3p_{2}} &= -N_{3p_{2}} \Big\{ \Sigma_{L} A_{3p_{2} \to L} + \Sigma_{f} [\text{He}] k_{2f} \Big\} + N_{3p_{1}} [\text{He}] k_{12} \\ &+ N_{3p_{4}} [\text{He}] k_{42}, \end{split}$$

(3*c*) $\Gamma_{3p_i}(i = 1, 4, 2)$ — потоки заселения состояний 3*p*₁, 3*p*₄, 3*p*₂; $A_{3p_i \to L}$ — вероятности радиационных переходов: 2*p*⁵4*p*, 3*p*_i \to 2*p*⁵3*s*; 2*p*⁵4*p*, 3*p*_i \to 2*p*⁵4*s*; 2*p*⁵4*p*, 3*p*_i \to 2*p*⁵3*d* [9]; *k*_{if} — константы скорости процессов (1) 3*p*_i \to 3*p*_f, [He] — концентрация атомов гелия. Численное моделирование спектров излучения проводилось в три этапа.

1. По зарегистрированному в эксперименте спектру излучения атома неона в области 335-375 nm $(2p^54p \rightarrow 2p^53s)$ при давлении гелия $p_{\text{He}} = 0.164$ Torr и по вероятностям радиационных переходов [9] определялись населенности N_{3p_1} , N_{3p_4} , N_{3p_2} .

Рис. 5. Результаты численного моделирования спектров излучения в смеси He-Ne.

2. По населенностям N_{3p_1} , N_{3p_4} , N_{3p_2} при $p_{\text{He}} = 0.164$ Torr, вероятностям радиационных

Уровни	Jl-связь	Кратность вырождения 2J + 1	Энергия относительно уровня 3 <i>p</i> 4, meV	N_{3p_i} $p_{\rm He} = 0.164 \rm Torr$	Γ_{3p_i}	N_{3p_i} $p_{\rm He} = 6.4 \rm Torr$	N_{3p_i} $p_{\mathrm{He}} = 20 \mathrm{Torr}$
$3p_1$	(1/2)[1/2]0	1	71.6	2314	$3.678\cdot 10^{10}$	2037	1611
3 <i>p</i> ₄	(1/2)[3/2]2	5	0	11601	$10.21\cdot10^{10}$	2195	820
3 <i>p</i> ₂	(1/2)[1/2]1	3	-0.1	7312	$7.217\cdot 10^{10}$	820	492

переходов [5] и сечениям передачи возбуждения (1) [5,9] (табл. 1) на основании уравнений баланса населенностей (3a - 3c) определялись потоки Γ_{3p_1} , Γ_{3p_4} , Γ_{3p_2} заселения уровней $3p_1$, $3p_4$, $3p_2$. Распределение потоков заселения Γ_{3p_i} фиксировалось и использовалось для вычисления потоков заселения уровней $3p_1$, $3p_4$, $3p_2$ при других давлениях гелия.

3. По полученному для $p_{\text{He}} = 0.164$ Torr распределению потоков Γ_{3p_i} определялись населенности уровней $3p_1$, $3p_4$, $3p_2$ и интенсивности спектральных линий, излучаемых при переходах с этих уровней, для других давлений гелия.

В табл. 2 приведены результаты определения потоков заселения Γ_{3p_i} и населенностей N_{3p_i} в относительной мере. На рис. 5 приведены интенсивности спектральных линий, излучаемых при переходах с уровней $3p_1$, $3p_4$, $3p_2$, которые были рассчитаны по населенностям N_{3p_1} , N_{3p_4} , N_{3p_2} и вероятностям радиационных переходов $2p^54p \rightarrow 2p^53s$ [9].

Результаты и выводы

Сравнение спектров на рис. 3, *a*, *b*, *c* и рис. 5 свидетельствует о сходстве картины модификации экспериментального и модельного спектров при увеличении p_{He} . По мнению авторов, это является аргументом в пользу предложенного механизма селективного заселения уровня $3p_1$.

Рассматриваемый механизм опустошения нижних уровней конфигурации $2p^54p$, не затрагивающий в то же время верхний уровень $3p_1$, должен реализоваться именно для смеси Не-Ne, но не для чистого неона, поскольку существенно связан со спецификой взаимного расположения термов квазимолкул Ne $(2p^54p)$ + He. В чистом неоне не наблюдается и селективное заселение уровня $3p_1$. Линия 352.05 nm ничем принципиально не отличается от других линий неонового спектра в ближней ультрафиолетовой области (рис. 3, d).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- A. Javan. Phys. Rev. Lett., 3, 87–89 (1959). DOI: 10.1103/PhysRevLett.3.87
- [2] A. Javan, W.R. Bennett, Jr. Phys. Rev. Lett., 6, 106–110 (1961). DOI: 10.1103/PhysRevLett.6.106
- W.R. Bennett, Jr. Appl. Opt., 1 (S1), 24–61 (1962).
 DOI: 10.1364/AO.1.S1.000024
- [4] A.D. White, J.D. Rigden. Proc. IRE, 50 (7), 1697 (1962).
 DOI: 10.1109/JRPROC.1962.288157
- [5] A.Z. Devdariani, A.L. Zagrebin, K. Blagoev. Ann. Phys., 17 (5), 365–470 (1992). DOI: 10.1051/anphys:01992001705036500
- [6] В.А. Иванов, Ю.Е. Скобло. Опт. и спектр., 127 (5), 757 (2019). DOI: 10.21883/OS.2019.11.48510.205-19 [V.A. Ivanov, Yu.E. Skoblo. Opt. Spectrosc., 127 (5), 820-824 (2019). DOI: 10.1134/S0030400X19110110].
- [7] А.Л. Загребин, М.Г. Леднев. Опт. и спектр., 69 (6), 1238–1244 (1990).
- [8] V.M. Baran, G.L. Kononchuk, A.V. Yakunov. Ukr. Phys. J., 28, 658 (1983).
- M.J. Seaton, J. Phys. B, **31** (24), 5315-5336 (1998).
 DOI: 10.1088/0953-4075/31/24/013