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Spin dynamics control in a double quantum dot under the conditions

of the electric dipole spin resonance via the tunable spin-orbit coupling
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The effect of the Rashba and Dresselhaus contributions ratio into the spin-orbit coupling is considered on the spin

trajectory on the Bloch sphere induced by the periodic electric field in a GaAs semiconductor double quantum dot

under the conditions of the electrical dipole spin resonance. It is shown that the variations of the Rashba parameter

which can be achieved by the gate voltage lead to the changes for the spin rotation plane in wide limits. The

predicted effect can be used as an additional control parameter for the spin dynamics including the applications for

the design of spin qubits.
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1. Introduction

Structures with quantum dots based on AIIIBV semi-

conductors attract attention due to various possibilities of

joint control of charge and spin degrees of freedom. Due

to the presence of a strong spin-orbit interaction (SOI)
in these structures, the spin can be controlled using an

alternating electric field in the conditions of electric dipole

spin resonance (EDSR) [1,2] when the frequency of the

field ω coincides with the Zeeman splitting 1Z (in the

system of units with ~ = 1). Structures with a double

quantum dot (QD) are of a particular interest, where the

effects of Landau–Zener–Stc̈kelberg–Majorana interference

(LZSM) [3,4] are observed in case of tunneling that

consist in resonant amplification or attenuation of tunneling

under certain conditions with respect to the frequency and

amplitude of the field, as well as the shift of the minimum

potential (detuning) of one QD relative to the other and the

Zeeman splitting of the levels [5,6].

It was shown in our previous studies that the effects

of LZSM interference are nontrivially manifested in spin

dynamics during tunneling under EDSR conditions. In

particular, points appear in the system parameter space in

which the conditions of EDSR in a single QD are satisfied

together with the conditions of resonant tunneling into an

adjacent QD with both spin conservation and spin flip [7].
It was found that in the presence of even weak tunneling

into the second QD in the resonance conditions, the spin

dynamics in the first QD accelerates, and spin rotation

can be controlled on the Bloch sphere not only on the

main harmonic at ω = 1Z, but also on spin resonance

subharmonics at kω = 1Z, where k = 2, 3, . . . [8]. The

evolution on subharmonics proceeds at lower frequencies

ωk = 1Z/k , which can contribute to its realization in

strong magnetic fields, when the base harmonic k = 1 is

poorly achievable over frequency due to hardware limita-

tions. EDSR subharmonics were observed in experiments,

including experiments with double quantum dots in an

InAs-based nanowire on the dependence of the current

passing through the structure in the parameter plane ( f ,B z ),
where f is the frequency of the electric field, and B z is

the amplitude of the constant magnetic field [9]. The

generation of the second EDSR subharmonics was observed

in experiments with QD based on Si/SiGe [10]. Theoretical
predictions about the occurrence of EDSR subharmonics

have been made in a number of other papers [11,12].

Since the value of the amplitude of Rashba’s contribution

to the SOI can be changed using the electric field of

the gates within a fairly wide range, up to 100% of the

initial value [13], the ratio of Rashba and Dresselhaus

contributions to the SOI can be another control parameter

of spin dynamics. We considered mainly Dresselhaus

contribution to SOI in our paper [8]. We consider a different

combination of Rashba and Dresselhaus contributions in

this paper. Our goal is to select such modes for which

the widest possible class of spin rotation operations is

realized with spin resonance and its subharmonics. Spin

rotations in various planes are considered the transition

between which can be made by changing the ratio of Rashba

and Dresselhaus contributions. The possibilities of such

a control parameter open up another way in controlling

spin evolution in semiconductor quantum dots, which can

be useful for information storage and processing tasks on

spintronics devices.

We consider in our paper a coherent, non-dissipative

dynamics at relatively short times of the order of

100−200 periods of the electric field at frequencies of

∼ 2GHz, i. e. at times of about 50−100 ns. These times are
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Figure 1. a — scheme of the lower four levels E1−E4 in a double quantum dot with potential U(x, t) (blue curve) for the Hamiltonian (1).
b — transitions between levels 1, 2 in the right QD and 3, 4 in the left QD with matrix elements α, β, γ for the Hamiltonian matrix

notation (3). (A color version of the figure is provided in the online version of the paper).

comparable to the spin relaxation time for the mechanism

of hyperfine interaction with nuclear spins [14,15]. The

spin relaxation time can be quite short and amount to

∼ 10−20 ns for GaAs-based structures [14], however, the

presence of a magnetic field in Faraday geometry, when

B z ‖ Sz (t = 0), leads to an increase of the proportion of

spins Sz (t → ∞)/Sz (0), not experiencing relaxation, i. e.,

the magnetic field performs a stabilizing function and slows

down spin relaxation. The ratio of the Larmor frequency

ωB and the spin relaxation rate of δ gives an estimate of

�B/δ ∼ 20 for a typical magnetic field of B z ∼ 0.1 T in

our study, which results in a significant (up to 0.9 and

higher) fraction of spins over large times, evolving without

noticeable relaxation [14]. Moreover, the spin relaxation in

double QD at larger times can be power-law rather than

exponential when taking into account the mechanisms of

spin blockade and exchange interaction, i. e., it can have

a slower character [15]. The effects of dissipation in

systems with LZSM interference have also been studied

in a number of papers [4,16,17], where their impact over

short times was mainly reduced to the spreading of the

fine structure of interference patterns, but did not result

in the disappearance of resonances. The estimates we

mentioned suggest the possibility of observing coherent spin

rotations at the discussed time intervals, when the effects of

spin relaxation and dissipation can be ignored in the first

approximation.

2. Model

We consider a structure with a double quantum dot crea-

ted by gate fields in a two-dimensional electron or hole gas

based on GaAs, as it was performed in experiments [5,6].
The tunneling process between neighboring points proceeds

efficiently in a one-dimensional manner in such a system,

and the potential energy has a profile shown in Figure 1.

A typical Hamiltonian of the system has the form [7,8]

H = H2QD + HZ + HSO + V (x , t). (1)

H2QD in (1) is the Hamiltonian of an effectively one-

dimensional double quantum dot with a distance between

the minima of the potential 2d, HZ is a Zeeman term

generating splitting of levels 1Z, HSO is a contribution

from SOI, which we take into account based on the linear

approximation based on quasi-pulse kx :

HSO =
(

α
(0)
R σy + β

(0)
D σx

)

kx , (2)

where α
(0)
R and β

(0)
D are the amplitudes of Rashba and

Dresselhaus contributions to the SOI, and σx ,y are Pauli

matrices. The term V (x , t) in (1) describes the potential

of a quasi-stationary electric field, which can include both

the static bias potential Ud of the bottom of one of the

quantum dots (detuning) and the periodic potential of

the electric field Vd = f (x) sin(ωt) with amplitude Vd and

frequency ω. The function f (x) describes an addition to

the symmetric potential of a double well corresponding to

an electric field that shifts the levels in the right QD [7,8].
Figure 1 shows the scheme of the lower four levels E1−E4

together with the potential of a double quantum dot for

the Hamiltonian (1), where 1Z is a Zeeman splitting

of levels with a spin projection down (green lines) and

up (red lines) relative to the direction of the magnetic

field, Ud shows the bias (detuning) of the bottom of the

potential of the right QD relative to the left QD, and V (x , t)
corresponds to a non-stationary addition to the potential

from a periodic electric field. The presence of the SOI in

the Hamiltonian (1) determines the coupling of levels with

different spin projections in an electric field and ensures

the occurrence of EDSR under the following condition

kω = 1Z.

Tunneling processes are inextricably linked with the

evolution of spin in the presence of a magnetic field and

SOI, which makes it possible to control spin dynamics in

case of interaction with a coordinate degree of freedom. At

the same time, the system extends beyond the two-level

approximation, since the dynamics involves at least a pair

of spin-split levels in each of the two quantum dots. The
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Hamiltonian of the system (1) within the framework of the

four-level approximation can be written in matrix form in

the basis of the functions ψi = |ϕL,R | ↑↓〉, i = 1−4 localized

in the right and left QD and having a spin projection down

or up in the direction of the magnetic field. The numbering

of the basis functions from ψ1 to ψ4 for the examples we are

considering corresponds to the configuration of the levels

shown in Figure 1, a, according to which the states ψ1,

ψ2 form the Zeeman doublet in the right QD, to which a

periodic electric field with potential V (t) = Ud + Vd sin(ωt)
is applied, and the states ψ3, ψ4 form the same doublet in

the left QD. The Hamiltonian matrix in this case has the

form [8]

H =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

−
1Z

2
+ V (t) iβD + βR γ iαD + αR

1Z

2
+ V (t) αD + αR γ

−
1Z

2
iβD + βR

h. c.
1Z

2

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

.

(3)
The parameter γ in (3) is a matrix element of the tunnel

coupling between adjacent potential minima shown in

Figure 1, a in case of spin-preserving tunneling, h. c. denotes

the Hermitian conjugation, γ = 2−3µeV for the considered

structure [5,6]. The parameters αD,R are matrix elements

for tunneling with a spin flip due to the contribution of

Dresselhaus and Rashba to the SOI, respectively. The

parameters βD,R describe transitions inside the Zeeman

doublet in the left or right QD with a spin flip, also due

to the Dresselhaus or Rashba contribution to the SOI,

i. e., the mechanism of EDSR without tunneling. The

diagram of transitions between levels 1 and 2 in the right

QD and levels 3 and 4 in the left QD together with

the corresponding matrix elements α, β, γ is shown in

Figure 1, b, where the black arrow in the right QD indicates

the initial state with spin down at the level of E1, and the red

arrow shows the final state as a result of the EDSR process

with an upward projection of spin at the level E2. A double

green arrow in Figure 1, b shows a periodic electric field

with a potential of V (t), applied mainly to the right QD.

Various cases of the ratio s = |αR|/|αD| of Rashba and

Dresselhaus contributions to the SOI will be the main

variable parameter in the study of spin evolution in this

paper, which can be implemented in experiments through

the tunable amplitude of Rashba’s contribution using the

gate field [13]. The ratio |βR|/|βD| in (3) changes

proportionally to the same parameter s = |αR|/|αD|.
The wave function in representation (3) can

be written as a four-component column vector

C(t) = (C1(t),C2(t),C3(t),C4(t)), for which the

nonstationary Schrödinger equation i~ · ∂C/∂t = HC

with a matrix (3) can be written and solved, having the

form of a system of ordinary differential equations for

functions Cn(t). This system is complemented by the initial

condition C(0) = (1, 0, 0, 0) corresponding to the position

of an electron or hole at the lower level E1 in the right QD

in Figure 1. After finding the functions Cn(t) the dynamics

of the projections of spin SR
x ,y,z (t) in the right QD that is of

interest to us can be described using Cn(t) as follows:















SR
x (t) = C2(t)C1(t) + C1(t)C2(t)

SR
y (t) = i

(

−C2(t)C1(t) + C1(t)C2(t)
)

SR
z (t) = |C2(t)|2 − |C1(t)|2

. (4)

The trajectory of the end of the vector

S(t) = (SR
x (t), SR

y (t), SR
z (t)) with components from (4)

can be shown on the Bloch sphere of unit radius, which

allows visualizing the dynamics of spin [7,8], in this case in

the right QD where the evolution we are interested in takes

place.

3. Evolution simulation results

We solved numerically the nonstationary Schrödinger

equation in the matrix representation (3) using the same

techniques as in our previous study [7,8]. Figure 2 shows

the results for stroboscopic dynamics (depicted through an

integer number of periods of the electric field T = 2π/ω)
for the vector of spin S(t) = (Sx R(t), Sy R(t), Sz R(t)) with

components from (4) shown on the Bloch sphere in

the right QD. The trajectories 1−5 show the dynamics

for different ratios s = |αR|/|αD| = |βR|/|βD| between the

Rashba and Dresselhaus parameters in the Hamiltonian (3).
There is only the Rashba’s contribution on the trajectory 1

which corresponds to the limiting case s = ∞, there is

only the Dresselhaus contribution on the trajectory 2, i. e.

s = 0, the amplitude contributions on the trajectory 3 is

the same, s = 1, the amplitude of the Rashba’s contribution

is twice as large on the trajectory 4, s = 2, the amplitude

of the Rashba’s contribution on the trajectory 5 is three

times larger, s = 3. The frequency of the periodic field

in Figure 2 corresponds to the fundamental harmonic of

the spin resonance, i. e. ω = 1Z. Other parameters in

the Hamiltonian matrix (3) for evolution in Figure 2 are

as follows: 1Z = 10.34 µeV, which corresponds to the mag-

netic field B z = 0.108 T for g-factor g = 1.35 and the linear

frequency of the electric field f = 2.5GHz [5,6]. The tunnel
splitting of the levels for the height barrier U0 = 4meV

between the left and right QD in Figure 1, a is γ = 2.2 µeV,

the spin-orbital matrix element of the Dresselhaus SOI

for tunneling with the spin flip αD = 0.45µeV, and for

transitions in the same QD with a spin flip βD = 0.1 µeV.

The magnitude of the bias (detuning) Ud = −25µeV, the

amplitude of the periodic field Vd = 75µeV. Figure 3 shows

results for the second subharmonics kω = 1Z which are

similar to the results shown on Figure 2, where k = 2,

i. e., for half the frequency of the electric field. A set of

five trajectories corresponds to the same values s for the

amplitudes of the Rashba and Dresselhaus contributions as

for the fundamental harmonic in Figure 2.
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Figure 2. The spin dynamics on the lateral (a) and vertical (b)
projections of the Bloch sphere in the right quantum dot, for the

fundamental harmonic of the EDSR ω = 1Z. The trajectories

1−5 are plotted with different ratios s = |αR|/|αD| = |βR|/|βD|
between Rashba and Dresselhaus parameters in (3): 1 — s = ∞,

only Rashba’s contribution is present; 2 —s = 0, there is only a

Dresselhouse contribution; 3 — s = 1; 4 —s = 2; 5 — s = 3.

(A color version of the figure is provided in the online version of

the paper).

4. Results and discussion

The results shown in Figures 2 and 3 suggest that a

change in the ratio of the amplitudes of the Rashba and

Dresselhaus contributions, which can be realized by the gate

field by changing the value of the Rashba parameter, results

in a rotation of the spin rotation plane in the range from

0 to π/2. This can be seen from the comparison of the

two curves 1 and 2 with a limiting parameter s on the side

(panels a in Figures 2 and 3) and vertical (panels b on
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Figure 3. The same as in Figure 2, for the second subharmonic

kω = 1Z with k = 2 (The colored version of the figure is available

on-line).
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Figures 2 and 3) projections of the Bloch sphere, while

the specified rotation angle interval is achieved both on

the main harmonic of resonance (Figure 2) and on the

subharmonic k = 2 (Figure 3). This rotation of the spin

rotation plane, together with the rotation of the spin from

the south to the north pole during the resonance process,

are the operations required to implement the concept of

a spin qubit. It is possible to conclude that the tunable

Rashba SOI results in the possibility of rotation for the

spin rotation plane at EDSR, which will allow various spin

operations to be performed on both the main harmonic and

the subharmonics of EDSR.

5. Conclusion

The tunable spin-orbit interaction in semiconductor quan-

tum dots can influence the position of the plane of spin

rotations in an electric dipole spin resonance within a

wide range through a change of the Rashba’s contribution.

Rotations of the spin rotation plane can be useful for

implementing the concept of a spin qubit in semiconductor

quantum dots with strong spin-orbit interaction.
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