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Band structure of lateral plasmonic crystal tuned with magnetic field∗
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The transmission of terahertz radiation through a two-dimensional electron gas with a lattice gate placed in a

perpendicular magnetic field B was studied. It is shown that a voltage applied to the gate creates a lateral plasma

crystal with a band structure that can be controlled by both the gate voltage and the magnetic field. It has been

demonstrated that only part of the lateral plasma crystal plasmonic modes is present in the transmission spectrum of

homogeneous excitation, while the other half−dark modes−appear only in the case of inhomogeneous excitation.

The transition between weak coupling and strong coupling regimes, as the density modulation depth changes,

is theoretically described. Two excitation regimes are predicted, resonant and
”
super-resonant“and the transition

between them is described as the quality factor of the structure increases. The main focus are the effects associated

with the presence of a magnetic field. In particular, it is shown that plasmon resonances, which are visible in

the transmission spectrum, approach each other with increasing of magnetic field and in the presence of a finite

momentum relaxation rate can merge.
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1. Introduction

The possibility of detection and generation of terahertz

(THz) radiation using plasma waves propagating in the

simplest gate system — field effect transistor (FET) was

first discussed by Dyakonov and Shur [1]. It was shown

that FET is capable of converting THz radiation into direct

current (dc) and, conversely, direct current can excite

plasma oscillations under suitable boundary conditions.

Later it turned out that multi-gate devices have a better

application potential (see [3,4] and references in these

papers), since plasma waves in them interact much better

with THz radiation than in single FETs. Thus, the lattice

gate acts as an antenna, modulating the external field. The

second function of the lattice gate is the modulation of the

electron density. Namely, the electronic concentration is

periodically modulated in one of the directions. As a result,

the spectrum of plasma excitations, similar to the spectrum

of a 1D crystal, contains allowed bands and band gaps. The

key advantage of the lateral plasma crystal (LPC) is the

tunability of the zone structure using gate electrodes.

Despite the fact that the idea of creating a LPC

was previously discussed (see, for example, Ref. [3,4]
and references in them), experimental confirmation of the

possibility of controlling its band structure appeared only

in 2023 [5]. Plasmonic resonances of the transmission

coefficient of (T ) THz radiation through a GaN/AlGaN-

based LPC were studied. The gate voltages determined

the modulation strength and ensured the transition from the
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weak coupling mode (weak periodic density modulation) to
the strong coupling mode (strong modulation). A theoretical

model describing such a transition is constructed [6]. We

theoretically show in this paper that the LPC zones can

also be effectively controlled by a magnetic field. The

merging of plasmon zones with an increase of the magnetic

field is the key result, which can be directly experimentally

verified (see Figure 1 for the dissipation density, which

is proportional to δT = 1−T , depending on the radiation

frequency and cyclotron frequency at different values of the

momentum relaxation time).

2. Problem statement and general
approach

The simplest model of a lateral plasma crystal (Figure 2)
consists of alternating regions 1 and 2 with different electron

concentrations and, consequently, with different plasma

wave velocities, s1 and s2, respectively [3] (see also the

discussion of various LPC geometries in the review [7]).
For certainty, we will assume that s1 > s2 and, according

to Ref. [8], call the area 1 as the active area, and the

area 2 as the passive area (meaning of the terms
”
active“

and
”
passive“ will be explained further).

The transmission ratio T in the case of linearly polarized

light can be written using a simple formula [8]

T ≈ 1− P
S
, (1)

where P — radiation dissipation, S = c
√
ε E2

0/8πe2 —
time-averaged Poynting vector, E0 — amplitude of external
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Figure 1. Heatmap P/P0 in the plane (ω/ω1, ωc/ω1) at γ = 0.1ω1 (top) and γ = 0.3ω1 (bottom), s2 = 0.4s1 , L2 = L1 . The transition

from a super-resonance mode to a resonant mode with an increase of γ and (or) ωc is clearly visible in the form of a resonance overlap.

P0 = F2
0 N1/2mγ .
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Figure 2. Some configurations of the lateral plasma crystal: a structure with several gates that are offset so that the potential difference

between the gate and the channel has translational symmetry (figure on the left from Ref. [3]), a schematic representation of the device in

cross section with an asymmetric double metal lattice (figure on the right from Ref. [8]).

radiation, c — speed of light, e — electron charge, ε —

dielectric constant.

Thus, it is necessary to calculate the radiation dissipa-

tion P for finding the transmission coeffitient T . We search

for the radiation-induced velocity and calculate the local

ohmic dissipation per unit length, which in the hydrody-

namic approximation is given by [8,9]:

P ≈ mN0

τ
〈|v|2〉x ,t, (2)

where N0 — constant electron concentration in the channel,

n = (N − N0)/N0 — dimensionless radiation-induced con-

centration, v(x , t) — electron liquid velocity, τ — pulse

relaxation time. The coordinate averaging is carried out

along the cell of the lateral crystal.

3. Hydrodynamic approximation

We assume that electron-electron collisions determine the

basic properties of the system, and describe the electron

liquid in the channel by hydrodynamic equations — the

Navier-Stokes equation, including the Lorentz force, and

the continuity equation:

∂v

∂t
+ (v∇)v +

v

τ
= −s2∇n + [ωcv] +

F

m
, (3)

∂n
∂t

+ div(nv) = 0. (4)

Here ωc — cyclotron frequency, m — effective electron

mass, s = s1,2 — plasma velocity. The external force is

directed along the axis X : F(t) = eE0 cosωt, which sets

the external homogeneous radiation, the term −s2∇n de-

termines the acceleration associated with the concentration

gradient. The modulation of the gate array of external

radiation is discussed in Ref. [6].
We linearize the Navier-Stokes and continuity equa-

tions (3), (4), substituting the solution in the form

{δn, vx , vy} ∝ exp(iqx−iωt) + c.c.:

(γ − iω)vx − ωcvy + iqs2δn = F0/2m,

ωcvx + (γ − iω)vy = 0, (5)

iqvx − iωδn = 0.

It should be noted from here that

|v(x)|2 = |vx |2 + |vy |2 =

(

1 +
ω2

c

ω2 + γ2

)

|vx |2. (6)
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The LPC consists of alternating bands with plasma

wave velocities s1 and s2 and corresponding lengths L1

and L2. Standard boundary conditions are applied at

the boundaries [3,6] corresponding to the conservation of

current and energy flow at the boundary between the stripes

(we assume that there is no direct current in the channel):

s2δn = const, s2vx = const. (7)

Next, taking into account the equations (2) and (6) we

obtain an expression with explicit coordinate averaging,

divided by LPC regions:

P =
2mγ

L1 + L2

(

1 +
ω2

c

ω2 + γ2

)

×
[

N1

L1
∫

0

〈|vx |2〉t dx + N2

L1+L2
∫

L1

〈|vx |2〉t dx

]

. (8)

The following is obtained as a result of calculations

P =

(

1 +
ω2

c

ω2 + γ2

)

E2
0Cγω2

2(L1 + L2)(�2 + Ŵ2)2

×
[

(L1s21 + L2s22) +
(s21 − s22)Re[(Ŵ− i�)6]

�Ŵ(Ŵ2 + �2)|6|2
]

, (9)

where the resonant frequencies are determined by the

parameter 6 = s1 cot q1L1/2 + s2 cot q2L2/2, C — channel

capacity per unit area, γ = τ −1. The heat map P/P0 in the

plane (ω/ω1, ωc/ω1) is shown in Figure 1.

The wave vector q1,2 = (� + iŴ)/s1,2 is determined by

the real parameters � and Ŵ:

� + iŴ =

√

ω
(ω + iγ)2 − ω2

c

(ω + iγ)
.

The formula (9) is the main analytical result of this study.

4. Resonant frequencies

We fix the speed s1, assuming that the parameter s2
changes in the range from 0 to s1 . If s1 − s2 ≪ s1,
then plasma waves propagate in an almost homogeneous

system with weak scattering at the boundaries between the

regions 1 and 2. We call this case the weak coupling

mode (Figure 3). The opposite case corresponds to the

complete depletion of the region 2, i. e., the zero velocity

of the plasmon in this region, s2 = 0. In this case, the

system is divided into a set of well-conducting strips with

plasma velocity s1, separated by insulating regions. At

the same time, plasma oscillations in various conductive

stripes are not connected in any way. Next, we will call

this case the strong coupling mode (Figure 3). A band

structure is formed in pure ballistic LPC systems, where the

plasmon lifetime is sufficiently long, which can appear in an

experiment.

Strong
coupling

Weak
coupling

s2 = 0
Isolated
strips

s s2 1=
Homogenious

2DEG

s s2 1/

Figure 3. Switching from strong coupling mode to weak coupling

mode as the parameter s2/s1 increases.

We found natural frequencies of the lateral PC in this

study and compare them with the resonant dissipation

frequencies P . The band structure of the ideal PC (at γ = 0)
can be found using the Kronig−Penny model:

cos[K(L1+L2)]=cos
π�

ω1

cos
π�

ω2

− s21+s22
2s1s2

sin
π�

ω1

sin
π�

ω2

,

(10)
where � =

√

ω2 − ω2
c , ω = ω(K) — the natural frequency

of the plasmon, ω1 = πs1/L1 and ω2 = πs2/L2 — the

frequencies of
”
active“ and

”
passive“ regions, K — quasi-

momentum of a plasma crystal. The equation (10) for

ωc = 0 coincides with the spectrum found in Ref. [3].
Considering the normal incidence of external radiation, the

natural frequencies of plasma waves in the PC can be

searched for as solutions to the equation (10) with K = 0.

Then the equation can be written as a product of

Qbright(�)Qdark(�) = 0, where

Qbright = s1 cos
π�

2ω1

sin
π�

2ω2

+ s2 cos
π�

2ω2

sin
π�

2ω1

,

Qdark = s2 cos
π�

2ω1

sin
π�

2ω2

+ s2 cos
π�

2ω2

sin
π�

2ω1

.

It should be noted that the resonant frequencies ωn,

defined by 6(ωn, γ = 0) = 0, also satisfy the equation

Qbright(ωn) = 0. Thus, only light modes are optically excited,

and Qdark(ωn) 6= 0. Solutions describing dark modes

ωdark
n : Qdark(ω

dark
n ) = 0 do not appear in the dissipation of

a homogeneous field, unlike the light modes.

5. Weak and strong coupling regime

The equation (9) is valid for an arbitrary value of

the parameter s2/s1 ∈ [0; 1], thus describing the transition

between weak and strong coupling regimes. The resonant

regime will be discussed in this section, while the nonreso-

nant regime is discussed in detail in Ref. [10].

Next, we will consider the weak and strong coupling

regimes, before entering the parameter

γn(ω, ωc) = γ
ω2 + 2ω2

c

ω2 + ω2
c

=

{

γ ωc ≪ ω

2γ ωc ≫ ω
.
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The expression (9) is simplified in the strong coupling

regime, when s2 ≪ s1, under the condition of the resonant

regime ω2 ≪ γ ≪ ω1:

Pstrong = P0

∞
∑

n=0

γγnBn

(δω
strong
n )2 + γ2

n /4
,

where

Bn =
2L1

(L1 + L2)(1 + 2n)2π2
,

δωstrong
n = ω −

√

(ω
strong
n )2 + ω2

c ,

ωstrong
n = ω1(2n + 1), γn = γn(ω

strong
n , ωc).

The expression (9) has the following form in the weak

coupling regime, when s2 ≈ s1, and under the condition of

super-resonant regime, when γ ≪ ω1, ω2

Pweak = P0

∞
∑

n=0

γγnAn

(δωweak)2 + γ2
n /4

,

where

An =
4(s1 − s2)2

(

1− (−1)n cos[nk(L1 − L2)/2]
)

(ωweak
n )2(L1 + L2)2

,

δωweak
n = ω −

√

(ωweak
n )2 + ω2

c ,

ωweak
n = ks1n, γn = γn(ω

weak
n , ωc).

6. Conclusion

The heat dissipation map (and, simultaneously, the trans-

mission ratio map, see equation (1)) is shown in Figure 4

for fixed ω1,2 and different values γ . As can be seen, the

resonant frequencies increase as
√

ω2
n + ω2

c with an increase

of the magnetic field, and the gap between neighboring

resonances decreases. Thus, the magnetic field takes the

system out of the super-resonance mode (when all solutions

of ωn are distinguishable) into the resonant mode (when

ωn+1 − ωn ∼ γ).

In addition, the difference between plasmonic resonance

and cyclotron frequency decreases with the magnetic field,

so that for large magnetic fields, plasmonic and cyclotron

resonances overlap due to the finite attenuation γ and

become indistinguishable.
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Figure 4. Heat map P/P0 in the plane (K/k, ω/ω1) at

γ = 0.05ω1 . s2 = 0.3s1, L2 = L1, k = 2π/(L1 + L2) — inverse

lattice vector. The details of the calculation are presented

in Ref. [6]. This figure clearly shows how the case K 6= 0 excites

dark modes breaking the symmetry of the problem.
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