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Analytical expressions are proposed for the prefactor σ03 and the thermal activation energy of direct current

electrical ε3-conductivity σh = σ03 exp(−ε3/kBT ) of compensated n- and p-type semiconductors for hydrogen-like

impurities. The obtained formulas are applicable to describe the hopping migration of both holes via acceptors and

electrons via donors. For certainty, we considered p-type crystalline semiconductors in the range of doping levels

corresponding to the insulator side of the insulator–metal (Mott) concentration phase transition. For simplicity, it

was assumed that the majority and compensating impurities form a single simple nonstoichiometric cubic lattice

in the crystal matrix. The calculation of σ03 and ε3 values is based on the preliminary determination of the

characteristic temperature T3, in the region of which phonon-assisted tunnel hopping of holes via nearest neighbor

acceptors is observed. The shift of the top of the v-band deep into the band gap due to the formation of a

quasi-continuous band of allowed energy values for v-band holes from the excited states of neutral acceptors is

taken into account. The distribution of the density of hole states in the acceptor band was assumed to be Gaussian.

The influence of the configurational entropy and thermal entropy of holes in the acceptor band on the values of σ03
and ε3 was also taken into account. The values of σ03 and ε3 calculated from the obtained formulas for moderately

compensated p-Ge : Ga are in quantitative agreement with the known experimental data on the entire insulator side

of the Mott transition.
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Introduction

Temperature dependence of hopping conduction σh in

case of hole hops between the closest by distance hydrogen-

like acceptors in covalent semiconductors (for certainty let

us consider the crystalline semiconductors of p-type) is

represented in the form [1–5]:

σh =
1

ρh
= σ03 exp

(

− ε3

kBT

)

, (1)

where σ03 ≡ 1/ρ03 — prefactor determined by extrapolation

of dependence ln ρh(1/T ) to zero of reciprocal temperature

1/T → 0 (Fig. 1), ε3 — energy of thermal activation of

hopping transfer of holes by acceptors, kB — Boltzmann

constant, T — absolute temperature.

Derivation of analytical expressions are of interest and

represents a major challenge using equation (1) for values of

prefactor σ03 and energy of thermal activation ε3 depending

on concentration of Na acceptors and degree of their

compensation K by hydrogen-like donors. Thus, for lightly
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Figure 1. DC electrical resistivity of crystalline semiconductor

of p-type ρdc at Arrhenius scale. At temperature T = Tj band

σbj = 1/ρbj and hopping σhj = 1/ρhj electroconductivities are

equal; T3 ≈ Tj/3 — temperature, at which thermal energy of

hopping electroconductivity activation is determined; BC (band
conduction) — band electroconductivity, HC (hopping conduc-

tion) — hopping electroconductivity, NNH (nearest neighbor

hopping) — phonon-assisted tunnel hops of holes between closest

by distance acceptors in charge states (0) and (−1) with activation

energy ε3; VRH (variable range hopping) — hops of holes

between acceptors optimized by energy of activation and length.
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doped semiconductors according to Shklovskii and Efros [3]:

ρ03 = ρ0 exp

(

δ

a iN
1/3
a

)

, (2)

where ρ0 — unknown power function of Na and T ; δ(K) —
parameter depending on the compensation ratio (for exam-

ple, δ(0.2) ≈ 1.78, δ(0.5) ≈ 1.81, δ(0.8) ≈ 1.98); a i —
radius of localization of a light hole on a single acceptor.

At temperatures and levels of doping satisfying the

inequation 0.3 < e2N2/3
a a i/4πεrε0T < 1, dependence of en-

ergy of thermal activation ε3 on concentration of acceptors

Na and their compensation ratio K for lightly doped

semiconductors has the form [3]:

ε3 =
e2N1/3

a

4πεrε0
F(K), (3)

where e — elementary charge, εr — relative static dielectric

permittivity (determined by electrons of v-band on the

background of ion cores of the crystal matrix), ε0 — electric

constant, F(K) — function of compensation ratio K (for
example, F(0.2) ≈ 0.71, F(0.5) ≈ 0.73, F(0.8) ≈ 1.12).
However, calculations using equation (3) give values of

ε3 that are higher than the ones experimentally observed.

Besides, this equation is only applicable in the region of

low concentrations of the majority impurities, which yet

does not show the overlapping of their wave functions,

i. e. it does not take into account the contribution to ε3-

conductance from the splitting of the energy levels of closely

located majority impurities (
”
molecular pairs“).

Previously in [6–8] the model was proposed for calcu-

lation of concentration dependences of prefactor σ03 and

energy of thermal activation ε3 in crystalline semiconductors

of p- and n-type. It was believed that atoms of impurities

create in a crystal matrix a single simple cubic nonstoi-

chiometric lattice. Hops of holes take place at thermally

activated
”
alignment“ of energy levels of acceptors in charge

states (0) and (−1), while their compensating donors block

some of the sites in the impurity lattice.

However, in papers [6–8], when values of σ03 and ε3 were

calculated, the selection of the characteristic temperature

was not justified, at which hops of holes are implemented

between the nearest atoms of the majority impurity. Later

in [9] the analytical expression was obtained for temperature

T3 = Tj/3 as the characteristic temperature, at which the

hops are implemented in the nearest neighbors (NNH).
Here Tj — temperature of transition from

”
free“ motion

of holes of v-band to their hopping migration between

acceptors in charge states (0) and (−1). Besides, [6–
8] did not take into account the shift of the top of v-

band deep into the band gap due to the formation of a

quasi-continuous energy spectrum due to the overlap of the

excited states of acceptors with their concentration quite

high. Note that the contribution to values of σ03 and ε3 may

be made by configurational and thermal entropies (see, for
example, [10–12]). Note that in [6–8,13] the impact of

compensation ratio on values of ε3 and σ03 was not studied.

The purpose of this paper is to propose the model

for quantitative description of the hopping conductivity in

the nearest impurities, including behavior values of σ03
prefactor and energy of thermal activation ε3 with the

change of the doping level and compensation ratio in the

moderately compensated semiconductors on the insulator

side of the insulator−metal (Mott) phase transition, and

also to compare the analytical and numerical calculations

performed on its basis with experimental data [14–23] for
crystals p-Ge : Ga. Selection of the material for comparison

is caused by the fact that homogeneous and controlled

introduction of the majority impurities may be carried out

in it — of acceptors (gallium) and compensating donors

by neutron transmutation doping with thermal reactor

neutrons with subsequent annealing of radiation-induced

defects. Physical and technological aspects of such doping

in respect to germanium of various isotope composition are

presented in [24–26].

1. Model of impurity lattice in crystal
matrix for calculation of
ε3-electroconductivity

Let us consider a crystalline semiconductor of p-type,

doped with hydrogen-like acceptors with concentration

of Na = Na,0 + Na,−1 and compensated by hydrogen-like

donors with concentration of Nd = KNa. Here Na,0 and

Na,−1 — concentrations of acceptors in charge states (0)
and (−1) respectively, 0 < K < 1 — degree of acceptor

compensation by donors (compensation ratio). All com-

pensating donors are in charge state (+1). The condition

of electrical neutrality of the crystal at concentration of

holes of v-band p ≪ K(1− K)Na has the following form:

Na,−1 = KNa. Therefore: Na,0 = (1− K)Na.

In a crystalline semiconductor of p-type the density of

stationary hopping current Jhp = J0,−1 of holes between

neighbor acceptors in charge states (0) and (−1) has

the form [7]:

Jhp =eNhp

[

MhE−Dh

d
dx

ln

(

Na,0

Na,−1

)]

=σhE−eDh

dNa,0

dx
,

where Nhp = Na,0Na,−1/Na = K(1− K)Na — effective con-

centration of holes hopping between acceptors, Mh —
hopping drift mobility of holes, E — external electric field

strength directed along x axis in a semiconductor, Dh —
coefficient of hopping diffusion of holes; σh = eNhpMh.

In a crystalline semiconductor of n-type the density

of stationary hopping current Jhn = J0,+1 of electrons

between neighbor donors in charge states (0) and (+1) has

the form [6]:

Jhn =eNhn

[

MhE+Dh

d
dx

ln

(

Nd,0

Nd,+1

)]

=σhE+eDh

dNd,0

dx
,

where Nhn = Nd,0Nd,+1/Nd — effective concentration of

electrons hopping between donors, Mh and Dh — hopping
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drift mobility and coefficient of hopping diffusion of elec-

trons; σh = eNhnMh.

Note that expressions for densities of hopping currents of

holes via acceptors (Jhp) and electrons via donors (Jhn) are

in general identical to expressions (see, for example, [27,28])
for densities of currents of delocalized holes of v-band

and electrons of c-band.
DC hopping electroconductivity σh is measured at con-

stant external pressure P , temperature T and constant

number of acceptors NaV and donors KNaV in a crystalline

sample with volume of V . Hopping migration of holes

in the acceptor band is characterized by activation energy

ε3. Under these conditions the expression for σh similarly

to Arrhenius equation (see, for example, [29]) may be

presented as

σh = σ̃03 exp[−(h3 − s3T )/kBT ], (4)

where h3(T ) = ε3(T ) + Pv3(T ) — enthalpy averaged over

volume V of sample, ε3(T ) — average energy necessary for

implementation of an elementary act of thermally activated

tunelling of a hole between two acceptors in charge states

(0) and (−1), v3(T ) — average change of the total

”
volume“ of two acceptors when a hole hops between

them, s3(T ) = s3t(T ) + s3m — sum of the average thermal

entropy s3t(T ) of hole hops activation and configurational

entropy s3m of holes on acceptors (its value practically does

not depend on temperature).
Temperature dependences of quantities ε3(T ), v3(T ) and

s3(T ) are related by an equation (see, for example, [30,31]):

T (∂s3t/∂T )P,NV = (∂ε3/∂T )P,NV + P(∂v3/∂T )P,NV , (5)

where NV = (Na + Nd)V — number of impurities in a

sample with volume of V .

From (4) with account of (5) we obtain

−kB[∂ ln(σh/σ̃03)/∂(1/T )]P,NV = h3(T ) = ε3(T ) + Pv3(T ),
(6)

i. e. derivative with respect to 1/T from logarithm of

ratio σh/σ̃03 is proportional to enthalpy h3(T ) of thermal

activation of hopping ε3-electroconductivity.

With high accuracy the average change of the total

”
volume“ v3(T ) of two acceptors in charge states (0)
and (−1) when the hole hops between them is negligibly

low, so from (4) we have

σh = σ03 exp[−(ε3 − s3tT )/kBT ], (7)

where configurational entropy s3m is included in prefactor

σ03 = σ̃03 exp(s3m/kB).
Following [8,32], let us suggest for simplification of

calculations that doping and compensating impurities form

a nonstoichiometric simple cubic lattice with translation

period dim in a crystal matrix. Let dim be the length of

hole hopping between acceptors, and consider two options

of the impurity lattice with the translation periods:

1) dim1 = 2Rim1 = 2[4π(1 + K)Na/3]
−1/3

≈ 1.24[(1 + K)Na]
−1/3,

where Rim1 — radius of spherical area per one atom of

impurity in the lattice;

2) dim2 = B1/3
c Rim1 = B1/3

c [4π(1+K)Na/3]
−1/3

≈ 0.867[(1 + K)Na]
−1/3

— distance between acceptors equal to percolation radius

of spherical area per one acceptor with account of donors

blocking the hole hops. Here Bc ≈ 2.735 — dimensionless

parameter — average number of
”
hopping“ bonds per one

acceptor [3,33–36]. At percolation radius dim2 the charge

state (−1) of the acceptor, being activated and
”
detached“

from the donor ion, may migrate in a hopping manner via

acceptors through a crystal. In general quantity dim2 reflects

effect of self-avoiding walk (by terminology [37]) of holes

via acceptors.

For impurities forming in a crystalline semiconductor

a nonstoichiometric simple cubic
”
lattice“ with translation

period dim, the temperature Tj of transition from migration

of holes by states of v-band to hopping migration of holes

between acceptors (similarly to paper [9]) let us determine

from the virial theorem at concentration of holes of v-band

p ≪ KNa in the following form

Tj =
1

3kB

e2

4πεrε0Rch

, (8)

where Rch — radius of spherical area per ion of im-

purity in a crystal. According to option 1) the value

of Rch1 = [(4π/3)2KNa]
−1/3 ≈ 0.62(2KNa)

−1/3; option

2) Rch2 = (B1/3
c /2)[(4π/3)2KNa ]

−1/3 ≈ 0.434(2KNa)
−1/3;

2KNa = Na,−1 + Nd — concentration of ions of hydrogen-

like impurities in a crystal matrix.

At temperatures T < Tj the condition of electric neutrality

of crystal has the form

Na,−1 = Na

+∞
∫

−∞

f −1Ga d(Ea − Ia) = Na〈 f −1〉 = KNa, (9)

where f −1 — probability of finding an acceptor in the

charge state (−1) with energy level Ea > 0 in acceptor

band, Ga — density of distribution of energy levels Ea

relative to the thermal ionization energy Ia = e2/8πεrε0a p

of a single acceptor with Bohr radius a p of the hole orbit.

For concentration of electrically neutral acceptors at

T < Tj we have

Na,0 = Na

+∞
∫

−∞

f 0Ga d(Ea − Ia) = Na〈 f 0〉 = (1− K)Na,

(10)
where f 0 — probability of finding an arbitrary acceptor with

energy level Ea in charge state (0).
Then, following [38], we assume that energy levels of

acceptors in the band gap have normal (Gaussian) density

of distribution

Ga =
1√
2πWa

exp

(−(Ea − Ia)2

2W 2
a

)

, (11)
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Figure 2. Energy of electron En and energy of hole Ep

depending on coordinate x in a single-electron band diagram of

a semiconductor of p-type: Ev = 0 — top of valence band of

undoped crystal;
”
hole hop“ — thermally activated hole (h+) hop

between acceptors (0) and (−1) in the center of acceptor A0/−

band; Ia > 0 — energy of thermal ionization of a single acceptor,

E(v)
F < 0 — Fermi level, E(v)

m < 0 — mobility edge for holes of

v-band, δEv = −E(v)
m > 0 — shift of the top of v-band deep into

the band gap of the semiconductor due to the merging of excited

states of impurities, Wa — root mean square fluctuation of acceptor

energy levels.

where Wa — effective width of acceptor band (Fig. 2).

Probability that an arbitratory acceptor with energy level

Ea > 0 above the top of v-band (Ev = 0) is ionized

f −1 = 1− f 0 =

[

1 + βa exp

(

Ea + E(v)
F

kBT

)]

−1

. (12)

Here βa — degeneracy factor of energy level of a

hydrogen-like acceptor, E(v)
F < 0 — Fermi level in band

gap, counted from the top of v-band of undoped crystal,

ζ − kBT lnβa = E(v)
F + Ia — Fermi level counted from

energy level Ia of a single acceptor.

With account of Coulomb interaction of ionized acceptor

(in charge state (−1)) only with ions in the first coordina-

tion sphere of a nonstochiometric cubic impurity lattice, the

width of acceptor band is [39]

Wa =

(

6
∑

i=1

P iU
2
i

)1/2

=
e2

4πεrε0dim

(

12K
1 + K

)1/2

, (13)

where P i = 2K/(1 + K) — probability that near a selected

impurity ion any of the six sites of the impurity lattice in the

first coordination sphere is occupied by an ionized acceptor

or donor; 1/(1 + K) — fraction of acceptors in the sites

of the impurity lattice; |Ui | = e2/4πεrε0dim — module of

Coulomb energy of interaction of the selected ion with one

of the nearest ions located at the distance of dim = 2Rim in

the lattice of doping and compensating impurities. When

deriving equation (13) it was taken into account that the

crystal-average energy of Coulomb interaction between the

selected impurity ion and ions in the nearest six stres of the

impurity lattice is equal to zero:

6
∑

i=1

P iUi = 0.

Average value of thermal ionization energy of an average

acceptor in charge state (0), i. e. from the center of the

acceptor band (Fig. 2) [40]:

〈Ea〉 = Ia

(

1− a p

Rim

)

= Ia − δEv , (14)

where Ia — energy level of a single hydrogen-like acceptor,

Rim = dim/2 — radius of spherical area in a semiconductor

per one atom of impurity, δEv = Iaa p/Rim > 0 — decrease

in the thermal ionization energy of acceptor in the charge

state (0) due to overlap of excited states of neutral acceptors

with increase of their concentration and formation of a

quasi-continuous band of the allowed energy values for

holes of v-band.

At temperature T3 = Tj/3, when Wa ≫ kBT3 and

f 0 f −1 → kBT3 δ(Ea + kBT3 ln βa + E(v)
F ),

where δ(Ea + kBT3 ln βa + E(v)
F ) — Dirac delta-function,

quantity ζ = kBT3 ln βa + Ia + E(v)
F is found from electric

neutrality equation (9) in the form

2K ≈ 1− erf(ζ /
√
2Wa), (15)

where erf(·) — error function.

Hopping heat capacity Ch = −d〈Eh〉/dT per one hole

in the acceptor A0/− band is the derivative with respect

to absolute temperature T from average energy 〈Eh〉 of

the electrically neutral acceptor and has the following form

(see Appendix):

Ch =
1

(1− K)kBT 2

[ +∞
∫

−∞

E2
a Ga f 0 f −1 d(Ea − Ia)

− ξh

K(1− K)

(

+∞
∫

−∞

EaGa f 0 f −1 d(Ea − Ia)

)2
]

, (16)

where ξh ≥ 1 — dimensionless parameter [38]:

1

ξh
=

kBT Mh

eDh

=
1

K(1− K)

+∞
∫

−∞

Ga f 0 f −1 d(Ea − Ia). (17)

For a narrow acceptor band, when Wa ≪ kBT3

and Ga → δ(Ea − Ia), from equation (9) with account

of (11), (12) we obtain ζ = kBT3 ln βa + E(v)
F + Ia ≈

≈ −kBT3 ln[K/(1− K)]. In this case from (17) with account

of (11)−(13) it follows that ξh ≈ 1 and Ch = 0.

For a wide acceptor band, when Wa ≫ kBT3 and

f 0 f −1 → kBT δ(Ea + kBT3 ln βa + E(v)
F ),
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equation (9) with account of (11), (12) takes the form

2K ≈ 1− erf(ζ /
√
2Wa). In this case from (17) we have

ξh ≈ K(1− K)γ
√
2π exp(ζ 2/2W 2

a ) and Ch = qT3, where

γ = Wa/kBT3 ≫ 1 and q — a certain constant.

Dimensionless parameter ξh ≥ 1 characterizes the dif-

ference in the degree of impact from fluctuations of

electrostatic potential energy in a crystal due to its doping on

the coefficient of hopping diffusion and on drift hopping mo-

bility of holes in the acceptor band. For a narrow acceptor

band (Wa ≪ kBT3) parameter ξh = 1 and Dh/Mh = kBT3/e.
Average thermal entropy s3t = s3t(T ) of activation of hole

hops between acceptors is (see equation (A6) from Ap-

pendix)

s3t =

T
∫

0

Ch(T ′)

T ′
dT ′, (18)

where Ch — hopping heat capacity per one hole in the

acceptor band using equation (16).
Configurational entropy of distribution of electrically

neutral states of hydrogen-like acceptors with number of

Na,0V = (1− K)NaV per one acceptor in the crystal matrix

of a semiconductor with volume of V over all acceptors is

(see equation (A9) from Appendix):

s3m = −kB ln[K
K(1− K)1−K ], (19)

where 0 < K < 1.

Note that configurational entropy s3m by equation (19)
matches the equation for entropy proposed in paper [12] that
describes the number of ways to distribute

”
free“ holes of v-

band over acceptors at hole concentration p ≪ K(1− K)Na.

2. Equations for prefactor σ03

and activation energy ε3

Hopping conductivity averaged by all possible orienta-

tions of a nonstoichiometric impurity lattice relative to

direction of external electric field strength σh = 1/ρh with

account of thermal entropy s3t = s3t(T ) by equation (18)
and configurational entropy s3m by equation (19) is given

by expression (compare [6–8]):

σh =
e2K1−K(1− K)KNad2

imŴh

12(1 + K)ξhkBT

= σ̃03 exp

(

−h3 − s3T
kBT

)

= σ03 exp

(

−ε3 − s3tT
kBT

)

,

(20)
where σh = eNhpMh — hopping electroconductivity in

direction of external electric field, Nhp = K(1− K)Na —
effective concentration of holes hopping between accep-

tors, dim — length of hole hopping; here it accounts

that σ03 = σ̃03 exp(s3m/kB) (see equations (4) and (7)),
and also Dh/Mh = ξhkBT/e — ratio of diffusion constant

of hopping holes to their drift hopping mobility [38];
s3(T ) = s3m + s3t(T ).

We specifically note that equation (20) accounts hops of

holes only along the edges of the impurity cubic lattice with

its arbitrary orientation in relation to the direction of external

electric field strength in a macroscopic semiconductor

sample [6,7].
Average frequency of hole hops included in equation (20):

Ŵh ≈
1

τ3K(1− K)

+∞
∫

−∞

Ga f 0 f −1 d(Ea − Ia)

=
1

τ3ξh
≡ Ŵ3 exp

(

−ε3 − s3tT
kBT

)

, (21)

where Ŵ3 = 1/τF ≡ 1/τ3 — frequency of hole tunneling

between acceptors in charge states (0) and (−1). Equa-

tion (21) includes Fermi level E(v)
F . To find it, the condition

of electrical neutrality (9) may be resolved relative to the

quantity ζ − kBT ln βa = E(v)
F + Ia. Then we obtain the

value of Fermi level E(v)
F = ζ − kBT lnβa − Ia < 0 relative

to the top of v-band in an undoped crystalline semiconduc-

tor of p-type (Fig. 2).
Within the framework of the theory of a molecular

hydrogen ion H+
2 the time of hole tunneling between

two acceptors (indices 1 and 2), located at the distance

dim, given the difference between their energy levels

1a12 = Ea2 − Ea1 =
√
3 δEat, can be estimated according

to [41], as follows:

τ3 = τF =
π~

δEat

√

1 +

(

1a12

δEat

)2

=
2π~

δEat

, (22)

where 2π~ = h — Planck’s constant, δEat(E
(v)
F ) — broad-

ening (splitting) of energy levels Eat = E(v)
m − E(v)

F of two

acceptors due to hole tunneling between them:

δEat = 4Eat

A − BS
1− S2

,

A = (1 + ρ) exp(−ρ); B = [1− (1 + ρ) exp(−2ρ)]/ρ,

ρ = dim/a t, S = (1 + ρ + ρ2/3) exp(−ρ). (23)

Here for option 1) dim1≈1.24[(1+K)Na]
−1/3 and for

option 2) dim2≈0.867[(1+K)Na]
−1/3; a t=e2/8πεrε0Eat.

For a prefactor (pre-exponential factor) in temperature

dependence (7) from expression (20) with account of (21)
we obtain

σ03 =
σ̃03

KK(1− K)1−K
=

e2K1−K(1− K)KNad2
imŴ3

12(1 + K)ξhkBT
, (24)

where the time of hole tunneling 1/Ŵ3 = τ3 = τF is deter-

mined by (22), coefficient ξh ≥ 1 is given by equation (17).
Integral activation energy ε3 for hopping electroconduc-

tivity is obtained from (21) with account of (20) in the form

ε3 = −kBT ln(Ŵh/Ŵ3) + s3tT = kBT ln ξh + s3tT > 0.

(25)

Technical Physics, 2024, Vol. 69, No. 6



Analytical description of hopping electrical conductivity of compensated semiconductors... 785

From (25) with account of (17) it follows that ε3 → 0 in

the limit of zero temperature (T → 0), which is, however,

evident from physical assumptions [42].
Note that from (25) an expression for differential ther-

mal activation energy ε′3 of hopping electroconductivity is

obtained in the form

ε′3 = −kB

d ln(σh/σ03)

d(1/T )
=

d(ε3/T )

d(1/T )
,

so ε′3 = ε3, if ε3 does not depend on temperature in the

vicinity of T3 ≈ Tj/3 (Fig. 1).

Further let us assume that quantity 21at/
√
3 = 1a12/2 is

approximately equal to splitting of energy levels in two

acceptors δEat by (23) at resonance, i. e. 21at/
√
3 = δEat.

Then the frequency of hole hops between quasi-steady-

states of acceptor energy levels with account of (21) has

the form

Ŵh(1at) ≈
Ŵ3

K(1− K)

+∞
∫

−∞

Ga f 0(Ea + 1at) f −1(Ea − 1at)

× d(Ea − Ia) = Ŵ3 exp

(

−ε3(1at) − s3tT
kBT

)

,

(26)
where

f 0(Ea + 1at) = {1 + β−1
a exp[−(E(v)

F + Ea + 1at)/kBT ]}−1

— probability of filling the acceptor with a hole at energy

level Ea + 1at;

f −1(Ea − 1at) = {1 + βa exp[(E
(v)
F + Ea − 1at)/kBT ]}−1

— probability that the acceptor with energy level Ea − 1at

is ionized; at 1at → 0 we have: f −1 = 1− f 0 for all values

of Ea. From equation (26) the activation energy follows

ε3(1at) = −kBT ln[Ŵh(1at)/Ŵ3] + s3tT. (27)

Equation (27) for a lightly doped crystal

(21at/
√
3 = δEat ≪ kBT3) changes into equation (25).

Note that in heavily doped moderately compensated semi-

conductors near the Mott concentration phase transition

the holes migrate in the energy range of the acceptor

band with width of 21at = δEat in the vicinity of Fermi

level E(v)
F between (quasi)resonant pairs of acceptors [43].

Then, similarly to Drude−Lorentz approach (see, for

example, [27,28]), the tunneling electric conductivity σtun
by acceptors in the limit of the wide acceptor band Wa and

low temperature, i. e. when Wa ≫ kBT , has the form [43]:

σtun =
e2K(1− K)Naτtun

2mpσ
4a2tun =

1

ρtun
, (28)

where τtun = π~/δEat — time of hole tunneling between

two acceptors in charge states (0) and (−1), located

at the distance dim when their energy levels coincide

(Ea1 = Ea2) (see equation (23)); 4a = 1/(1 + K) —
fraction of acceptors in the impurity lattice sites,

mpσ — effective mass of hole electroconductivity in

v-band; 2tun — fraction of pairs of acceptors in

charge states (0) and (−1), whose energy levels Ea

are ±1at = ±0.5 δEat away from Fermi level (−E(v)
F > 0)

i.e. (−E(v)
F − 1at − Ia) ≤ Ea − Ia ≤ (−E(v)

F + 1at − Ia), is

given by the relation:

2tun =
1

2K(1 − K)

[

erf

(

E(v)
F + 1at + Ia√

2Wa

)

− erf

(

E(v)
F − 1at + Ia√

2Wa

)]

< 1. (29)

Expression (29) takes into account the fact that some

(1− K) acceptors are occupied by holes, and some

K are free.

3. Comparison of calculations with
experimental data on p-Ge :Ga

From experimental works on p-Ge:Ga the data was

selected for samples with moderate compensation ratios

0.15 < K < 0.85 and gallium concentrations Na < NM,

where NM ≈ 1.85 · 1017 cm−3 — concentration corre-

sponding to Mott transition at K ≈ 0.35 (see, for exam-

ple, [43,44]).
When calculating the energy of thermal activation ε3

and prefactor ρ03 in crystals p-Ge : Ga the following values

of parameters were used: relative dielectric permittivity

εr = 15.4 [45]; gallium atom energy level degeneracy factor

βa = 4 [46]; energy of thermal ionization of a single gallium

atom Ia = 11.32meV [47,48]; effective mass of electrocon-

ductivity of hole of v-band mpσ = 0.26m0 [43,49]; m0 —
mass of electron in vacuum; a p = e2/8πεrε0Ia = 4.13 nm.

Note that experimentally observed [50] temperature

values Tje for crystals p-Ge : Ga with gallium compen-

sation ratio K=0.3 are: Tje=4.03K for concentration

Na=3.57 · 1014 cm−3; Tje=5.02K for Na=7.59 · 1014 cm−3;

Tje = 8.03K for Na = 3.10 · 1015 cm−3; Tje = 11.20K for

Na = 1.49 · 1016 cm−3. Calculations of temperatures Tj1 and

Tj2 using equation (8) for options 1) and 2) provide values:

Tj1 = 3.49K and Tj2 = 4.99K for Na = 3.57 · 1014 cm−3;

Tj1 = 4.49K and Tj2 = 6.41K for Na = 7.59 · 1014 cm−3;

Tj1 = 7.17K and Tj2 = 10.25K for Na = 3.10 · 1015 cm−3;

Tj1 = 12.10K and Tj2 = 17.30K for Na = 1.49 · 1016 cm−3.

So, the calculations Tj using equation (8) for two options

of the impurity lattice periods generally agree with the

experimental data [50].
Fig. 3 presents the dependence of the thermal

activation energy ε3 of hopping electroconductivity

in crystals p-Ge : Ga on concentration of gallium at

K = 0.35. The calculation was carried out using

equation (27) at temperature Tj/3 for distances be-

tween impurities dim1 ≈ 1.24[(1 + K)Na]
−1/3 (curve 1);

0 Technical Physics, 2024, Vol. 69, No. 6
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Figure 3. Dependence of activation energy ε3 of hopping

conductivity in p-Ge : Ga on concentration of acceptors Na in

units of a pN1/3
a , where a p — Bohr radius of the hole on the

gallium atom. Solid lines — calculation using equation (27)
for K = 0.35 at temperature Tj/3 for dim1 ≈ 1.24[(1 + K)Na]

−1/3

(curve 1) and dim2 ≈ 0.867[(1 + K)Na]
−1/3 (curve 2); dashed line

3 — calculation using model [3]; points — experiment: a —
[14,15], b — [16–18], c — [19], d — [20], e — [21], f — [22],
g — [23].

dim2 ≈ 0.867[(1 + K)Na]
−1/3 (curve 2). Dashed line 3

in Fig. 3 shows calculation ε3 ≈ 0.7e2N1/3
a /4πεrε0 using

model [3] for K = 0.35. It is seen that calculation by (27)
generally agrees with the experimental data [14–23], and
approximation dim2 better describes the ascending part of

experimental dependence in Fig. 3, while approximation

dim1 — the descending one. While the model [3] gives

overestimated values of activation energy ε3 of hopping

conductivity and is applicable only for the ascending section

of experimental dependence at low doping levels.

Fig. 4 shows with solid lines the calculated dependences

of the pre-exponential factor (prefactor) ρ03 = 1/σ03 by (24)
for hopping resistivity ρh = 1/σh on concentration Na of gal-

lium atoms in p-Ge : Ga. The calculation was carried out at

compensation ratio K = 0.35 and temperature Tj/3 for dis-

tances between all impurities dim1 ≈ 1.24[(1 + K)Na]
−1/3

(curve 1) and dim2 ≈ 0.867[(1 + K)Na]
−1/3 (curve 2).

Dashed lines in this figure show dependences of tunneling

resistance ρtun using equation (28) of model [43] for

distances between impurities dim1 ≈ 1.24[(1 + K)Na]
−1/3

(curve 1′) and dim2 ≈ 0.867[(1 + K)Na]
−1/3 (curve 2′).

It is seen that when Mott transition is approached, the

experimental values of resistivity reach calculations us-

ing model [43].
Note that in calculations of tunneling resistivity ρtun the

splitting of δEat energy levels by equation (23) includes

Bohr radius a t = e2/8πεrε0Eat. Radius a t corresponds

to energy level Eat = E(v)
m − E(v)

F > 0 of hole tunneling

between two acceptors, where E(v)
m = −δEv < 0 (see equa-

tion (14)). Quantity a t is somewhat different from the Bohr

radius a p = e2/8πεrε0Ia of hole orbit in a single acceptor,

used in calculations ρtun in article [43] for compensated
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Figure 4. Dependence of resistivity ρ03 = 1/σ03 of hopping

conductivity in p-Ge : Ga on concentration of acceptors Na in

units of a pN1/3
a , where a p — Bohr radius of the hole on the

gallium atom. Solid lines — calculation using equation (24) for

K = 0.35 at temperature Tj/3 for dim1 ≈ 1.24[(1 + K)Na]
−1/3

(curve 1) and dim2 ≈ 0.867[(1 + K)Na]
−1/3 (curve 2);

dashed lines — calculation using equation (28) of

model [43] for dim1 ≈ 1.24[(1 + K)Na]
−1/3 (curve 1′) and

dim2 ≈ 0.867[(1 + K)Na]
−1/3 (curve 2′); points — experiment:

a — [14,15], b — [16–18], c — [19], d — [20], e — [21],
f — [22], g — [23].
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Figure 5. Dependences of activation energy ε3 (a) and

resistivity ρ03 (b) of hopping conductivity in p-Ge :Ga on com-

pensation ratio K. Solid lines — calculation of ε3 using equa-

tion (27) and ρ03 using equation (24) for Na = 2.66 · 1015 cm−3

at temperature Tj/3 for dim1 ≈ 1.24[(1 + K)Na]
−1/3 (curve 1)

and dim2 ≈ 0.867[(1 + K)Na]
−1/3 (curve 2); dashed line 3 —

calculation using model [3]; points — experiment [15].
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heavily doped semiconductors of p-type. However, the

calculated values of ρtun at orbit radius a t for moderately

compensated crystals p-Ge : Ga near Mott transition practi-

cally do not differ from calculations ρtun at radius a p.

Fig. 5 shows dependences of energy activation ε3 (a)
and pre-exponential factor ρ03 = 1/σ03 (b) of hopping

conductivity in germanium on compensation ratio K of

gallium atoms with concentration Na = 2.66 · 1015 cm−3.

Calculations of ε3 using equation (27) and ρ03 us-

ing equation (24) at temperature Tj/3 for distances be-

tween impurities dim1 ≈ 1.24[(1 + K)Na]
−1/3 (curve 1) and

dim2 ≈ 0.867[(1 + K)Na]
−1/3 (curve 2) are shown. Dashed

line 3 in Fig. 5, a shows calculation ε3 using model [3]
for Na = 2.66 · 1015 cm−3. It is seen that calculation of

ε3 using (27) generally agrees with experimental data [15],
while using model [3] gives overestimated values.

Conclusion

Analytical calculation of hopping electric conductivity

parameters was conducted in crystalline semiconductors in

NNH mode based on the example of p-type material. The

principal difference of the proposed method for calculation

of hopping conductivity parameters is the method to find the

position of the drift mobility edge for holes of v-band. This

mobility edge is caused by formation of a quasi-continuous

band of allowed energy values from the excited states of

electrically neutral acceptors for holes of v-band, which

decreases the value of thermal energy of majority impurities

ionization.

It was suggested, for simplicity, that in a crystal matrix

the doping and compensating impurities form a single

nonstoichiometric simple cubic lattice. Two variants of

a cubic lattice are considered with different translation

periods. It was also assumed that the width of the acceptor

band is determined by Coulomb interaction of impurity ions

in the first coordination sphere of the nonstoichiometric

impurity lattice.

To determine values of σ03 and ε3, first temperature

T3 was found, at which thermally activated tunnel hops

of holes are observed between the neighbor acceptors in

charge states (0) and (−1). It was taken into account that

with the increase in the doping level in
”
molecular“ pairs of

acceptors in charge states (0) and (−1), energy levels of one

pair split by value of δEat. It was assumed that migration of

holes by acceptor states occur in the energy band with width

of
√
3 δEat near Fermi level in the impurity band. For the

first time the calculations of hopping ε3-electroconductivity

took into account the impact of thermal and configurational

entropy on parameters σ03 and ε3.

Quantitative description was obtained for the behavior of

prefactor σ03 and energy of thermal activation ε3 of hopping

electroconductivity with change of the doping level and

degree of compensation of a semiconductor on the insulator

side of Mott transition.

Numerical calculation of σ03 and ε3 values using proposed

equations (24) and (27) was carried out for crystals p-

Ge : Ga. Results of the calculations for σ03 and ε3 values

agree with the known experimental data for moderately

compensated and well-characterized crystals p-Ge : Ga, ob-

tained in process of neutron transmulation doping.
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Appendix

Hopping heat capacity of holes in acceptor band
and thermal entropy

To calculate hopping heat capacity Ch using [39] we use

relation

d〈 f 0〉
dT

=
∂〈 f 0〉
∂T

+
∂〈 f 0〉
∂E(v)

F

dE(v)
F

dT
= 0, (A1)

where 〈 f 0〉 = 1− 〈 f −1〉 = 1− K — probability averaged

over crystal volume that an acceptor randomly selected

in the crystal matrix is in the charge state (0), it is

given by equations (10)–(12); T — absolute temperature,

E(v)
F < 0 — Fermi level counted from the top of v-band.

Corresponding partial derivatives:

∂ f 0

∂T
=

∂

∂T

[

1 + β−1
a exp

(

−Ea + E(v)
F

kBT

)]

−1

= −Ea + E(v)
F

kBT 2
f 0 f −1,

∂ f 0

∂E(v)
F

=
∂

∂E(v)
F

[

1+β−1
a exp

(

−Ea+E(v)
F

kBT

)]

−1

=
f 0 f −1

kBT
.

(A2)
From (A1) with account of (A2) we find

dE(v)
F

dT
=

ξh

K(1− K)T

+∞
∫

−∞

EaGa f 0 f −1 d(Ea − Ia) +
E(v)
F

T
,

(A3)
where quantity ξh is specified by equation (17).
Temperature dependence of average energy of an electri-

cally neutral acceptor:

〈Eh〉 =
1

1− K

+∞
∫

−∞

EaGa f 0 d(Ea − Ia),

0∗ Technical Physics, 2024, Vol. 69, No. 6



788 N.A. Poklonski, I.I. Anikeev, S.A. Vyrko, A.G. Zabrodskii

determines heat capacity (per one hole in acceptor A0/−

band; see Fig. 2):

Ch = −d〈Eh〉
dT

=
−1

1− K

[ +∞
∫

−∞

EaGa

∂ f 0

∂T
d(Ea − Ia)

+
dE(v)

F

dT

+∞
∫

−∞

EaGa

∂ f 0

∂E(v)
F

d(Ea − Ia)

]

> 0. (A4)

Then, using ratios (A2) and (A3), from (A4) we obtain

equation (16):

Ch =
1

(1− K)kBT 2

[

Q1 −
ξhQ2

K(1− K)

]

, (A5)

where

Q1 =

+∞
∫

−∞

E2
a Ga f 0 f −1 d(Ea − Ia),

Q2 =

( +∞
∫

−∞

EaGa f 0 f −1 d(Ea − Ia)

)2

.

Average thermal entropy s3t = s3t(T ) of activation of hole

hops between two acceptors in charge states (0) and (−1)
with account of (A5) is (see also [39]):

s3t =

T
∫

0

Ch(T ′)

T ′
dT ′. (A6)

Configurational entropy of hole placement
by acceptors

Let us consider a crystalline semiconductor of p-type

of unit volume, containing Na = Na,0 + Na,−1 hydrogen-

like acceptors in charge states (0) and (−1) and

Nd = KNa hydrogen-like donors in charge states (+1),
where 0 < K < 1 — compensation ratio. The condition

of electric neutrality of the crystalline sample has the

form Na,−1 = Nd = KNa. Calculation of the configurational

entropy S3m for distribution of electrically neutral states

of acceptors Na,0 = (1− K)Na over all acceptors provides

(in units of Boltzmann constant kB):

S3m

kB

= ln

(

Na!

Na,0!(Na − Na,0)!

)

. (A7)

To calculate quantity S3m, we use Stirling formula

ln(X !) = X ln(X) − X , where X ≫ 1 and then from (A7)
we obtain (compare [10–12]):

S3m

kB

= Na

[

ln

(

Na

Na − Na,0

)

+
Na,0

Na

ln

(

Na − Na,0

Na,0

)]

.

(A8)

Note that Na,0 = (1− K)Na, and then from (A8) we get

equation (19) for configurational entropy s3m = S3m/Na,

per one acceptor in the crystal:

s3m
kB

= − ln[KK(1− K)1−K ]. (A9)
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[27] K.W. Böer, U.W. Pohl. Semiconductor Physics (Springer,

Cham, 2023), DOI: 10.1007/978-3-031-18286-0

[28] M. Grundmann. The Physics of Semiconductors: An Intro-

duction Including Nanophysics and Applications (Springer,

Cham, 2021), DOI: 10.1007/978-3-030-51569-0

[29] W. Stiller. Arrhenius Equation and Non-Equilibrium Kinet-

ics: 100 Years (Teubner, Leipzig, 1989)

[30] A.I. Gorshkov. Sov. Phys. Tech. Phys., 21 (8), 991 (1976).

[31] D. Kondepudi, I. Prigogine. Modern Thermodynamics: From

Heat Engines to Dissipative Structures (Wiley, Chichester,

2015), DOI: 10.1002/9781118698723

[32] N.A. Poklonski, I.I. Anikeev, S.A. Vyrko. J. Appl. Spectrosc.,

90 (5), 970 (2023).

DOI: 10.1007/s10812-023-01620-9

[33] Z. Xun, D. Hao, R.M. Ziff. Phys. Rev. E, 105 (2), 024105

(2022). DOI: 10.1103/PhysRevE.105.024105

[34] S. Baranovskii, O. Rubel. Ch. 9. Charge Transport in

Disordered Materials. In: Springer Handbook of Electronic

and Photonic Materials, ed. by S. Kasap, P. Capper (Springer,

Cham, 2017), p. 193−218.

DOI: 10.1007/978-0-387-29185-7 9

[35] S.D. Baranovskii. Phys. Status Solidi B, 251 (3), 487 (2014).

DOI: 10.1002/pssb.201350339

[36] C.D. Lorenz, R.M. Ziff. J. Chem. Phys., 114 (8), 3659 (2001).

DOI: 10.1063/1.1338506

[37] V.I. Alkhimov. Theor. Math. Phys., 191 (1), 558 (2017).

DOI: 10.1134/S0040577917040079

[38] N.A. Poklonski, S.A. Vyrko, A.I. Kovalev, A.N. Dzeraviaha.

J. Phys. Commun., 2 (1), 015013 (2018).

DOI: 10.1088/2399-6528/aa8e26

[39] N.A. Poklonski, S.Yu. Lopatin. Phys. Solid State, 43 (12),

2219 (2001). DOI: 10.1134/1.1427945

[40] N.A. Poklonski, S.A. Vyrko, I.I. Anikeev,

A.G. Zabrodskii. Semiconductors, 56 (11), 823 (2022).

DOI: 10.21883/SC.2022.11.54957.9945

[41] A.A. Kocherzhenko, F.C. Grozema, S.A. Vyrko, N.A. Pok-

lonski, L.D.A. Siebbeles. J. Phys. Chem. C, 114 (48), 20424

(2010). DOI: 10.1021/jp104673h

[42] A.G. Zabrodskii. Phil. Mag. B, 81 (9), 1131 (2001).

DOI: 10.1080/13642810108205796

[43] N.A. Poklonski, I.I. Anikeev, S.A. Vyrko, A.G. Zabrodskii.

Phys. Status Solidi B, 260 (4), 2200559 (2023).

DOI: 10.1002/pssb.202200559

[44] N.A. Poklonski, S.A. Vyrko, A.G. Zabrodskii. Phys. Solid

State, 46 (6), 1101 (2004).

DOI: 10.1134/1.1767252

[45] T.G. Castner, N.K. Lee, H.S. Tan, L. Moberly, O. Symko.

J. Low Temp. Phys., 38 (3−4), 447 (1980).
DOI: 10.1007/BF00114337

[46] J.S. Blakemore. Solid State Physics (Cambridge Univ. Press,

Cambridge, 2004), DOI: 10.1017/CBO9781139167871
[47] O. Madelung. Semiconductors: Data Handbook (Springer,

Berlin, 2004), DOI: 10.1007/978-3-642-18865-7
[48] T.M. Lifshits. Instrum. Exp. Tech., 36 (1), 1 (1993).
[49] I.M. Tsidilkovsky. Zonnaya struktura poluprovodnikov

(Nauka, M., 1978)
[50] A.G. Zabrodskii, A.G. Andreev. Int. J. Mod. Phys. B, 8 (7),

883 (1994). DOI: 10.1142/S0217979294000427

Translated by EgoTranslating

Technical Physics, 2024, Vol. 69, No. 6


