Термоэлектрические свойства сплава Гейслера Fe-V-AI с избытком AI и недостатком Fe

© А.В. Ховайло, Е.А. Колесников, Е.В. Аргунов, В.В. Ховайло, Д.Ю. Карпенков

Национальный исследовательский технологический университет "МИСиС", 119049 Москва, Россия E-mail: khovailov2002@gmail.com

Поступила в Редакцию 17 июля 2024 г. В окончательной редакции 24 июля 2024 г. Принята к публикации 24 июля 2024 г.

Представлены результаты экспериментальных исследований термоэлектрических свойств сплава Гейслера Fe_{1.68} VAl_{1.32} *p*-типа. Сравнение электрического сопротивления ρ и коэффициента Зеебека *S*, измеренных в температурном интервале 300–475 K, с данными, опубликованными для других сплавов Fe-V-Al *p*-типа, указывает, что Fe_{1.68} VAl_{1.32} обладает наименьшим значением ρ и одним из наибольших значений *S*. Это приводит к одному из рекордных значений фактора мощности $PF \approx 1.7 \text{ MBT/}(\text{m}^{-1} \cdot \text{K}^{-2})$ (при T = 384 K) в Fe_{1.68} VAl_{1.32}, что на порядок превышает PF в стехиометрическом Fe₂VAl. Результаты измерений теплопроводности κ показали высокие значения κ ($\approx 11 \text{ BT/}(\text{m}^{-1} \cdot \text{K}^{-1})$) у исследуемого соединения, что сравнимо с теплопроводностью стехиометрического Fe₂VAl.

Ключевые слова: сплавы Гейслера, электродуговая плавка, транспортные свойства, фактор мощности.

DOI: 10.61011/FTP.2024.05.58761.22T

1. Введение

Сплавы Гейслера представляют собой тройные интерметаллические соединения и в общем случае подразделяются на два класса. Соединения первого типа, так называемые полные сплавы Гейслера, имеют стехиометрию X₂YZ и структурный тип кубической кристаллической решетки L2₁. Ко второму классу относятся так называемые соединения полу-Гейслера, которые имеют стехиометрию XYZ и C1_b тип кубической кристаллической решетки. В обоих случаях элементы X, Y это переходные металлы 4–11 групп, а Z — элементы основной группы (Al, Ga, In, Si, Ge, Sn, Sb) [1].

Стабильность сплавов Гейслера по большей части определяется правилом валентных электронов. Так, для сплавов XYZ это число равно 18, а для $X_2YZ - 24$. Отклонения от этих значений в большинстве случаев приводят к нестабильности соединения. Однако недавно было предположено [2], что за счет введения дефектов могут быть получены сплавы полу-Гейслера с 18 валентными электронами из нестабильных соединений с числом валентных электронов, равных 19. Используя этот подход, в работе [3] исследовался сплав, близкий по составу к Fe_{1.25}VAI — нестехиометрическому полному сплаву Гейслера с числом валентных электронов, равных 18, скорректированным до этого значения за счет введения вакансий.

По сравнению с полу-гейслеровыми сплавами, термоэлектрическая добротность zT полных сплавов Гейслера существенно ниже [4]. Тем не менее полные сплавы Гейслера, в частности Fe₂VAl, привлекают существенный интерес исследователей ввиду нетоксичности и дешевизны составляющих химических элементов. Недавние исследования показали, что комплексное замещение позиций ванадия и алюминия в стехиометрическом Fe₂VAl позволяет повысить zT до ~ 0.34 и достичь больших значений фактора мощности $PF \approx 10 \text{ MBt/}(\text{m}^{-1} \cdot \text{K}^{-2})$ в сплавах *n*-типа проводимости [5]. К тому же была установлена высокая растворимость алюминия в соединениях на основе Fe₂VAl [6], позволяющая посредством изменения содержания этого компонента влиять на термоэлектрические свойства исходного соединения и достичь бо́льших значений фактора мощности для сплавов *p*-типа проводимости. Цель данной работы — изучение влияния недостатка железа на термоэлектрические свойства исходного для изучение влияния недостатка железа на термоэлектрические свойства и з работы — изучение свойства сплава Fe₂VAl с избытком алюминия.

2. Образцы и методы измерений

Сплав номинального состава $Fe_{42}V_{25}Al_{33}$ (ат%) был получен в электродуговой печи с использованием чистых (Fe — 99.99%, V — 99.93%, Al — 99.99%) химических элементов. Потери веса при плавке не превышали 0.2%. Полученный слиток был помещен в кварцевую ампулу и подвержен отжигу в трубчатой печи при температуре 1073 K в течение 120 ч, после чего закален в холодной воде. Отожженный слиток был механически измельчен в ступе. Далее, посредством искрового плазменного спекания (ИПС), из порошка были получены образцы для измерений термоэлектрических свойств. ИПС проводился в вакууме при 1273 K, давлении прессования 65 МПа, со скоростями нагрева и охлаждения 30 и 50°С/мин соответственно.

Рентгенофазовый анализ проводился при комнатной температуре на дифрактометре Дифрей 401 с использованием CrK_{α} -излучения ($\lambda = 2.2909$ Å). Анализ микроструктуры и химического состава проводился на

сканирующем электронном микроскопе (СЭМ) Теscan Vega 3SB, со встроенной установкой для энергодисперсионной рентгеновской спектрометрии (ЭДС). Теплопроводность κ вычислялась по измеренной температурной зависимости коэффициента температуропроводности χ , полученной методом лазерной вспышки на установке Netzsch LFA 447, с использованием формулы $\kappa = C_p d\chi$, где C_p — удельная теплоемкость, высчитываемая теоретически согласно модели Дебая, d плотность, определяемая посредством метода гидростатического взвешивания. Электрическое сопротивление ρ и коэффициент Зеебека *S* измерялись на установке фирмы Криотел четырехзондовым и дифференциальным методами соответственно.

3. Результаты и обсуждение

Результаты рентгенофазового анализа представлены на рис. 1. По наблюдаемым рефлексам можно заключить, что образец имеет ожидаемую для таких соединений кубическую решетку с параметром a = 0.5815 нм, что немного выше, чем у стехиометрического Fe₂VA1 (a = 0.5762 нм) [7,8]. Отсутствие сверхструктурных рефлексов (например, (111)) указывает на то, что исследуемый сплав Fe_{1.68}VAl_{1.32} не обладает структурным упорядочением типа L2₁, свойственным для полностью упорядоченных сплавов Гейслера X₂YZ, а кристаллизуется в частично разупорядоченную структуру типа В2, в которой подрешетка V/Al разупорядочена [1]. Рефлексы от вторичных фаз на дифрактограмме не наблюдаются, что с учетом чувствительности прибора позволяет говорить о том, что, в случае наличия, их объемное содержание < 5%.

Анализ изображений микроструктуры, полученных при помощи СЭМ, указывает на то, что помимо основной фазы в образце также присутствует незначительное количество вторичной фазы в виде небольших

Рис. 1. Дифрактограмма Fe_{1.68} VAl_{1.32}.

Рис. 2. Температурная зависимость электросопротивления (a) и коэффициента Зеебека (b) в Fe_{1.68}VAl_{1.32} (I). Для сравнения приведены литературные данные для Fe₂VAl (2) [7], Fe_{2.08}V_{0.92}Al (3) [8], Fe₂VAl_{1.2}, Fe₂VAl_{1.6} и Fe₂VAl₂ (4-6) соответственно [6].

дендритных включений. Реальный химический состав образца, определенный с помощью ЭДС в нескольких точках шлифованной поверхности образца, был найден равным $Fe_{42.1}V_{24.2}Al_{33.7}$ (ат%), что близко к номинальному составу ($Fe_{42}V_{25}Al_{33}$). Определить химический состав вторичной фазы этим же методом не представляется возможным ввиду малых (несколько мкм) размеров включений этой фазы.

Температурные зависимости электрического сопротивления ρ и коэффициента Зеебека *S* представлены на рис. 2. Из рис. 2, *а* видно, что в измеренном диапазоне температур зависимость $\rho(T)$ в Fe_{1.68}VAl_{1.32} имеет полупроводниковый характер, понижаясь от значения $\rho \approx 650$ мкОм · см при комнатной температуре до $\rho \approx 320$ мкОм · см при T = 475 К. Отметим, что полупроводниковый характер электрического сопротивления является типичным поведением при T > 300 К как в недопированных [3–5], так и в допированных [9,10] сплавах системы Fe-V-Al. Сравнивая значения ρ в исследуемом сплаве со значениями, измеренными для стехиометрического Fe_2VA1 (кривая 2), Fe-V-A1 с избытком Fe (кривая 3) и с избытком Al (кривые 4-6), можно отметить, что Fe_{1.68}VAl_{1.32} обладает наименьшим электросопротивлением из всех представленных материалов при температурах > 310 К. При более низких температурах значения ρ в нашем образце превышают значения ρ в Fe₂VAl₂, электрическое сопротивление которого демонстрирует поведение, типичное для металлов, вплоть до $T = 4 \, \text{K}$ [6]. Малые значения электрического сопротивления в Fe_{1.68}VAl_{1.32} могут быть обусловлены ростом концентрации носителей заряда (в нашем случая дырок, как будет показано далее) при замещении Fe на Al.

Результаты измерений коэффициента Зеебека S указывают на то, что Fe_{1.68}VAl_{1.32} является полупроводником *р*-типа (рис. 2, *b*). Температурная зависимость *S* в Fe1.68 VA11.32 является типичной для вырожденных полупроводников. А именно из рис. 2, b видно, что при нагреве от комнатной температуры S вначале незначительно растет, достигая максимального значения $S \approx 94 \,\mathrm{mkB/K}$ при $T = 350 \,\mathrm{K}$, а затем понижается при дальнейшем увеличении температуры. Как правило, полупроводниковые сплавы на основе Fe₂VAl часто демонстрируют пик на зависимости S(T) [3,5], который является следствием проявления биполярной проводимости. Значения S исследуемого сплава в несколько раз выше, чем у стехиометрического Fe₂VAl и у сплава с избытком Fe, но меньше, чем у некоторых соединений с избытком Al (рис. 2, b).

Низкие значения электросопротивления наряду с относительно высоким коэффициентом Зеебека приводят к большим значениям фактора мощности *PF* (рис. 3). Необходимо отметить, что термоэлектрические материалы на основе Fe₂VAl *n*-типа демонстрируют гигантские значения *PF*, достигающие ~ 10 мВт/(м⁻¹ · K⁻²) [5], в то время как в материалах *p*-типа фактор мощности существенно ниже. Для материалов этого типа проводимости рекордное значение *PF* = 1.9 мВт/(м⁻¹ · K⁻²) было достигнуто в сплаве Fe₂VAl_{1.6} [6]. Сравнение величин фактора мощности в материалах на основе Fe₂VAl *p*-типа проводимости показывает (рис. 3), что фактор мощности для исследуемого в этой работе Fe_{1.68}VAl_{1.32} является одним из наибольших, достигая значения *PF* ≈ 1.7 мВт/(м⁻¹ · K⁻²) при *T* = 384 K.

Температурная зависимость теплопроводности κ в Fe_{1.68}VAl_{1.32} представлена на рис. 4. Видно, что данный сплав характеризуется большой теплопроводностью, которая превышает κ в стехиометрическом Fe₂VAl. Теплопроводность Fe_{1.68}VAl_{1.32} слабо зависит от температуры, повышаясь от значений $\kappa \approx 11.3$ BT/(м·K) при комнатной температуре до $\kappa \approx 12.2$ B/(м·K) при T = 550 K. Изученный в работе [6] сплав Fe₂VAl_{1.2} с небольшим избытком алюминия имеет схожие величины теплопроводности, в то время как соединения с бо́льшим со-

Рис. 3. Температурная зависимость фактора мощности в Fe_{1.68} VAl_{1.32}. Для сравнения приведены литературные данные для других полупроводников *p*-типа: Fe₂VAl (2) [7], Fe_{2.08} V_{0.92}Al (3) [8], Fe₂VAl_{1.2}, Fe₂VAl_{1.6} и Fe₂VAl₂ (4-6) соответственно [6].

Рис. 4. Температурная зависимость теплопроводности в Fe_{1.68} VAl_{1.32}. Для сравнения приведены литературные данные для Fe₂ VAl (2) [7], Fe_{2.08} V_{0.92}Al (3) [8], Fe₂ VAl_{1.2}, Fe₂ VAl_{1.6} и Fe₂ VAl₂ (4-6) соответственно [6].

держанием алюминия обладают значительно меньшими значениями *к*.

4. Заключение

В работе изучены термоэлектрические свойства сплава Гейслера $Fe_{1.68}VAI_{1.32}$, который характеризуется избытком алюминия и недостатком железа по сравнению со стехиометрическим составом. Сравнение свойств этого сплава со сплавами Fe_2VAI других химических составов, но такого же типа проводимости показало, что в измеренном температурном интервале Fe_{1.68}VAl_{1.32} обладает наименьшими значениями электрического сопротивления. Это обусловлено, по-видимому, ростом концентрации носителей заряда при замещении Fe на Al. Наряду с этим Fe1.68VAl1.32 демонстрирует одно из наибольших значений коэффициента Зеебека, что позволяет достичь рекордных значений фактора мощности. Несмотря на это, высокие значения теплопроводности в Fe1.68 VA11.32 не позволили существенно повысить термоэлектрическую добротность *zT* этого материала. Однако, учитывая то, что изученный в данной работе образец Fe1.68VA11.32 представлял собой крупнокристаллический спеченный порошок, можно предположить, что уменьшение размеров кристаллитов до субмикронного уровня позволит существенно уменьшить его теплопроводность и повысить таким образом zT.

Финансирование работы

Работа выполнена при поддержке Российского научного фонда (грант № 21-12-00405).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- T. Graf, C. Felser, S.S.P. Parkin. Progr. Solid State Chem., 39, 1 (2011).
- [2] S. Anand, K. Xia, V.I. Hegde, U. Aydemir, V. Kocevski, T. Zhu, C. Wolverton, G.J. Snyder. Energy Environ. Sci., 11, 1480 (2018).
- [3] A. Khovailo, A. Murtazin, E. Kolesnikov, E. Argunov, D. Karpenkov, A. Shubin, I. Bazhenova, A. Khvan, A. Bogach, E.M. Elsehly. MRS Advances, 8, 681 (2023).
- [4] A. Bharwdaj, K. Singh, S. Patnaik, Y.N. Parkhomenko, Y. Nishino, V. Khovaylo. Nanotechnol. Russ., 14, 281 (2019).
- [5] F. Garmroudi, A. Riss, M. Parzer, N. Reumann, H. Müller, E. Bauer, S. Khmelevskyi, R. Podloucky, T. Mori, K. Tobita, Y. Katsura, K. Kimura. Phys. Rev. B, **103**, 085202 (2021).
- [6] M. Parzer, F. Garmroudi, A. Riss, S. Khmelevskyi, T. Mori, E. Bauer. Appl. Phys. Lett., **120**, 071901 (2022).
- [7] Y. Nishino, M. Kato, S. Asano, K. Soda, M. Hayasaki, U. Mizutani. Phys. Rev. Lett., **79**, 1909 (1997).
- [8] A. Diack-Rasselio, O. Rouleau, L. Coulomb, L. Georgeton, M. Beaudhuin, J.-C. Crivello, E. Alleno. J. Alloys Compd., 920, 166037 (2022).
- [9] K. Renard, A. Mori, Y. Yamada, S. Tanaka, H. Miyazaki, Y. Nishino. J. Appl. Phys., 115, 033707 (2014).
- [10] F. Garmroudi, M. Parzer, A. Riss, S. Beyer, S. Khmelevskyi, T. Mori, M. Reticcioli, E. Bauer. Mater. Today Phys., 27, 100742 (2022).

Редактор Г.А. Оганесян

Thermoelectric properties of Fe-V-Al Heusler alloy with excess of Al and deficiency of Fe

A.V. Khovailo, E.A. Kolesnikov, E.V. Argunov, V.V. Khovaylo, D.Yu. Karpenkov

National University of Science and Technology "MISIS", 119049 Moscow, Russia

Abstract The results of the experimental studies of the thermoelectric properties of a *p*-type Fe_{1.68} VAl_{1.32} Heuser alloy are presented. A comparison of the electrical resistivity ρ and the Seebeck coefficient *S* measured in a temperature range 300–475 K with data, published for other *p*-type Fe-V-Al with different chemical compositions, showed that Fe_{1.68} VAl_{1.32} has the lowest ρ and one of the highest values of *S*. This leads to one of the record values of the power factor value $PF = 1.7 \text{ mW} \cdot \text{m}^{-1} \cdot \text{K}^{-2}$ (at T = 384 K) in Fe_{1.68} VAl_{1.32}, which is an order of magnitude higher than that in the stochiometric Fe₂ VAl. The results of thermal conductivity measurements showed high values of $\kappa ~ (\approx 11 \text{ W/(m}^{-1} \cdot \text{K}^{-1}))$ in the studied compound, which is comparable to thermal conductivity of the stochiometric Fe₂VAl.