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Correlation analysis of the interaction of plane capillary waves in the

regime of developed wave turbulence
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The work presents the results of direct numerical simulation of the turbulence of plane capillary waves propagating

along a liquid boundary. The model used is completely nonlinear and takes into account the effects of pumping

and dissipation of energy. The calculated turbulence spectrum is in good agreement with the analytical estimate

obtained on the basis of the theory of weak wave turbulence under the assumption of the dominant influence of

resonant five-wave interactions. The correlation analysis directly demonstrates the presence of nontrivial five-wave

interactions of plane capillary waves.
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It is known that systems of nonlinear waves may enter a

complex chaotic state (wave turbulence regime) as a result

of resonant interactions [1]. The interaction conditions for N
waves may be written as

ω(k1) ± ω(k2) . . . ± ω(kN) = 0, k1 ± k2 . . . ± kN = 0,

(1)
where wave vector k and angular frequency ω are bound

by dispersion relation ω = ω(k). Relations (1) stem from

the smallness of nonlinear effects; number N of interacting

waves corresponds to nonlinear effects of order N−1.

The dispersion relation for capillary waves on the surface

of a liquid takes the form

ω = (σ/ρ)1/2k3/2, k = |k|, (2)

where σ and ρ are the surface tension and the mass

density of a liquid, respectively. Together with relation

(2), conditions (1) form a system of nonlinear algebraic

equations. Cascade generation of small-scale harmonics may

proceed when this system has nontrivial solutions. This

process leads to chaotization of the evolution of waves and

the development of wave turbulence. In isotropic three-

dimensional geometry, the system of equations (1) and (2)
has nontrivial solutions at N = 3; i.e., resonant three-wave

interactions, which represent the decay of one wave into two

(1 → 2), are dominant. Zakharov and Filonenko [2] have

obtained the corresponding spectrum of capillary turbulence

for the Fourier transform of function η(r, t) that specifies

the shape of the liquid surface, Sη(k) = |ηk |
2:

Sη(k) = Ck
3wP1/2(σ/ρ)−3/4k−15/4, (3)

where Ck
3w is a dimensionless constant and P is the rate

of energy dissipation per unit surface area. The validity

of spectrum (3) of isotropic capillary turbulence on the

surface of a liquid has already been verified with high

accuracy both experimentally [3,4] and numerically [5–7].
The case of anisotropic surface perturbations with the

examined waves propagating in one direction (i.e., collinear
waves) is significantly different. In this scenario, conditions

of resonant interaction (1) for N = 3 and 4 are no longer

satisfied (the system has only trivial solutions) [8]. Trivial

resonant interactions do not induce the generation of new

waves of different scales [1]. The results of experimental

study [9] carried out for collinear waves on the surface

of mercury indicate that the influence of resonant five-

wave resonant interactions N = 5 corresponding to the

fourth order of nonlinearity is dominant. Wave interaction

conditions (1) may always be satisfied for resonances of

such a high order. Having performed a dimensional analysis

of weak turbulence spectra, the authors of [9] proposed an

estimate for the spectrum of capillary wave turbulence in

quasi-one-dimensional geometry:

Sη(k) = Ck
5wP1/4(σ/ρ)−3/8k−27/8, (4)

where Ck
5w is the corresponding dimensionless constant.

Turbulence spectrum (4) was reproduced numerically

within a strongly nonlinear plane-symmetric model in

recent study [10]. It should be noted that in degenerate

one-dimensional geometry, so-called coherent structures

(solitons or shock waves) may take a dominant role in the

development of wave turbulence (see, e.g., [11,12]). Such

structures may have a significant effect on the spectrum of

observed turbulence. Thus, a convincing demonstration of

the dominant influence of resonant five-wave interactions

cannot rely on the quantitative agreement of the results

reported in [10] with spectrum (4) only: one needs to

prove that resonances (1) for N = 5 are indeed observed

in direct numerical simulations. This was exactly the aim
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of the present study. It is demonstrated below through the

use of high-order correlation functions that the interaction

of nonlinear capillary waves is characterized accurately by

conditions (1).
Let us discuss briefly the specifics of the computational

model of capillary wave turbulence. The motion of a liquid

is considered to be plane-symmetric; i.e., the complete phys-

ical model is two-dimensional. Let us introduce Cartesian

coordinate system {x , y} such that equation y = η(x , t)
specifies the deviation of the free surface from unperturbed

state y = 0. The motion of a liquid is considered to

be potential, and its evolution is characterized by the

unsteady Bernoulli equation and the kinematic boundary

condition (see details in [10]). The model is based on the

conformal transformation of the region occupied by a liquid

to the half-plane of new conformal variables {u, v}; i.e.,

initially independent coordinates {x , y} are now regarded

as functions X(u, v) and Y (u, v). The liquid surface

corresponds to line v = 0: y = Y (u, t), X = u − ĤY (u, t),
and ψ = 9(u, t). Here, Ĥ is the Hilbert transform defined in

the Fourier space as Ĥ f k = isgn(k) f k , and ψ is the velocity

potential at the liquid boundary. The shape of the liquid

boundary is expressed implicitly: η(x , t) = Y [X(u, t), t]. For
brevity, we omit the complete derivation of equations of

motion [13] and go straight to the resulting model system:

Yt =
(

YuĤ − Xu
) Ĥ9u

J
− γ̂kY, (5)

9t =
(Ĥ9u)

2 −92
u

2J
+ Ĥ

(

Ĥ9u

J

)

9u

+
XuYuu − YuXuu

J3/2
+ F(k, t) − γ̂k9, (6)

where J = X2
u + Y 2

u is the Jacobian of the conformal

transformation, γ̂k is the viscosity operator, and F(k, t) is

a random driving force acting on large scales. We switched

to dimensionless variables in Eqs. (5) and (6), having set

σ = 1 and ρ = 1. Differential and integral operators in

Eqs. (5) and (6) are calculated using spectral methods

with 8192 Fourier harmonics in total; i.e., the boundary

conditions are periodic. The integration in time is per-

formed by the explicit fourth-order Runge−Kutta method

with step dt = 2.5 · 10−6. All calculations presented here

were performed in a periodic region with length L = 2π.

Calculations demonstrate that the system undergoes a

transition to the regime of quasi-steady chaotic motion

(wave turbulence) fairly rapidly (in a time on the order

of 100−200 dimensionless units) under the influence of

an external driving force (see details in [10]). The spatial

spectrum of turbulence calculated in the steady state is

shown in Fig. 1. It can be seen that the spectrum actually

assumes a power-law shape with an exponent close to

−27/8; i.e., the spectrum is close to estimate (4). The

shape of the liquid boundary behaves in a rather complex

irregular way (see the inset in Fig. 1).
Let us apply correlation functions, which are used widely

in statistical physics [14], in the analysis of wave interactions.
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Figure 1. Spatial spectrum of turbulence calculated in the steady

state (curve 1). Line 2 corresponds to spectrum (4); line 3, to

Zakharov−Filonenko spectrum (3). The inset shows the calculated
surface shape in the quasi-steady chaotic state (wave turbulence)
at a certain point in time.

To analyze the three-wave interaction, we construct third-

order correlator B(k1, k2) (so-called bicoherence):

B(k1, k2) =
|〈ηk1

ηk2
η∗k1+k2

〉|
[

〈|ηk1
ηk2

|2〉〈|ηk1+k2
|2〉

]1/2
, (7)

where ηk is the spatial Fourier transform of function η(x , t)
calculated at time instant t, 〈 f 〉 denotes averaging of

function f over time, and the asterisk denotes complex

conjugation. The denominator in formula (7) is chosen

in such a way that the value of B(k1, k2) varies from 0

(no correlation) to 1 (complete correlation). At N = 3,

system (1) has trivial solutions only: k1 = 0 and k2 = 0.

Figure 2, a presents bicoherence (7) calculated based on

direct numerical simulation data (time averaging was per-

formed within a narrow time interval 1t = 0.1). It can

be seen that correlations are found only in the vicinity

of the coordinate axes corresponding to trivial solutions.

These correlations arise as a result of nonlinear frequency

broadening when Eqs. (1) turn into an inequality within a

certain region δ : ω(k1) ± ω(k2) . . . ± ω(kN) 6 δ, and the

interaction of waves is called quasi-resonant. This area is

bounded by white solid lines in Fig. 2, a. Thus, calculated

correlation function (7) does indeed demonstrate that the

system features only trivial three-wave interactions and a

narrow region of quasi-resonances in which short waves

interact with long ones. These quasi-resonances do not

enable local transfer of energy from large scales to small

ones.

The analysis of wave resonances of the next (fourth) order
is based on a fourth-order correlator (tricoherence)

T (k1, k2, k3) =
|〈ηk1

ηk2
η∗k3
η∗k1+k2−k3

〉|
[

〈|ηk1
ηk2

|2〉〈|ηk3
ηk1+k2−k3

|2〉
]1/2

. (8)
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Figure 2. Calculated correlation functions of the third (a) and

fourth (b) order on a logarithmic scale. Red solid lines correspond

to trivial solutions of system (1), and white solid lines are the

boundaries of regions of quasi-resonances. A color version of the

figure is provided in the online version of the paper.

Correlator (8) characterizes the probability of wave scat-

tering: 2 → 2. For convenience of graphical representation

of tricoherence, we fix one of the wave vectors: k3 = 30.

Calculated correlator (8) is shown in Fig. 2, b. Trivial

solutions k1 = k3 and k2 = k3 and a fairly wide region of

quasi-resonant interaction are seen clearly in the plot. No

nontrivial solutions are observed. Thus, correlators (7) and

(8) are in good agreement with conditions (1) for N = 3

and 4.

Next, we consider a fifth-order correlator (quadro-
coherence)

Q(k1, k2, k3, k4) =
|〈ηk1

ηk2
ηk3
η∗k4
η∗k1+k2+k3−k4

〉|
[

〈|ηk1
ηk2
ηk3

|2〉〈|ηk4
ηk1+k2+k3−k4

|2〉
]1/2

,

(9)
which characterizes 3 → 2 interactions. To demonstrate

correlator (9), we fix two wave numbers: k3 = 15 and

k4 = 40. The result of calculation of quadro-coherence is

presented in Fig. 3. This pattern differs fundamentally from

the one shown in Fig. 2. In the case of N = 5, system

(1) does indeed have an exact nontrivial solution, which is

Figure 3. Calculated fifth-order correlation function (9) on a

logarithmic scale. Red solid lines correspond to nontrivial solutions

of system (1), and white solid lines are the boundaries of the region

of quasi-resonances. A color version of the figure is provided in

the online version of the paper.

denoted by the solid red line in Fig. 3. The correlations

found using formula (9) are localized in a narrow region

near the nontrivial solution of system (1). Note that

the obtained result agrees closely with the experimental

data from [9], where the possibility of five-wave resonant

interactions has also been demonstrated.

Thus, correlations of plane capillary waves in the regime

of developed wave turbulence were analyzed based on

direct numerical modeling data. The results of modeling

did not only reveal a good agreement of the calculated

turbulence spectrum with the theory of weak turbulence,

but also demonstrated directly the feasibility of implementa-

tion of nontrivial five-wave interactions of plane-symmetric

capillary waves.
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