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An approach is proposed to describe the magnetostructural features of the Mn1−xCrxNiGe system within the

concept of diffuse first-order phase transitions. The approach is based on the combination of two models for

describing first-order structural transitions hex(P63/mmc) ↔ orth(Pnma). The microscopic model of first-order

point transitions is used to describe the phase state of a homogeneous medium of an orthorhombic phase nucleus.

The thermodynamic model of redistribution of nuclei of both phases of a heterogeneous medium of a sample under

the action of the entropy of mixing is used to describe the macroscopic phase state. Within the framework of

the model used, an explanation is given for three types of phase transitions observed in systems with structural

instability. It is shown that the reversible and first-order magnetostructural transitions observed in samples x = 0.18,

x = 0.25, respectively, can be realized in sample x = 0.11 with an isostructural second-order magnetic transition

when the sample is subjected to hydrostatic pressure.
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1. Introduction

Structural transitions from the hexagonal

hex(P63/mmc) to the orthorhombic orth(Pnma)

state in the paramagnetic (PM) temperature

range PMhex(P63/mmc) ↔ PMorth(Pnma) of the

Mn1−xCrxNiGe system have a number of characteristics

that allow them to be classified as structural phase transi-

tions 1-st order. Such characteristics include a significant

change in specific volume, spontaneous release (absorption)

of heat and large temperature hysteresis [1]. However, since

these characteristics are not realized abruptly (which, ac-

cording to Ehrenfest, is a required condition [2]), these tran-

sitions can be classified as smeared phase transitions of the

1-st order [3–6]. One of the indicators of the smearing of the

structural transition PMhex(P63/mmc) ↔ PMorth(Pnma)

is a smooth change in the content of the orthorhombic

phase Pnma in the sample X-Int orth(T ) within a finite range

of characteristic transition temperatures. The temperature

dependence of X-Int orth(T ), Figure 1, b, was determined by

the method of X-ray diffraction analysis from changes in

the intensities of diffraction maxima of alternating phases.

When the sample is heated or cooled in certain temperature

intervals, there is a monotonic change in X-Int orth(T ).

These temperature intervals are assumed to determine the

degree of smearing of the 1-st order structural transition

PMhex(P63/mmc) ↔ PMorth(Pnma).

In Figure 1, the experimental dependence X-Int orth(T )
for a sample with x = 0.11 shows a smearing of the

transition as part of 1h = 56K upon heating and on

the order of 1c = 65K upon cooling. These quantities

should approach zero and the dependences X-Int orth(T )
will be described by the step functions L1c(T ) = 8(Tt1−T ),
L1h(T ) = 8(Tt2−T ), Figure 2, b for the model of point

transition of the 1-st order. The model dependences of

χ−1(T ) and the structural order parameter also demon-

strate stepwise characteristics near the temperatures of

lability (absolute instability) of homogeneous paramag-

netic structural states: hexagonal PMhex(P63/mmc)−Tt1

and orthorhombic PMhex(P63/mmc)−Tt2. As applied

to samples of the NiMn1−xCrxGe system, the model of

point transitions in a homogeneous medium [7] (exchange-
structural model) is given in the Appendix. In this work,

the theoretical analysis of smeared structural transitions is

based on a thermodynamic model of the redistribution

of homogeneous particles — nuclei of structural phases.

In this case, the state of the nuclei is described as

part of a microscopic model of point transitions for a

homogeneous medium [7]. The experimental data used in

the work were obtained previously in previous works of

the authors.

956



Magnetocaloric features of the NiMn1−xCrxGe system due to the diffuse nature of the... 957

2. Basic principles of the model of
smeared magnetostructural phase
transitions for solid solutions of the
Mn1−xCrxNiGe system

We proceed from the assumption [8–9] that

Mn1−xCrxNiGe solid solutions in the temperature

range of the structural paramagnetic transition

PMhex(P63/mmc) ↔ PMorth(Pnma) are a heterogeneous

system consisting of two chaotically distributed regions,

each of which is one of two homogeneous phases. Each

homogeneous region is considered as a nucleus of the

corresponding phase: orthorhombic phase 1 with symmetry

group Pnma(further — orth(Pnma)) or hexagonal

phase 2 with symmetry group P63/mmc(further —
hex(P63/mmc)). The thermodynamic potential of such

a heterogeneous system, consisting of a mixture of

phases 1 and 2, can be represented in the form [3–4]:

� = L1U1 + L2U2 + Ũ12L1L2 − TS(L1, L2), (1a)

S(L1, L2) = −kB[L1 lnL1 + L2 lnL2], (1b)

where the variables L1, L2 — relative number of particles;

U1 ≡ U1(T ), U2 ≡ U2(T ) — their thermodynamic potentials
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Figure 1. Experimental temperature dependences of the

inverse PM susceptibility χ−1(T ) and X-ray intensity X-Int orth(T ),
measured in the corresponding fields [1].
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Figure 2. Theoretical temperature dependences of the inverse PM

susceptibility and χ−1(T ) phase state function L(T ) in the model

of the point 1-st order structural phase transition. Q0(T ) — tem-

perature dependence of the structural order parameter describing

the point structural transition hex(P63/mmc) ↔ orth(Pnma) in a

homogeneous medium [7-8].

in phases 1 and 2, respectively, S(L1, L2) — entropy of

mixing [4], kB — Boltzmann constant. Ũ12 — interaction

potential between the particles.

In the limiting case of non-interacting phases

(Ũ12L1L2 ≪ 1), the main driving force for changing the ratio

between L1, L2 remains the entropy of mixing, which, under

the condition L1 + L2 = 1, can be reduced to the form

S = −kB[L1 lnL1 + L2 lnL2]

≡ −kB[L1 lnL1 + (1− L1) ln(1− L1)].

Then the formula (1a) takes the form of

� = 1U12L1 + U2 + kBT [L1 lnL1 + (1− L1) ln(1− L1)],
(2)

where1U12 = U1−U2.

To determine the phase state function of a heterogeneous

system, we minimize the thermodynamic potential accord-

ing to L1 (∂�/∂L1 = 0) and find the equilibrium value

L1 =
(

1 + e
1U12
kBT

)

−1

. (3)
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We believe that the dependence X-Int orth(T ), which

describes the relative change in the content of the or-

thorhombic phase, can be associated with the temperature

dependence of the relative amount of particles L1(T ) of

the martensite phase with an orthorhombic structure in the

austenitic medium formed by L2(T ) = 1−L1(T ) particles

with a hexagonal structure. In the original monograph [3],
particles of one phase are defined as nuclei of this phase.

The change in the thermodynamic potential of a particle

1U12 ≡ U2−U2 can be represented as a superposition of

two components: the bulk (�̃1−�̃2)g , which describes the

energy state in the volume of the nucleus, and the surface

(α̃1−α̃2)g2/3, which characterizes the energy features of the

shape of the nuclei [3,9]:

1U12 ≡ U1 −U2 = (�̃1−�̃2)g1 + (α̃1−α̃2)g
2/3
1 . (4)

Here g1 ≈ 50−1000 — the average number of structural

units in a particle [4] (in the case under consideration,

the number of initial lattice cells in the volume of a

particle of the orthorhombic phase is implied); �̃1, �̃2 —
thermodynamic potentials of the nucleus bulk part of the

corresponding phases; α̃1, α̃2 — thermodynamic potentials

associated with the formation of the surface shape of the

nucleus. Here and further we calculate the thermodynamic

potentials per lattice cell volume of the initial hexagonal

structure.

Expression (4) in structure does not violate the initial

condition of conservation of the relative number of particles

L2 = 1−L1, if g1 is the same for nuclei of both phases:

g1 = g2 = g). Indeed, the left-hand side, by definition,

should have the form

L2 =
(

1 + e
1U21
kBT

)

−1

,

where

1U21 ≡ U2 −U1 = (�̃2 − �̃1)g2 + (α̃2 − α̃1)g
2/3
2 .

It is easy to show that the right-hand side of the equality

L2 = 1−L1 with g1 = g2 = g has the form

1−L1 = 1−
(

1 + e
1U12
kBT

)

−1

=
(

1 + e
−(�̃1−�̃2)g1−(α̃1−α̃2)g2/3

1
kBT

)

−1

≡
(

1 + e
1U21
kBT

)

−1

.

In the fundamental works on smeared transitions

of the 1-st order in shape memory alloys and ferro-

electrics [3,5,6,9,10] the microscopic mechanism of the

formation of the martensite structure in the nucleus is not

reviewed. For example, in [4], where the main attention

is paid to describing the mechanism of giant macroscopic

deformation of working fluids undergoing a martensitic

transformation, the value 1U12 in (3) was approximated by

the expression 1U12 = B(T−TC)kB. Then

L1(T ) =
(

1 + e
B(T−TC )kB

T

)

−1

, (5)

where according to [4] B — the parameter that determines

the smearing of the transition in temperature, TC — the

temperature of the transition to the martensite state.

With this approach, the known phenomenological models

of point martensitic transformations in Heusler alloys (see,
for example, [10–14]) remain out of sight. Meanwhile, the

concepts of the order parameter and temperature of the TC

transitions do not coincide in their semantic meaning. Thus,

at the description of the smeared transitions [4] the quantity

η = L1−L2 = 2L−1 is reviewed as the order parameter η,

which varies from −1 to 1. In this case TC is determined by

the condition L(TC) = 1/2.

On the other hand, when considering martensitic trans-

formations, it is often limited to considering point transitions

of the 1-st order, which are characteristic of homoge-

neous systems and occur simultaneously throughout the

entire volume of the sample. To describe them, a

non-equilibrium thermodynamic potential is used in the

form of an expansion in combinations of elastic defor-

mations [10–14]. Two combinations of these deforma-

tions e2, e3 disappear during the 1-st transition from a

tetragonal structure (austenite, e2 6= 0, e1 6= 0) to cubic

(martensite, e2 = e3 = 0) and therefore are used as a

secondary order parameter. The transition temperature

TC in this case corresponds to the softening temperature

of the elastic modulus a = c11−c12 = a0(T−TC), which

determines the 1-st term of the expansion of the non-

equilibrium thermodynamic potential in terms of order

parameters: 1
2

a0(T−TC)(e22 + e23) [10–14]. In this case,

nuclei are implied, but are considered separately, taking into

account the model heterogeneity of the system.

In this work, following [8], both approaches to

the description of martensitic transformations in the

Mn1−xCrxNiGe system are taken into account. It is assumed

that the appearance of a martensite nucleus (orthophase)
with an as yet unknown shape in the crystal lattice occurs

when the corresponding transition is stabilized. Point struc-

tural PMhex(P63/mmc) ↔ PMorth(Pnma) or point mag-

netostructural PMhexP63/mmc) ↔ HMorth(Pnma) tran-

sition with helimagnetic (HM) orthorhombic phase

HMorth(Pnma) as phase 1. Therefore, in (4) the equi-

librium expressions of thermodynamic potentials calculated

in one or another model of point structural transitions are

used as �̃1, �̃2. In particular, when using the exchange-

structural model of interacting parameters of the magnetic

and structural orders [7–8], which describes point transitions

of the 1-st order PMhex(P63/mmc) ↔ HM,PMorth(Pnma)
in an ideal homogeneous system of N0 ≫ g elementary

�̃1 = �(orth)/N0 ≡ �(Q0, y, e1, T, P, H)/N0, (6a)

�̃2 = �(hex)/N0 ≡ �(Q0 = 0, y, e1, T, P, H)/N0, (6b)

where Q0, y — values of equilibrium parameters

of the structural and magnetic orders, respectively;

Physics of the Solid State, 2024, Vol. 66, No. 6



Magnetocaloric features of the NiMn1−xCrxGe system due to the diffuse nature of the... 959

e1 ≡ e1(Q0, y, P, T ) — volumetric deformation;

�(Q0, y, e1, T, P, H) ≡ �1 — equilibrium thermodynamic

potential calculated for the rhombic magnetically

ordered y 6= 0 (paramagnetic y = 0) state; similarly

�(Q0 = 0, y, e1, T, P, H) ≡ �2 — equilibrium thermo-

dynamic potential calculated for the hexagonal magnetic-

ordered y 6= 0 (paramagnetic y = 0) state (P4).
The value (α̃1−α̃2)g2/3 describing the influence of the

surface shape of the nuclei — an as yet unknown function

of temperature and pressure. We assume that this term

in (4) allows to determine the initial conditions of the L1(T )
dependence during cooling and heating of a heterogeneous

system. It is also reasonable to assume that, like the

1-st term in (4), the value (α̃1−α̃2)g2/3 should
”
respond

“ to changes in external conditions: pressure, temperature,

magnetic field. In the simplest version, (α̃1−α̃2)g2/3 is

approximated by the expressions

(α̃1−α̃2)g
2/3 = g2/31α12(�1, �2) ≡ g2/3(nc,h

1 �1−nc,h
2 �2),

(7)
where the numbers |nc,h

1,2| ≪ 1 — model parameters that de-

termine the adjustment of the dependence L1(T ) ≡ L1c (T )
during cooling (nc

1,2) and L1(T ) ≡ L1h(T ) during heating

(nh
1,2) of the heterogeneous system. Meanwhile, the values

of the once chosen numbers nc,h
1,2 and g are assumed to be

independent of pressure and magnetic field.

The final expressions for the temperature dependences

L1c,h(T ) at fixed pressure P and magnetic field H , according

to (6) have the form

L1c(T ) =

(

1 + e
[�1−�2 ]g+[nc

1
�1−nc

2
�2 ]g2/3

a2T

)

−1

≡ L1c(T, P, H),

(8a)

L1h(T ) =

(

1 + e
[�1−�2 ]g+[nh

1
�1−nh

2
�2 ]g2/3

a2T

)

−1

≡ L1h(T, P, H),

(8b)
where a2 = kBN0, N0 — number of lattice cells per unit

volume (cm3) (see Appendix).
Magnetic

y = 〈Uk
n ŝ

k
n〉/s ≡ 〈m̂〉/s = S pm̂ eβhm̂/sS peβhm̂

and structural

Q0 = 〈Qn〉ρ ≡
∞
∫

−∞

ρdsoQndQn

order parameters for describing point transitions are de-

termined in the hUk
n mean field approximation for the

spin subsystem and in the biased harmonic oscillator

approximation for the structural subsystem

ρdso ≡ ρdso(Qn) =
1√
2πσ̃

exp

[

− (Qn − Q0)
2

2σ̃

]

(see Appendix). In the model of smeared transitions,

their equilibrium values calculated from the equations of

state (P2) are transformed to y∗, Q∗

0 (9)

y∗

c,h(T ) = y(T )L1c,h(T ), (9a)

Q∗

0c,h(T ) = Q0(T )L1c,h(T ). (9b)

Accordingly, thermodynamic functions from the variab-

les y and Q0 transform into functions from y∗

and Q∗

0 . For instance, temperature dependence

S(T, H, P) ≡ S[Q0(T ), y(T, H), T, H, P] of the entropy

in the point description (P2) goes into the depen-

dence S[Q∗

0(T ), y∗(T, H), T, H, P]. Temperature depen-

dences of the inverse PM susceptibility in the region

of temperatures of the paramagnetic structural transition

PMhex(P63/mmc) ↔ PMorth(Pnma) [7] is transformed

according to the scheme

χ−1
c,h (T ) ≡ χ−1

c,h [Q0c,h(T ), T ] → (χ∗c,h)
−1[Q∗

0c,h(T ), T ]

at H = y = 0 and

χ−1
c,h (T )≡χ−1

c,h [y c,h(T, H)]=
H0

M[y c,h(T, H)]
→ H0

M[y∗

c,h(T, H)]

at H = H0. Here and below, the lower indices c and h —
correspond to cooling and heating, M[y c,h(T, H)] corre-

spond to the theoretical values of the specific magnetization

during cooling and heating of the sample.

3. Interpretation of the features of the
magnetostructural and magnetocaloric
properties of samples of the
Mn1−xCrxNiGe with 0.11 ≤ x ≤ 0.25

in the model of smeared transitions

Three types of characteristic features of magnetostructural

properties can be distinguished in the Mn1−xCrxNiGe

system. The properties of the sample with x = 0.11

(Figure 3, a, b, c) are typical for solid solutions with a Cr

concentration within the 0 ≤ x < 0.18 range. The anoma-

lous behavior of the inverse paramagnetic susceptibility and

the change in phase state ending below the paramagnetic

Curie temperature θorth (Figure 3, a, b) are characteris-

tic of a smeared structural transition of the 1-st order

hex(P63/mmc) ↔ orth(Pnma), preceding magnetic orde-

ring, Figure 3, c. The latter is realized as an isostructural

transition2-nd order, PMorth(Pnma)−HMorth(Pnma) and

stabilizes the simple helimagnetic phase (HM) with the

wave vector q = [0, 0, qa ] [15]. This transition is not

smeared, since it occurs in the temperature region of stabil-

ity of the orthorhombic phase for the entire (L1c,h(T ) ≡ 1)
crystal. The properties of the sample with x = 0.18

are determined by the so-called reversible transitions [16],
which are accompanied by temperature hysteresis and have

different magnetization slopes with an initial decrease and

subsequent increase of temperature (Figure 4, c). Here, a

sharp decrease of the inverse susceptibility χ−1
c (Figure 3, c)

and magnetization (Figure 4, c) coincides with an increase

Physics of the Solid State, 2024, Vol. 66, No. 6
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Figure 3. Combined experimental (symbols) and theoretical (lines) temperature dependences of the magnetostructural characteristics

of a number of alloys of the Mn1−xCrxNiGe system at atmospheric pressure. g-number of structural units in a orthorhombic nucleus;

experimental dependences taken from [1].

of the content of the orthorhombic phase L1c(T ), X-Int (T )
(Figure 3, d). Such behavior can be interpreted according

to [16] as the occurrence of a magnetostructural transition

of the 1-st order PMhex(P63/mmc) ↔ FMorth(Pnma))

upon an initial decrease of temperature. This transition

will be smeared, since it is located in the area of

the greatest change L1c(T ), X-Int orth(T ) (Figure 3, d).
A non-smeared isostructural transition of the 2-nd order
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Figure 4. Comparison of temperature dependences of magnetic M(T ) and magnetocaloric 1S(T ) characteristics for a number of samples

of the Mn1−xCrxNiGe system. Symbols — experimental data from [19,16,19] respectively; lines — model.

FMorth(Pnma)−PMorth(Pnma)) is observed in case of an

inverse increase of temperature within the rhombic phase

(its beginning and end at a temperature lower than the main

change in the function L1h(T ), X-Int oth(T ) Figure 3, d).

Here and below, the upper index
”
∗“ used in (9) to

denote the parameters of smeared transitions is not used.

Therefore, the characteristics of point transitions are high-

lighted in text. In the sample with x = 0.25, ferromagnetic

ordering (disordering) is realized as a1-st order transition

both with increasing and decreasing temperature [18–19].
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This transition is accompanied by temperature hysteresis

and a relatively sharp change in magnetization, followed

by an almost hysteresis-free and smooth increase at low

temperatures (Figure 4, e).

Experimental isothermal dependences of entropy 1S(T ),
calculated on the basis of Maxwell’s relation in the range

of magnetic field variations 1H = 9.7 kOe, complement

the magnetostructural features of the samples under study.

Figure 4 compares the experimental and theoretical de-

pendences of the specific M(T ), and 1S(T ), which give

an idea of the relationship between the magnetic and

magnetocaloric features of the Mn1−xCrxNiGe system at

atmospheric pressure. Theoretical dependences 1S(T ) were
calculated according to the scheme

1S(T ) = S[Q0(T ), y(T, H), T, H, P]

− S[Q0(T ), y(T, 0), T, 0, P]. (10)

As can be seen from Figure 4, a, b, alloys with separated

structural and magnetic transitions are characterized by a

four-peak structure of the 1S(T ) dependence (2 peaks

during cooling: structural1Ss
c(T ) and magnetic 1Sm

c (T );
2 peaks during heating: 1Ss

h(T ) and 1Sm
h (T ) structural

and magnetic, respectively). According to the model,

the first two combined low-temperature peaks 1Sm
h (T )

and 1Sm
c (T ) correspond to the magnetocaloric contri-

bution from the isostructural magnetic phase transition

PMorth(Pnma)−HMorth(Pnma) within the orthorhombic

phase. The appearance (disappearance) of this phase as a

result of a smeared structural transition of the 1-st order

PMhex(P63/mmc) ↔ PMorth(Pnma)) may be the cause

of two high-temperature peaks 1S(T ), corresponding to

the cooling of 1Ss
c(T ) and heating of 1Ss

h(T ). These

”
structural“ peaks are significantly smaller in absolute value

than the isostructural
”
magnetic“ peaks 1Sm

h (T ), 1Sm
c (T ).

There are no experimental points for the dependences

1Ss
h(T ), 1Ss

c(T ) in Figure 4, b. However, their existence

is indirectly confirmed by DTA analysis in work [17].

There is a slightly different feature for the central sample

x = 0.18. Here, the three-peak structure reflects the asym-

metric combination of structural and magnetic transitions.

A sharp, large, low-temperature peak is a superposition of

magnetic and structural contributions. This peak 1Sms
c (T )

characterizes a smeared magnetostructural transition of the

1-st order PMhex(P63/mmc) ↔ FMorth(Pnma)), which

occurs when the sample is cooled. When the sam-

ple is heated, a sequence of two phase transitions oc-

curs. The first isostructural transition of the 2-nd order

FMorth(Pnma) → PMorth(Pnma) corresponds to the mag-

netic peak 1Sm
h (T ). The second smeared structural transi-

tion of the 1-st order. PMorth(Pnma) → PMhex(P63/mmc)
corresponds to the structural peak 1Ss

h(T ). The struc-

tural and magnetic transitions are combined for x = 0.25

during cooling and heating as well. The dual-peak

structure 1S(T ) is implemented. Each peak of which

relates to the cooling 1Sms
c (T ) and heating 1Sms

h (T )

of the sample, which, during cooling and heating, ex-

periences smeared magnetic structural (ms) transitions

of the 1-st order PMhex(P63/mmc) → FMorth(Pnma),
FMorth(Pnma) → PMhex(P63/mmc), respectively. That

is, each peak corresponds to a superposition of diffuse

magnetic and structural transitions of the 1-st order. These

conclusions are confirmed by a combination of theoreti-

cal magnetic, caloric and structural characteristics shown

in Figure 5.

In Figure 5, the structural characteristics include di-

mensionless parameters of local structural order Q0,

(see Appendix). As can be seen from Figure 5, a, b

the temperature region of change in the magnetic or-

der parameter y0
c,h ≡ yH=0

cooling,heating is in the stability re-

gion of the orthorhombic phase, which lies beyond the

high-temperature change in the structural order parame-

ter Q0. Therefore, the low-temperature peaks 1Sm
h (T ),

1Sm
c (T ) correspond only to the magnetic contribution

enhanced by the isostructural transition of the 2-nd order

PMorth(Pnma) ↔ HMorth(Pnma) in the already stable

orthorhombic phase (Q0/Q0 max ≈ 1). High-temperature

peaks are located precisely in the region of temperature

changes in the structural order parameter above the Neel

temperature TN, i. e., outside the main change in both

the magnetic order parameter y(H = 0) and magnetization

M(H) = M0y(H). For the case of x = 0.18 (Figure 5, c, d)
the combination of structural and magnetic transitions

occurs with the decrease of the temperature (curves Q0c

and MH
c increase in the same temperature range). This

results in the occurrence of the magnetostructural transition

PMhex(P63/mmc) ↔ FMorth(Pnma) and the appearance

of a single maximum peak as a result of the positive com-

bination of structural and magnetic contributions in 1S(T ).
The smeariness of the structural transition imposes its own

characteristics on the magnetocaloric and magnetostructural

properties, but does not change the main reason for the

positivity of the structural and magnetic contributions —
a decrease of structural and magnetic symmetries with a

strong relationship between the parameters of the magnetic

and structural orders (see Appendix). As the temperature

increases, the temperature intervals of changes in the param-

eters of the structural and magnetic orders in a magnetic

field (curves Q0h and MH
h ) do not coincide. Therefore,

as in the case of x = 0.11, a sequence of two transitions

is observed: an isostructural magnetic phase transition

of the 2-nd order FMorth(Pnma)−PMorth(Pnma) and a

smeared paramagnetic structural transition of the 1-st order

PMorth(Pnma) → PMhex(P63/mmc). The magnetic and

structural peaks are separated and are significantly inferior

in absolute value to the single magnetostructural peak.

For x = 0.25, the initial parameters of the semi-

microscopic Hamiltonians (see Appendix) are selected in

such a way that in the used model of diffuse tran-

sitions, a magnetostructural transition of the 1-st order

PMhex(P63/mmc) ↔ FMorth(Pnma) is realized with de-

creasing and increasing temperature. It should be noted

that the results of the point model and the smeared
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transition model may have significant qualitative differences

in this case, and not only in the absence of stepwise

magnetostructural characteristics.

As can be seen from Figure 5, e, f, the two-peak structure

of 1S(T ) here can be quite reasonably associated with

the coincidence of temperature intervals of changes in the

magnetic and structural order parameters. Let us note that,

unlike the previous cases, the lines in the pairs MH
c , M0

c
and MH

h , M0
h show the displacement of the entire transition.

This means that smeared magnetostructural transitions of

the 1-st order, like point transitions, can describe transitions

of the1-st order induced by a magnetic field.

Another peculiarity of the system properties is the

pressure transformation of the magnetostructural properties.

Using the example of a sample with x = 0.11, as part of

the smeared transition model, we will review a series of

stages of increasing pressure to 8 kbar. From Figure 6 it

is clear that at p = 4 kbar a state with a reverse 1-st order

transition and a three-peak structure 1S(T ) arises. This

magnetocaloric state of the helimagnetic phase is similar

to the magnetocaloric ferromagnetic state in the sample

with x = 0.18 at atmospheric pressure.

At p = 8 kbar, the magnetostructural state charac-

teristic of a sample with x = 0.25 at p = 0 is re-

produced: with a decrease (increase) in tempera-

ture, a smeared magnetostructural transition of the

1-st orderPMhex(P63/mmc) ↔ FMorth(Pnma) is reali-

zed, with a two-peak structure 1S(T ). At the

same time, relatively sharp (but not abrupt) changes

in magnetization in δMms
c,h temperature region of the

smeared magnetostructural transition of the 1-st order

PMhex(P63/mmc) ↔ FMorth(Pnma) are of the same order

of magnitude as its maximum value Mmax.

It should be noted that for a sample with x = 0.11,

the helimagnetic phase HMorth(Pnma)) is weakly resis-

tant to the influence of an external magnetic field. In

a magnetic field, the dependence has a maximum and

signs of the helimagnetic state begin to appear only below

the temperature of maximum magnetization. Therefore,

in a magnetic field of the order of 1T for a number of

helimagnetic samples, we can talk about magnetostruc-

tural PMhex(P63/mmc) ↔ FMorth(Pnma), or isostructural
PMorth(Pnma)−FMorth(Pnma) transitions from a mag-

netized paramagnetic to a ferromagnetic state. These

theoretical results are confirmed by pressure experimental

studies in [7,16–18].
It is of interest to compare the results of the model

of smeared and point transitions (Figure 6). As can be

seen from Figure 6, d, h, l, along with the quantitative

discrepancy in the |1S(T )| values, a qualitative discrepancy

in the type of transitions also arises. In the point

model, at p = 4 kbar, the four-peak structure 1S(T ),
characteristic of temperature-separated structural transitions

of the 1-st order PMhex(P63/mmc) ↔ PMorth(Pnma)
and magnetic isostructural transitions of the 2-nd order

PMorth(Pnma)−HMorth(Pnma), is preserved as at p = 0

(Figure 6, h). A 1-st order magnetostructural transition

PMhex(P63/mmc) ↔ HMorth(Pnma) is realized as the

temperature decreases, with which one magnetostructural

peak 1Sms
c is associated In the model of smeared

transitions at this pressure (Figure 6, f ). Upon subsequent

heating, a chain of transitions of the 2-nd and 1-st orders

HMorth(Pnma) → PMorth(Pnma) → PMhex(P63/mmc)
is realized. These transitions are associated with 2 peaks

1Sm
h and 1Ss

h. In total, a three-peak structure appears

(Figure 6, f ), characteristic of reversible magnetostructural

transitions of the 1-st order.

4. Conclusion

The analysis of the results obtained allows to state the

following.

1. In the proposed approach, the transition from point

structural transitions of the 1-st order to smeared ones

is carried out by transformation from a step function of

the phase state to a diffuse function L(T ) of the relative

number of nuclei of the orthorhombic phase and subsequent

transformation of the order parameters according to the

obvious scheme.

2. The temperature range of smearing of thermodynamic

functions is determined by the number of structural units g
in the nucleus of the rhombic phase 1 and the relationship

between the lability temperatures of the order parameters

and the temperature of equality of the thermodynamic

potentials of the rhombic (�1) and hexagonal (�2) phases

in a point approximation.

3. Hysteresis phenomena during cooling (c) and heat-

ing (h) are determined by the relationship between the

energies of the bulk part of the nucleus (�1−�2)g ,
proportional to the value g , and the surface part of the

nucleus proportional to (�1nc,h
2 −�2nc,h

2 )g2/3 at |nc,h
1,2| ≪ 1.

4. The increase of the degree of smearing (decrease of the
parameter g) results in a decrease of the maximum value of

the magnetocaloric effect indicators (value |1S(T )|).
5. The smearing of the functions of the L(T ) phase

state leads to the overlapping of areas of magnetostructural

stability separated in the pointwise description P−T and

the opportunity of the appearance of qualitatively new

states and smeared magnetostructural transitions under the

influence of pressure and a magnetic field.
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Appendix

The subsequent presentation is based on works [7,8]
in which the spin (s) and structural (Q) and elastic (e)
subsystems are described by the corresponding microscopic

Hamiltonians. The Heisenberg Hamiltonian for the spin

subsystem consisting of N(1−x) magnetically active Mn

atoms, and the Hamiltonian of independent anharmonic soft

modes for the structural subsystem of N0 = N/2 lattice

hexagonal cells. The total thermodynamic potential of

such a system � in the presence of an external magnetic

field H = [0, 0, H] is calculated in the approximation of a

spatially periodic mean field h = hUk
n (Un

k — unit vector)
for the spin subsystem and in the approximation of a

biased harmonic oscillator (dso) for the structural elastic

subsystem. The independent changing variables in this case

are the parameters of the magnetic and

ys = 〈Uk
n ŝ

k
n〉 ≡ 〈m̂〉 = S pm̂eβhm̂/S peβhm̂

structural

Q0 ≡ 〈Qn〉 ≡
∞
∫

−∞

ρdsoQndQ

=

∞
∫

−∞

1√
2πσ

exp

[

− (Qn − Q0)
2

2σ

]

QndQn

orders, dispersion

σ = 〈[Qn − Q0]
2〉 ≡

∞
∫

−∞

ρdso[Qn − Q0]
2dQn,

volumetric e1 and orthorhombic e2 deformations.

The equilibrium values of these independent variables as

a function of temperature are found from the system of

equations of state

(∂�/∂Q0) = 0, (∂�/∂y) = 0, (∂�/∂σ ) = 0,

(∂�/∂e1) = 0, (∂�/∂e21) = 0. (A1)

The last three equations have solutions in analytical form.

The first two are reduced to the form (A2) and solved

numerically.

(∂�/∂Q0) = 0, (A2a)

y = Bx(X), (A2b)

where

B s(X) =

[(

1

2s + 1

)

coth
1

2s + 1
X −

(

1

2s

)

coth
1

2s
X

]

— Brillouin function

z (X)=S peβhm̂ ≡
s

∑

ms =−s

eβhms , X =hs/kBT, m̂k
n =Uk

n ŝ
k
n = m̂,

ms — the eigenvalue of the operator of the projection of the

spin operator ŝk
n onto the direction of the average spatially

inhomogeneous field h = hUk
n k-th atom in the n-th lattice

cell (structural unit) of the original hexagonal lattice. The

dependence of the modulus of the spatially heterogeneous

field h on the parameters of the structural order leads to

the relationship between the spin and structural subsystems.

Therefore

X =≡ X [T, H, P, Q0(T ), y(T )], h≡h[T, H, P, Q0(T ), y(T )],

and their explicit expressions are given in Ref. [7]. The

expression for the equilibrium entropy S = −(∂�/∂T ) and

thermodynamic potential � as a function of temperature T ,
pressure P , magnetic field H systems of N0 structural units

per unit volume have the form

S(T, P, H) = NkB[ln z (X) − yX ] +
α

κ
e1 +

N0kB

2
ln(σ ),

(A3)
�(T, P, H) = N(h − 2µ0HUk

n)ys/2− kBNT ln z (X)

+ U(Q0, σ ) − T
kB

2
N0 ln σ + �e(e1, e2, T, P) (A4)

Uk
n ≡ Uk

n(q)=
[

cos(qRk
n) sin(ϑ), sin(qRk

n) sin(ϑ), cos(ϑ)
]

—
unit vector defining the direction of the average field for the

atomic spin at position Rk
n in the presence of a magnetic

field H = [0, 0, H]

U(Q0, σ ) =
ω2

2
(Q2

0 + σ ) +
γ

4
(Q4

0 + 6Q2
0σ + 3σ 2)

+
Ŵ

6
(Q6

0 + 15Q4
0σ + 45Q2

0σ
2 + 15σ 3)

− 1

2
ν0(1 + L2e1 + L3e2)Q

2
0, (A5)

where the equilibrium variables

y ≡ y(T ), Q0 ≡ Q0(T ),

e1 ≡ e1[T, P, Q0(T ), y(T )], e2 ≡ e2[Q0(T )],

σ ≡ σ [T, Q0(T )]

are solutions of the equations of state (A1) for given values

of pressure and magnetic field.

Whereω2 = N0ω̃
2, γ = N0γ̃ , Ŵ = N0Ŵ̃,

N0V0 = N0

∑

n′

Vnn′ ≡ N0V0(e1, e2) = ν0(1 + L2e1 + L3e2).

The expression of thermodynamic potentials in the

orthorhombic �1 and hexagonal �2 phases is determined

from (A4) as

�1 ≡ �
(

Q0(T ), y(T ), T, H, P
)

and

�2 ≡ �
(

0, y(T ), T, H, P
)

.
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