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1. Introduction

Spin-polarized current, which allows the transfer of spin

angular momentum between two magnetic layers is a main

option to control the states of bits in magnetic memory,

called STT-MRAM [1–3]. SOT-MRAM memory is an

alternative to such memory, which has the properties of non-

volatility, reversibility, high speed, low power dissipation

and good compatibility with the traditional semiconductor

industry. Several configurations of SOT-MRAM cells

with different properties are currently proposed [4]. The

dynamics of magnetization in the active layer of cells with

perpendicular anisotropy based on the spin Hall effect is

studied in this paper.

2. Basic equations

The description of the dynamics of the magnetization

vector of the free layer M is based on the Landau–Lifshitz–
Gilbert equation (LLG):

∂M

∂t
= −γµ0[M×Heff] +

α

Ms

[

M× ∂M

∂t

]

+ TSOT, (1)

where the spin-orbit toque TSOT is equal to

TSOT = TFL + TDL

=γµ0 jθSHχDL[M× [M× ey ]]+γµ0 jθSHχFLMs [M× ey ].

Here γ — gyromagnetic ratio; µ0 — magnetic permeability

of vacuum; Heff — effective magnetic field; α — dimen-

sionless dissipation coefficient; j — normalized charge cur-

rent density, j = J/Jnorm = J~/(g|e|dµ0M2
s ); ~ — Planck’s

constant; g ≃ 2 — Lande factor; e — electron charge;

d — thickness of the free ferromagnetic layer; Ms —

saturation magnetization of the free (active) ferromagnetic

layer (the values of the parameters of the three-layer

structure Ta|Co60Fe20B20|MgO used in the article are given

in Table 1); θSH = j s/ jc — the angle of the spin Hall effect

characterizing the ratio of the density of the vertical spin

current j s to the density of the horizontal charge current jc ;

χDL, χFL — the efficiency of the spin Hall effect for each

component of the torque.

Figure 1 shows a scheme of the considered model. On the

basis of analogy with the models considered in [5], we call

this cell configuration the YZ model (the external magnetic

field is directed along the Y axis, the anisotropy field —

along the Z axis, orthogonal to the plane of the layer).
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Figure 1. Schematic representation of the SOT-MRAM element

with perpendicular anisotropy of ferromagnetic layers (Hexternal —
external magnetic field, Ha — anisotropy field, I — charging

recording current, jc — charge current density vector, js — spin

current density vector, σ — spin polarization direction). PL —
pinned layer, FL — free layer, TB — tunnel barrier, HM — heavy

metal.
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Table 1. Parameters for modeling the dynamics of the

SOT-MRAM element for the Ta|Co60Fe20B20|MgO ferromagnet

Physical Quantity Numerical Value Link

K, MJ/m3 0.6 [6]
µ0Ms ,T 1.300 [6]

α 0.008 [7]
θSH −0.06 [4]
χDL 3.2 [4]
χFL −2.1 [4]

k = 2K/(µ0M2
s ) 0.892 −

Table 2. The normalizations used in the calculations (the
thickness of the active layer d is 1 nm, the Lande factor g is

considered equal to 2)

The normalization formula Normalization factor

H = hMs , MA/m 1.035 · 106h
J = dgeµ0 jM2

s /~, A/m
2 4.081 · 1012 j

K = µ0M2
s k/2, J/m3 6.724 · 105k

t = τ (1 + α2)/(γµ0Ms ), s 2.745 · 10−11τ

The normalization values for the above values are listed

in Table 2 ([4]).
Let us present equation (1) in a dimensionless form to

use the apparatus of numerical analysis

∂m

∂τ̃
= −m× heff + αm× ∂m

∂τ̃
+ t, (3)

where

m =
M

Ms
(|m| = 1), heff =

Heff

Ms
, t =

T

γµ0M2
s
, τ̃ = γµ0M

2
s t.

Let’s assume that the active layer of the memory

element SOT-MRAM is a Stoner–Wohlfarth particle, i. e.

the exchange interaction in the model can be ignored.

Let us assume that the effective field in the model

consists of three components: an external magnetic field

hexternal = hey , an anisotropy field directed perpendicular

to the plane of the cross section of the memory element

hanisotropy = k(m, ez )ez , (k = 2Kaµ
−1
0 M−2

s — material qua-

lity factor, Ka — anisotropy constant), and demagnetization

fields hdemanetization = −q̂m, where tensor q̂ — demagnetiza-

tion factor. It is possible to assume in the simplest case

of a square cross-section MRAM cell that the tensor q̂

has only one nonzero element on the main diagonal, close

in magnitude to one, q33 = 1 [12,13]. If this amount is

replenished with the effective field created by the spin-orbit

interaction, then the new effective field will be equal to

feff = hexternal + hanisotropy + hdemanetization + hDL + hFL. (4)

The coordinate representation of the effective field is (4)
has the following form in the case of a magnetic field applied

along the Y axis

feff = ( f x , f y , f z )
T = (b jmz , h − c j, (k − 1)mz − b jmx )

T,

where b = θSHχDL, c = θSHχFL.

We obtain the following by solving the equation (3) with

respect to the time derivative

∂m

∂τ
= −m× feff + αfeff(m,m) − αm(m, feff), (5)

where

τ =
τ̃

1 + α2
= |γ| µ0Ms

1 + α2
t, (m,m) = 1.

The transition from the equation (3) to the equation (5) is

provided in Appendix. Therefore, the equation (5) has the

following form in the coordinate notation

dmx

dτ
= (mz f y − my f z ) + α f x − αmx L,

dmy

dτ
= (mx f z − mz f x) + α f y − αmy L,

dmz

dτ
= (my f x − mx f y ) + α f z − αmz L,

where L = (m, f) = (h − c j)my + (k − 1)m2
z . And finally, a

dynamic system is obtained for the considered model

dmx

dτ
= (h − c j + αb j)mz − (k − 1)my mz

+ (b j + αc j − αh)mx my − α(k − 1)mx m2
z ,

dmy

dτ
= (k − 1)mx mz + (αh − αc j − b j)(m2

x + m2
z )

− α(k − 1)my m2
z ,

dmz

dτ
= − (h − c j + αb j)mx + α(k − 1)mz

+ (b j − αh + αc j)my mz − α(k − 1)m3
z . (6)

The phase surface for the dynamical system (6) is the

surface of a unit sphere (Poincare-Bloch sphere). One and

only one phase trajectory passes through a regular point on

the phase surface. If a point is special, then, according to

Cauchy’s theorem, the phase trajectory at this point either

does not exist, or the uniqueness condition is violated in

it. This allows determining the number and coordinates of

singular points, which, in turn, allows classifying possible

types of dynamics of variables in a dynamic system.

3. Dynamic system analysis

Let us denote some selected points of the system in

coordinates (ex , ey , ez ) as T1,2(∓1, 0, 0), T3,4(0,∓1, 0),
T5,6(0, 0,∓1).
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It follows from (6) that there are always at least two

singular points, T3,4(0,∓1, 0) in the Y-model, which we will

call the main ones. The type of singular points is determined

by the Jacobian eigenvalues

D =







∂P/∂mx ∂P/∂my ∂P/∂mz

∂Q/∂mx ∂Q/∂my ∂Q/∂mz

∂S/∂mx ∂S/∂my ∂S/∂mz






, (7)

where P, Q, S — the right parts of the dynamic system (6).

3.1. Singular point T4(0, +1, 0)

Jacobian (7) at the singular point T4(0, +1, 0) is equal to

D1=

(

−αh + (b + αc) j 0 h − (αb − c) j + (1 − k)

0 −2α(h − c j) 0

−h − (αb − c) j 0 −αh + (b + αc) j − α(1 − k)

)

.

The Jacobian eigenvalues at this point are

λ1,2 = b j + α(c j − h) +
1

2
α(k − 1)

±
√

−[2(h − c j + αb j) − (k − 1)(
√
α2 + 1 + 1)]

×[2(h − c j + αb j) + (k − 1)(
√

α2 + 1) − 1)]
,

λ3 = −2α(h − c j). (9)

Since (6) is a system with two degrees of freedom, the

type of singular point can be defined as the type of singular

point on the projection of its neighborhood onto a plane

tangent to the unit sphere at the singular point. That is,

two eigenvalues are sufficient to determine the type of a

singular point. In particular, the focus can be determined by

whether λ1,2 are valid or complex conjugate, depending on

the sign of the root expressions in (8). Since the subcortical

expression splits into the product of two linear expressions

with respect to variables h, j , then the region on the plane

(h, j) in which it is positive is bounded by two parallel lines

(Figure 2, a):

L1 : 2h + 2(αb − c) j − (k − 1)(
√

α2 + 1 + 1) = 0,

L2 : 2h + 2(αb − c) j + (k − 1)(
√

α2 + 1− 1) = 0. (9a)

The lines L1 and L2 intersect the axis h at points

h1 =
1

2
(k − 1)(

√

α2 + 1 + 1) ≈ k − 1)(1 + O(α)),

h2 ≈
1

4
α(k − 1) = O(α).

If the root expressions in (8) are positive, then the

singular point can be a node or a saddle, which can be

determined by the sign of the product of the eigenvalues

λ1λ2 — the product is positive for a node type point (both
stable and unstable), and it is negative in case of a saddle.

Therefore, the point T4(0,+1, 0) is a node or saddle in the
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Figure 2. Dynamics of the magnetization vector at h = 0, j = 0:

a — k < 1, b — k > 1.

band between the lines L1 and L2, it is a focus outside the

band. The boundary between the regions where the singular

point is a saddle or node runs along a second-order line

L3 : (b2 + c2) j2 − 2ch j − (1− k)c j + h2 + (1− k)h = 0,

(10)
its canonical equation is the ellipse equation

u2

p2
+

v2

s2
= 1,

where

p2 = 2
c2 + b2 + 1− d

(k − 1)2
, s2 = 2

c2 + b2 + 1 + d
(k − 1)2

,

d =
√

(c2 + b2 + 21)2 − 4b2, u = h − (k − 1), v ≡ j .

The ellipse is rotated relative to the coordinate axes on

the plane
”
field–current“ by angle

ϕ =
1

2
arctg

2c
b2 + c2 − 1

and shifted relative to the origin along the horizontal axis h
by k − 1. The lines L1 and L2 touch the ellipse (10) at

points S1(h1, j1) and S2(h2, j2), where

h1 = (k − 1)
(b + αc) + b

√
1 + α2

2b
√
1 + α2

, j1 =
α(k − 1)

2b
√
1 + α2

,

h2 = (k − 1)
(b − αc) − b

√
1 + α2

2b
√
1 + α2

, j2 =
α(k − 1)

2b
√
1 + α2

,

It should be also noted that in the case where the point

T4(0, +1, 0) is the focus, according to the Andronov-Hopf

theorem, the line L4

L4 : −2αh + 2(b + ac) j + α(1− k) = 0 (11)

is a line of birth/disappearance of limit cycles. The line

separates the regions where there are limit cycles around the

point T4(0, +1, 0) and the regions where there are no limit

cycles (Figure 2, a). This line crosses the points S1(h1, j1)
and S2(h2, j2).
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3.2. Singular point T3(0, −1, 0)

Similarly, at the singular point T3(0,−1, 0), the eigenval-

ues of the Jacobian are equal to

λ1,2 = −b j − α(c j − h) +
1

2
α(k − 1)

±
√

−[2(h − c j + αb j) − (k − 1)(
√
α2 + 1− 1)]

×[2(h − c j + αb j) + (k − 1)(
√

α2 + 1) + 1)]
,

λ3 = 2α(h − c j). (12)

The region of real eigenvalues is bounded by straight lines

in this case

L′

1 : 2h + 2(αb − c) j − (k − 1)(
√

α2 + 1− 1) = 0,

L′

2 : 2h + 2(αb − c) j + (k − 1)(
√

α2 + 1 + 1) = 0).
(13)

As for the point T4(0, +1, 0), the boundary of the saddle-

node bifurcation is a second-order line

L′

3 : 2(b2 + c2) j2−2ch j + c(1− k) j + h2−(1− k)h = 0,

(14)
which is an ellipse with axes parallel to the axes of the

ellipse (10), but shifted relative to the origin along the

axis h in the opposite direction. The points of contact of

the lines L′

1 and L′

2 and the ellipse (14) on the plane
”
field–

current“ have coordinates

h′

1 = (k − 1)
(b + αc) + b

√
1 + α2

2b
√
1 + α2

, j ′1 =
α(k − 1)

2b
√
α2 + 1

,

h′

2 = −(k − 1)
(b + αc) + b

√
1 + α2

2b
√
1 + α2

, j ′2 = − α(k − 1)

2b
√
α2 + 1

.

As in the previous case, the boundary of the

birth/disappearance of limit cycles for the point T3(0,−1, 0)
is the line

L′

4 : −2αh + 2(b + αc) j + α(1 − k) = 0. (15)

3.3. Additional singular points

The system can have additional singular points in addition

to the main singular points T3,4(0,∓1, 0) (6), the coordi-

nates of these additional singular points simultaneously turn

the right parts of the system to zero. This leads to the

algebraic system of equations with respect the coordinates

of singular points. To find such singular points, let us first

reduce the algebraic system to one equation with respect to

the coordinate mz by replacing variables and obtain

A4m
4
z + A2m

2
z + A0 = 0, (16)

where

A4 = b2 j2(k − 1)2,

A2 = (k − 1)2(h − c j − b j)(h − c j + b j),

A0 =
[

(h − c j)2 + (k − 1)(h − c j) + b2 j2
]

×
[

(h − c j)2 − (k − 1)(h − c j) + b2 j2
]

.

Equation (16) has valid roots if the following condition is

met:

D = A2
2 − 4A0A4 = (k − 1)2(c2 j2 − 2hc j + h2 + b2 j2)2

× [(k − 1)2 − 4b2 j2] ≥ 0 (0 ≤ m2
z ≤ 1).

Thus, the existence of additional singular points in

the system depends on the sign of the multiplier

(1− k)2 − 4b2 j2 — they may exist in the band between

the lines L0 and L′

0 j ≤ |1− k|/(2b), but they cannot exist

outside this band. Additional conditions for their existence

are restrictions on the magnitude of the component modu-

lus m, namely, 0 ≤ m2
z ≤ 1.

It is easy to determine remaining coordinates mx and my

of the additional singular point knowing its coordinate mz

from (6) for example:

mx = b j(1− m2
z )mz

k − 1

b2 j2 + (h − c j)2
,

my =
h − c j + αb j − α(k − 1)mx mz

mz (k − 1) + mx (αh − αc j − b j)
.

It should be noted that the value k < 1 corresponds to

a soft magnetic material, whereas the value k > 1 corre-

sponds to a hard magnetic material.

4. Numerical results

Point P0(h = 0, j = 0) (point 0)
In this case, the system (6) degenerates to the form

dmx

dτ
= −mz (k − 1)(αmx mz + my),

dmy

dτ
= −mz (k − 1)(αmy mz − mx),

dmz

dτ
= −mz (k − 1)(m2

z − 1). (17)

It can be seen from (17) that the system has a singular

line mz = 0 coinciding with the equator of the unit sphere,

and two isolated singular points of the focus type with

coordinates (0, 0,±1). The foci are unstable in soft

magnetic materials (k < 1) and the points are stable on

the equator, on the contrary the foci (0, 0,±1) are stable in

hard magnetic materials (k > 1) and the singular points are

unstable on the equator. Figure 2 shows the hodographs of

the end of the normalized magnetization vector for both

cases, obtained by numerical solution of the system (6)
using the Runge-Kutta method for a three-layer structure

based on a soft magnetic material Ta|Co60Fe20B20|MgO

(k = 0.892) (Figure 2, a) and for a three-layer structure

based on a hard magnetic material (k = 3.53) (Figure 2, b).
Let the initial position of the magnetization vector in

a soft magnetic ferromagnetic layer be maintained in

a position perpendicular to the plane of the layer and

correspond to special points T5,6(0, 0,±1). When the field
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and current are switched off, the singular points on the phase

portrait of the dynamical system (6) become unstable, and

the magnetization vector occupies a new stable position in

the plane of the layer at the equator of the unit sphere.

This position corresponds to a special line, and is randomly

oriented in the plane of the equator, depending on the initial

deviation of the vector from the equilibrium position. Any

point on the upper and lower hemispheres, located above or

below the equator, belongs to a trajectory that begins at the

north or south pole of the sphere and ends at some point on

the equator. Figure 2, a shows the trajectories of transition

to a new equilibrium from the upper and lower positions of

the magnetization vector.

It should be noted here that although the magnetization

vector in the soft magnetic active layer is located in

the equatorial plane in the equilibrium state, the type of

anisotropy of the active layer material remains the same:

the anisotropy field is perpendicular to the layer plane. The

equilibrium state of the magnetization vector in the plane

is the result of the combined action of the demagnetization

field and the anisotropy field.

In the case of a hard magnetic material, the singular

points T5,6(0, 0,±1) are stable, and the points that make up

the singular line at the equator are unstable. Consequently,

the magnetization vector returns from any point of the upper

hemisphere to the vertical position corresponding to the

north pole of the sphere, and from any point of the lower

hemisphere to the position corresponding to the south pole

(Figure 2, b).
Next, let us consider the cases when h and j are not

equal to zero at the same time.

Figure 3 in the center shows a bifurcation diagram based

on the results of the analysis of the singular points of the

system (6). The dimensional values of the external magnetic

field (H), in which the memory element is placed, and the

density of the charging current passed through a heavy metal

bus (J) are plotted on the left and lower coordinate axes.

The same values normalized by the coefficients from Table 2

for the structure Ta|Co60Fe20B20|MgO are plotted on the

right and upper axes. The diagram shows the critical lines

L0,1,2,3, L′

0,1,2,3, P1,2 and P ′

1,2 dividing the plane into regions

of qualitatively equivalent dynamics; some typical points are

also plotted 1−8 in the upper half-plane of the bifurcation

diagram, for which phase portraits of the system on the

surface of the unit sphere are constructed. The numbering

of the points on the bifurcation diagram corresponds to

the numbers of the phase portraits on the sphere. The

distribution of points is symmetrical in the lower half-plane

because of the symmetry of the dynamical system. The

points 1 and 4 correspond to the dynamics of magnetization

under the action of spin current without the support of

a magnetic field — this case is broadly discussed in

modern literature (see, for instance, the review [8]), as it

opens promising prospects for simplifying the design of a

memory cell. The point 1 is located above the critical

line L0 in the region III. According to the analysis from

the previous section, there are only two singular points

here, T3,4(0,∓1, 0) — an unstable focus at T3(0,−1, 0)
and a degenerate stable node T4(0, +1, 0). As a result,

under the action of the spin current j > |1− k|/(2b), the
magnetization vector will occupy a position coinciding with

the direction of the axis OY. The position of the singular

points T3,4(0,∓1, 0) remains the same when the current

structure is affected in the opposite direction, but their

type changes, so that the magnetization vector reverses.

Thus, the currents from the region of III of the bifurcation

diagram are the most effective for switching the direction

of magnetization. The magnetization switching takes place

in the plane of the layer (and not perpendicular to it, as

one might assume from the type of anisotropy of the layers

of the structure). Considering that the cell is controlled in

pulsed mode, when the current is turned off in the case of a

soft magnetic material of the active layer, the magnetization

vector will remain in indifferent equilibrium, since the

equator of the unit sphere is a special line consisting of

stable singular points (see Figure 2, a).
Further. The point 3 is located in the region II inside the

ellipse L3. The singular point T3 is an unstable focus with

these values of the control parameters, the point T4 is a

saddle, and the points T ′

5,6 are stable foci. The magnetization

vector will take an unpredictable (random) position in the

plane of the free layer after switching off the current.

The point 2 from the region I corresponds to six special

points of the system (6), two of which,T ′

1,2, — saddles

(unstable), the third, T3(0,−1, 0), — unstable focus, the

fourth, T4(0, +1, 0), — stable node, and two stable foci T ′

5,6.

Therefore, the magnetization vector can occupy one of three

(probable) positions in this parameter range, which makes

this situation interesting from the point of view of its use in

neural networks. The vector can also take a random position

in the plane of the layer when the current is turned off.

The following examples (points 5−8) illustrate how an

external magnetic field affects the dynamics of magne-

tization at a constant current value. The dimensionless

value of the current density is 0.18 at point 4 — in this

case, the point T3(0,−1, 0) is an unstable focus, the point

T4(0, +1, 0) is a saddle, and the points T ′

5,6 — stable focus.

The magnetization vector can occupy one of two positions

T ′

5,6 with a non-zero current, and it again can occupy a

random position in the plane of the layer when the current

is switched off. A change of the magnitude of the field in

its previous direction and at the same value of the current

density does not qualitatively change the phase portrait,

and therefore the nature of the magnetization dynamics.

Let us change the direction of the external field to the

opposite (points 6, 7 on the bifurcation diagram) — in this

case, the point T3(0,−1, 0) becomes a saddle, the point

T4(0, +1, 0) — a stable node, the points T ′

5,6 — unstable

foci. The magnetization vector will take a stable position in

the plane of the layer when the current is turned off.

The upper and lower boundaries of the region I are deter-

mined by the values j = |(1− k)/(2b)| (see above). Thus,
for the structure considered here as an example, the dimen-

sionless critical current is jmax = 0.29, which in dimensional
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Figure 3. Bifurcation diagram of a dynamical system describing the dynamics of magnetization in an element SOT-MRAM with

perpendicular anisotropy for k = 0.892, α = 0.008. The dynamical system has six singular points in regions I, it has four singular points

in regions II, two singular points in the outer regions III and IV, namely (0,±1, 0). The arrow from the origin marks the stable equilibrium

position of the magnetization vector.

units corresponds to the values Jmax = 1.18 · 1012 A/m2.

The dynamical system (6) has four singular points in re-

gions II and III. Two of them are unstable and located on

the OY axis (unstable focus and saddle), the other two (two
stable foci) are located on the upper and lower hemispheres

of the unit sphere. Thus, if the magnetization vector in

the model in the absence of an external field and current

occupied a position on the equatorial plane, which can be

identified with the OY axis, then application a charge current

pulse will transfer it to one of the positions T5, T ′

6 , switching

off of the current will return the magnetization vector to the

equator plane. Conclusion: it is impossible to write a bit

of information into the cell with the values of the control

parameters (field and current) from the region I (Figure 3).
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Let us estimate the density of the magnetization switching

current in the memory cell SOT-MRAM. If at the initial

moment the magnetization vector was in the position of

indifferent equilibrium T3(0,−1, 0), then when a pulse of

charge (unpolarized) current is applied to the bus of a

value above the threshold j > |(1 − k)/(2b)|, the position

T3(0,−1, 0) loses stability — the equilibrium T4(0, +1, 0)
becomes stable. The magnetization vector rushes to a

new equilibrium in the result of small deviation of the

magnetization vector from the equilibrium T3(0,−1, 0) and

a magnetization reversal takes place if the duration of the

current pulse is sufficient, i.e., a bit of information is written

to the cell. We assume that the optimal switching conditions

correspond to the case of two equilibrium points (region III

in Figure 3). The density of the switching threshold current

in this case is approximately 1.15 · 1012 Am−2, i. e. the

current value will be 0.1mA through the cross section of

the element with an area of 10× 10 nm2. This value of

the control current density is close to the value of the

current density for the Z-configuration of the memory cell in

operation [5]. However, the configuration considered in this

paper has a significant advantage over the configurations

described in Ref. [5] — this is the presence of the main

singular points T3,4(0,±1, 0), which exist at any values of

the control parameters and which can be interpreted as zero

and one of the state of the memory cell.

5. Conclusion

In summary, let us list the main results of the study.

1. A system of equations describing the dynamics of the

magnetization vector in a SOT-MRAM cell with perpendic-

ular anisotropy of the free layer was constructed.

2. It was analyzed using the methods of the qualitative

theory of dynamical systems [9–11]. A bifurcation diagram

of the change of dynamic modes was plotted on the plane

of the control parameters
”
field–current“.

3. The control parameters for which the system has six,

four, or two equilibrium states were identified. The types of

their stability were determined.

4. The critical values of the switching current of the cell

were calculated.

5. It was demonstrated that the cell can be switched with

a single current at currents above critical values without the

support of an external magnetic field.
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Appendix
Reduction of the vector equation of LLG
to the normal form

Equation (5) can be derived from equation (4) by

equivalent transformations.

Let us consider the dimensionless LLG equation

∂m

∂τ̃
= −m× f + αm× ∂m

∂τ̃
, (A1)

where f — the effective field taking into account the field

associated with the spin-orbit torque TSOT. In this case

f = heff − b jm× ey − b jey

= (h + kmx + b jmz )ex − b jey + (−b jmx − mz )ez .

Step 1. Multiply the equation (A1) vector from the left

by the value αm:

αm× ∂m

∂τ̃
= −αm×m× f + α2m×m× ∂m

∂τ̃
.

Step 2. Let’s use the well-known vector identity

a× b× c = b(a, c) − c(a, b). We will obtain the following

αm× ∂m

∂τ̃
= − αm(m, f) + αf(m,m)

+ α2

(

m,
∂m

∂τ̃

)

− α2 ∂m

∂τ̃
(m,m).

Thus, taking into account (m,m) = 1 and

(

m,
∂m

∂τ̃

)

=
1

2
· ∂(m,m)

∂τ̃
= 0,

The Gilbert dissipative term has the following form

αm× ∂m

∂τ̃
= −αm(m, f) + αf− α2 ∂m

∂τ̃
.

Step 3. Substitute it into the original equation (A1) and

transfer the term from the time derivative to the left side.

We will obtain the following

(1 + α2)
∂m

∂τ̃
= −m× f− αm(m, f) + αf.

Step 4. Renormalize the time τ̃ obtaining the following

equation

∂m

∂τ
= −m× feff + αfeff(m,m) − αm(m, feff). (A2)

This implies the equivalence of equations (A1) and (A2),
i.e. the conditions of applicability of equation (A2) are the

same as equations (A1).
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