⁰² Исследование строения фторидоцирконата Na₇Zr₆F₃₁ и его кристаллогидратов по данным колебательной спектроскопии

© Е.И. Войт, Н.А. Диденко

Институт химии Дальневосточного отделения РАН, Владивосток, Россия e-mail: evoit@ich.dvo.ru

Поступила в редакцию 29.12.2023 г. В окончательной редакции 28.06.2024 г. Принята к публикации 28.06.2024 г.

> Методами инфракрасной спектроскопии (ИК), комбинационного рассеяния (КР), дифференциального термического, термогравиметрического (ДТА-ТГА) и рентгенофазового анализа (РФА) исследованы строение и термическая устойчивость соединений в ряду Na₇Zr₆F₃₁ · nH₂O (n = 0, 6, 12). Получены, систематизированы и обобщены данные колебательной (ИК, КР) спектроскопии соединения Na₇Zr₆F₃₁ и его гидратов. На основе квантово-химических расчетов проведено отнесение полос в колебательных спектрах Na₇Zr₆F₃₁. Учитывая спектроскопические данные, предложены возможные структурные изменения при взаимных переходах Na₇Zr₆F₃₁ \leftrightarrow Na₇Zr₆F₃₁ $\cdot n$ H₂O в процессе гидратации-дегидратации.

> Ключевые слова: комплексные фториды циркония, фторидоцирконаты натрия, термогравиметрия, колебательная спектроскопия.

DOI: 10.61011/OS.2024.06.58636.5910-24

Введение

Фазообразование в системе ZrF_4 с NaF представляет интерес при изготовлении многокомпонентных фтороцирконатных стекол, которые благодаря широкому диапазону прозрачности находят применение в волоконной оптике [1]. Кроме того, смесь ZrF_4 с NaF используют в качестве топливной композиции в ядерных реакторах как устойчивую к радиационному облучению и с невысокой температурой плавления [2]. Некоторые вопросы коррозионной устойчивости сплавов в расплаве ZrF_4 -NaF обсуждены в [3].

При взаимодействии фторида натрия с фторидом циркония образуется ряд химических соединений: Na₃ZrF₇, Na₅Zr₂F₁₃, Na₂ZrF₆, Na₃Zr₂F₁₁, Na₇Zr₆F₃₁, Na₃Zr₄F₁₉ [4]. В системе ZrF₄-NaF имеются также три эвтектики, из которых две низкоплавкие, содержащие 40.5 и 49.5 mol.% ZrF₄ и плавящиеся при 505 и 512°C соответственно. В обоих случаях одним из компонентов солевой смеси является фаза Na₇Zr₆F₃₁.

Хотя во фторидоцирконате натрия состава Na₇Zr₆F₃₁ отношение F/Zr = 5.167, его можно отнести к комплексным фторидам циркония с отношением F/Zr = 5. Основой кристаллической структуры Na₇Zr₆F₃₁ (6NaZrF₅·NaF) является трехмерный каркас $[Zr_6F_{30}]_n^{6n-}$ с дополнительными ионами Na⁺ и F⁻ (по одному на ячейку) [5].

Образование таких соединений характерно не только для Zr, но и для всех его четырехвалентных аналогов — гафния, тория, урана, нептуния, плутония и др. [6]. В семействе общей формулы $M_7^I M_6^{IV} F_{31}$ ($M^I = Ag^+, Na^+, K^+, Tl^+, Rb^+, NH_4^+; M^{IV} = Zr^{4+}, Hf^{4+}, Ce^{4+}, Tb^{4+}, Pa^{4+}, U^{4+}, Np^{4+}, Th^{4+})$ со структурным типом Na₇Zr₆F₃₁

известно более тридцати соединений, из которых примерно половина производные с катионом Na⁺. Следует отметить, что ключевую роль в образовании и устойчивости соединений $M_7^I M_6^{IV} F_{31}$ с разными комбинациями M^I и M^{IV} играет соотношение их ионных радиусов [7].

Фторидоцирконаты состава $M_7Zr_6F_{31}$ образуются с катионами Na⁺ и K⁺. Соль Na(K)₇Zr₆F₃₁ кристаллизуется из расплава системы Na(K)F-ZrF₄, содержащей 46.2 mol.% ZrF₄ [4,8]. Соль Na₇Zr₆F₃₁ плавится конгруэнтно при 525°С. Соединение K₇Zr₆F₃₁ существует только в твердом состоянии ниже 380°С, а выше этой температуры распадается на смесь KZrF₅ и K₂ZrF₆. То есть термическая устойчивость соединения M₇Zr₆F₃₁ (M = Na⁺, K⁺) снижается с увеличением радиуса внешнесферного одновалентного катиона.

При изучении фазообразования в водных растворах систем $ZrO_2-H_2SO_4-NaF(HF)-H_2O$ [9] и $ZrO(NO_3)_2-H_3PO_4-NaF(HF)-H_2O$ [10] было установлено, что при определенных условиях одной из кристаллизующихся фаз является кристаллогидрат $Na_7Zr_6F_{31} \cdot 12H_2O$ (либо смесь $Na_7Zr_6F_{31}$ и $Na_7Zr_6F_{31} \cdot 12H_2O$). На данный момент полигидрат указанного состава является единственным примером многоводного кристаллогидрата фторидоцирконата с однозарядным внешнесферным катионом. Это определяется существенно меньшим ионным радиусом и бо́льшей энергией гидратации иона Na^+ [11,12]. При относительно большой энтальпии гидратации катиона молекулы H_2O являются компенсаторами его координационной емкости.

В ряду фторидоцирконатов натрия соединение $Na_7Zr_6F_{31} \cdot 12H_2O$ мало изучено. Известные в настоящее время данные инфракрасной (ИК) спектроскопии для

Рис. 1. Рентгенограммы $Na_7Zr_6F_{31} \cdot 12H_2O(a)$ и продуктов его нагревания до температур 120 (*b*), 210 (*c*) и 500°С (*d*).

 $Na_7Zr_6F_{31} \cdot 12H_2O$, а также описание термограммы [9] не дают целостного представления о его строении, термическом поведении и стадийности процесса перехода $Na_7Zr_6F_{31} \cdot 12H_2O$ в безводную фазу $Na_7Zr_6F_{31}$.

В представленной работе с целью уточнения, дополнения, систематизации и обобщения данных о строении, термических превращениях $Na_7Zr_6F_{31}\cdot 12H_2O$ и продуктов его частичной ($Na_7Zr_6F_{31}\cdot 6H_2O$) и полной ($Na_7Zr_6F_{31}$) дегидратации проведено их исследование методами инфракрасной спектроскопии (ИК), комбинационного рассеяния (КР) и термического анализа.

Экспериментальная часть

Синтез $Na_7Zr_6F_{31} \cdot 12H_2O$

5.34 g цирконила азотнокислого 2-водного (чда $\geq 99\%$) (0.02 mol) растворено в смеси 10 ml H₂O и 3 ml 40%-HF (осч 99.99%) при комнатной температуре. В полученный раствор добавлен порциями водный раствор фторида натрия: 0.84 g (0.02 mol) в 15 ml H₂O, предварительно подкисленного несколькими каплями 40%-HF для предотвращения гидролиза соли NaF (NaF/Zr = 1:1). Рыхлый осадок образуется сразу же при смешивании компонентов и занимает весь объем маточного раствора. Полученный осадок отфильтрован

на воронке Бюхнера, на фильтре промыт небольшим количеством ледяной воды, воды со спиртом и высушен при комнатной температуре до воздушно-сухого состояния (при относительной влажности воздуха $\approx 20\%$). Однофазность соединения была подтверждена методом рентгенофазового анализа (РФА). Рентгенограмма полученного соединения совпадает с рентгенограммой, приведенной в работе [9], и соответствует гидратной фазе состава Na₇Zr₆F₃₁ · 12H₂O (рис. 1, *a*). В базе данных PDF-2 отсутствует дифрактограмма соединения Na₇Zr₆F₃₁ · 12H₂O.

Термическое исследование полученного соединения проведено на дериватографе Q-1000 МОМ в атмосфере воздуха при скорости нагревания 5 deg/min. Навеска образца составляла 110 mg. В качестве эталона использован прокаленный Al₂O₃.

Кристаллогидрат $Na_7Zr_6F_{31} \cdot 6H_2O$ и соединение $Na_7Zr_6F_{31}$ получены методом термической дегидратации 12-водного гидрата при его нагревании на дериватографе со скоростью 2.5 deg/min до температур 120 и 215°C соответственно.

Рентгендифракционные данные для соединений получены на дифрактометрах "STOESTADIP" (CuK_{α 1}-излучение, $\lambda = 1.5406$, германиевый монохроматор) и BrukerD8 ADVANCE (CuK_{α}-излучение, графитовый монохроматор). Для получения информации о составе продуктов использовали банк порошковых данных PDF-2.

Инфракрасные спектры получены в области $4000 - 400 \,\mathrm{cm}^{-1}$ при комнатной температуре с использованием прибора IR-Affinity на окне KRS-5 для образцов, приготовленных в виде суспензии вазелиновом масле. Регистрация спектров КР в исследуемых соединений проведена с использованием раман-микроскопа WiTecalpha500 (длина волны лазера $\lambda = 532 \,\mathrm{nm}$).

Для отнесения полос в спектрах $Na_7Zr_6F_{31} \cdot nH_2O$ проведены квантово-химические расчеты с использованием пакета программ GAMESS [13]. Расчеты выполнены в рамках теории функционала локальной плотности в сочетании с обменно-корреляционным потенциалом B3LYP. Использованы базисный набор LANL2dz с остовным потенциалом для атомов Zr(IV) и Na и набор базисных функций 631g* для атомов F. Выбор модельных кластеров проведен с учетом известных структурных данных. Расчет равновесной геометрии и частот нормальных колебаний выполнен в гармоническом приближении. Результаты получены с использованием оборудования ЦКП "Дальневосточный вычислительный ресурс" ИАПУ ДВО РАН (https://cc.dvo.ru).

Результаты и их обсуждение

Дифференциальный термический и термогравиметрический анализ

Известно, что дегидратация многоводных гидратов солей может происходить при высоком давлении паров

Рис. 2. Термоаналитические кривые соединения $Na_7Zr_6F_{31} \cdot 12H_2O$.

воды с плавлением и выкипанием раствора соли, при среднем давлении — многоступенчато, но с иными промежуточными гидратами и без плавления [14]. Процесс дегидратации соединения $Na_7Zr_6F_{31} \cdot 12H_2O$ также протекает различным образом при изменении режима нагревания.

При медленном нагревании соединения $Na_7Zr_6F_{31} \cdot 12H_2O$ со скоростью 2.5 deg/min процесс дегидратации в твердой фазе происходит в две стадии (рис. 2). Первая стадия протекает в интервале температур 48-114°C с максимальной скоростью при 82°C и убылью массы 7.3%, что соответствует удалению 6 молекул H₂O на формульную единицу ($\Delta m_{\text{pacy}} = 7.14\%$). Таким образом, в результате частичной дегидратации высоководного кристаллогидрата при его нагревании с относительно медленной скоростью до температуры 114-115°C образуется промежуточная гидратная фаза состава Na₇Zr₆F₃₁ · 6H₂O, имеющая индивидуальную рентгенограмму (рис. 1).

Вторая стадия дегидратации происходит в интервале температур 120–215°С с максимальной скоростью при 154°С и суммарной убылью массы 14.2%, что соответствует удалению 12 молекул H₂O ($\Delta m_{\text{расч}} = 14.29\%$). В результате указанного режима термообработки соединения Na₇Zr₆F₃₁ · 12H₂O получается сыпучий безводный продукт состава Na₇Zr₆F₃₁ (карта № 00-022-1417(С)) согласно РФА (рис. 1).

В случае неравновесных условий дегидратации (быстрое нагревание, изменение Р $_{\rm H_2O}$, затруднение диффузии) при увеличении скорости нагрева до 5 deg/min характер обезвоживания соединения $Na_7Zr_6F_{31} \cdot 12H_2O$

меняется. Дегидратация происходит в одну стадию в интервале $50-200^{\circ}$ С с максимальной скоростью при 90° С. При этом на *T*-кривой фиксируется волна переохлаждения при $80-85^{\circ}$ С. Это связано с тем, что процесс обезвоживания наступает только при разложении кристаллогидрата на соль и воду с выкипанием насыщенного раствора соли. При нагревании до 200° С убыль массы составляет 13.1%. Образец после нагрева несыпучий, вязкий внутри пробы, высыхающий на воздухе, что подтверждает образование в этом случае в процессе дегидратации жидкой фазы. Полученным продуктом по данным РФА также является фаза Na₇Zr₆F₃₁.

При дальнейшем нагревании $Na_7Zr_6F_{31}$ в интервале температур 220–480°С происходит постепенная убыль массы, связанная с удалением остаточной воды и началом пирогидролиза влагой воздуха безводного соединения. Суммарная убыль массы при нагреве до 460–480°С составляет 16–17%. Вхождение кислорода в решетку соединения возможно в виде изоморфной примеси при частичном замещении фтора и/или образования частиц самостоятельной оксидной фазы ZrO_2 . По данным РФА в продукте нагревания наряду с $Na_7Zr_6F_{31}$ отмечается примесная фаза ZrO_2 (монокл.).

Увеличение степени пирогидролиза $Na_7Zr_6F_{31}$ наблюдается при изотермической выдержке $Na_7Zr_6F_{31}\cdot 12H_2O$ при 500°С (граничная температура перед началом плавления безводного соединения) на воздухе в муфельной печи в течение трех часов до постоянного веса. Общая убыль массы при этом составляет 26.0%. По данным РФА в результате указанной термообработки $Na_7Zr_6F_{31}$ полностью переходит в смесь фаз — тетрагональную Na_3ZrF_7 (карта 01-074-0808(C)) и моноклинную ZrO_2 (карта 00-013-0307(D)) при большем содержании последнего компонента (рис. 1).

В этом случае гидролитическое разложение безводного соединения $Na_7Zr_6F_{31}$ описывается общей реакцией:

$$Na_7Zr_6F_{31}+8H_2O \rightarrow 2Na_3ZrF_7+4ZrO_2+NaF+16HF^{\uparrow}$$

Суммарная расчетная убыль массы составляет 25.96%. Самый интенсивный рефлекс фазы NaF(куб.) с d = 2.32 Å накладывается на один из рефлексов соединения Na₃ZrF₇.

Вероятно, при изотермическом нагревании Na₇Zr₆F₃₁ на воздухе ($T = 500^{\circ}$ C) в результате ослабления катионанионных взаимодействий и нарастания динамических процессов в обеих подрешетках происходит постепенная термическая диссоциация соединения и диспропорционирование по фтору и катиону, что можно представить следующими реакциями:

 $Na_7Zr_6F_{31}(6NaZrF_5 \cdot NaF) \rightarrow 6NaZrF_5 + NaF,$

$$6NaZrF_5 \rightarrow 2Na_3ZrF_7 + 4ZrF_4.$$

Образующийся ZrF₄ подвергается пирогидролизу:

$$4\text{ZrF}_4 + 8\text{H}_2\text{O} \rightarrow 4\text{ZrO}_2 + 16\text{HF}\uparrow$$
.

Рис. 3. Кубооктаэдрическая группировка Na₈Zr₆ F_{36}^{4-} в катионном окружении (*a*). Фрагмент структуры Na₇Zr₆ F_{31} (*b*). Модельная группировка Na₈Zr₁₂ F_{60}^{4-} (*S*₆) (*c*). Расслоение модельной группировки при перемещении катионов Na(2) (*d*).

Таким образом, на первом этапе предполагаемая схема термического разложения $Na_7Zr_6F_{31}$ на воздухе описывается общим суммарным уравнением:

 $Na_7Zr_6F_{31} + 8H_2O \rightarrow 2Na_3ZrF_7 + 4ZrO_2 + NaF + 16HF\uparrow .$

Затем в результате последующего нагревания образовавшаяся промежуточная фторидная фаза Na₃ZrF₇ разлагается, взаимодействуя с парами воды из воздуха:

$$Na_3ZrF_7 + 2H_2O \rightarrow ZrO_2 + 3NaF + 4HF \uparrow$$

Согласно данным РФА, продукт дальнейшего нагревания соединения $Na_7Zr_6F_{31}\cdot 12H_2O$ до $800^\circ C$ на воздухе представляет собой преимущественно смесь ZrO_2 и

NaF с небольшим содержанием Na₃ZrF₇. Убыль массы составляет 30.7%. При полном гидролитическом разложении Na₇Zr₆F₃₁ \cdot 12H₂O на ZrO₂ и NaF расчетный выход летучих продуктов 31.75%.

Данные рентгеноструктурного анализа

Прежде чем перейти к анализу кристаллогидрата $Na_7Zr_6F_{31} \cdot 12H_2O$ неизвестного строения, логично сначала рассмотреть строение безводного соединения $Na_7Zr_6F_{31}$, являющегося предшественником многоводной гидратной фазы.

Соединение Na₇Zr₆F₃₁ (Na₆Zr₆F₃₀·NaF) (КЧ Zr = 8) кристаллизуется в пространственной группе $R\bar{3}$ (Z = 3)

Рис. 4. Инфракрасные спектры и спектры КР Na₇Zr₆F₃₁ · 12H₂O (*a*), Na₇Zr₆F₃₁ · 6H₂O (*b*), Na₇Zr₆F₃₁ (*c*), продукта нагревания до 460°C (*d*).

с параметрами решетки: a = 13.807 Å, c = 9.429 Å. Длины связей Zr-F изменяются от 2.031 до 2.179 Å [5]. Анион Na₇Zr₆F₃₁ имеет каркасное строение. Каждая шестерка Zr-многогранников, объединяясь общими Fмостиковыми вершинами (ZrF_m (Δ)), образует характерную кубооктаэдрическую группировку $(ZrF_8)_6$ (рис. 3, *a*). Указанная группировка внешними ребрами Zr-полиэдров соединяется с шестью аналогичными, что приводит к образованию трехмерного каркаса состава $[Zr_6F_{30}]_n^{6n-}$. Дополнительный ион F- расположен в кубооктаэдрической пустоте (расстояние Zr-F(6) = 2.63A) и позиционно разупорядочен [5]. Катионы Na(2)⁺ располагаются в центре гексагонального канала и октаэдрически окружены шестью концевыми атомами F (расстояние Na-F равно 2.461 Å) из двух соседних по оси *с* группировок $(ZrF_8)_6$. Межатомные расстояния Na(2)...Na(2)в структуре Na₇Zr₆F₃₁ составляют 9.429 Å. Катионы Na(1)⁺ (шесть на ячейку) распределены равномерно в плоскости *ab* и окружают группировки (ZrF₈)₆, они координируют семь атомов фтора (разброс расстояний Na-F 2.342-2.516 Å).

Структуру Na₇Zr₆F₃₁ также можно описать как трехмерную сеть, состоящую из отдельных слоев в плоскости *ab*, имеющих в составе трехчленные металлоциклы, объединенные в 12-членные кольца Zr-полиэдров [15]. Последующие отдельные слои связаны через вершины с образованием бислоев из кубооктаэдров, которые расположены в шахматном порядке вдоль оси *c* (рис. 3, *b*). Ступенчатое расположение слоев создает гексагональные каналы, в которых расположены катионы Na⁺. Поскольку внутрислойные связи в отдельных слоях довольно прочные, а межслойные силы относительно слабы, можно ожидать, что отдельные слои будут выступать как

Оптика и спектроскопия, 2024, том 132, вып. 6

единое целое во время реакций обмена или гидратации, а межслоевые расстояния могут легко изменяться.

Колебательная спектроскопия

Соединение $Na_7Zr_6F_{31}$

Строение обсуждаемого безводного соединения изучено с привлечением методов колебательной (ИК, КР) спектроскопии в сочетании с квантово-химическими расчетами (рис. 4, 5). В изолированном состоянии кубооктаэдр состава $[Zr_6F_{36}]^{12}$ имеет симметрию T_h (рис. 3, *a*). Его колебательный спектр с учетом поступательных и вращательных мод (симметрии T_u и T_g соответственно) описывается неприводимым представлением $\Gamma_{Th} = 6A_g + 4A_u + 6E_g + 4E_u + 15T_g + 17T_u$.

В структуре Na₇Zr₆F₃₁ кубооктаэдры связаны между собой реберными мостиковыми связями (ZrF_m(P)) и окружены катионами, что снижает их локальную симметрию в идеальном случае до S_6 . Шесть катионов Na(1) располагаются между реберными связями, а два катиона Na(2) взаимодействуют с концевыми атомами F_k . Таким образом, каждый кубооктаэдр имеет восемь треугольных граней, напротив которых находятся катионы Na⁺. Исходя из структурных данных Na₇Zr₆F₃₁, для расчета выбран модельный кластер состава $Na_8Zr_{12}F_{60}^{4-}$, в котором учтено катион-анионное окружение (рис. 3, c). В равновесной геометрии модельного кластера Na₈Zr₁₂F₆₀⁴⁻ (S₆) два расстояния до общей F_m-вершины во фрагменте Zr-F_m-Zr отличаются. В треугольных гранях, лежащих напротив Na(2), расстояния Zr-Zr составляют 4.278 Å, Zr-F_{*m*}-Zr — 2.139, 2.200 Å, Zr-F_{*k*} — 1.987, 1.997 Å. Для

Эксперимент* $Na_7Zr_6F_{31}$		Расчет Na ₈ Zr ₁₂ F_{60}^{4-} , (S ₆)			Отнесение**	
ИК, ν	КΡ, ν	ν	Симметрия	Интенсивность		
592 cp	615 ш ср	611, 588 608, 600	E_u, A_u A_g, E_g	5.0, 6.7 41.0, 24.0	comb $\nu_s ZrF_8$	
525 c	521 c	532, 529 528, 524	A_u, E_u A_g, E_g	17.3, 16.5 26.2, 2.5	$\operatorname{comb} \nu(\operatorname{ZrF}_7\text{-}F_k)$ или $ u_{as}\operatorname{ZrF}_k$ $ u_{as}\operatorname{ZrF}_k$	
	487 сл	482, 472 485	$E_u, A_u \\ E_g$	9.3, 7.7 9.2	$ u \mathrm{Zr}\mathrm{F}_m \ (\Delta) + \nu \mathrm{F}_k $	Å
455 oc	458 ш ср	444, 446 447, 444	E_u, A_u A_g, E_g	0.7, 1.0 10.8, 17.2	$\delta_{sc} Zr F_m$ (Р) или $\nu_s F$ -F	
	428 сл	395, 361 424, 402	E_u, A_u A_g, E_g	21.7, 2.8 19.3, 4.2	$\nu ZrF_m(\Delta) + \nu ZrF_m(P)$	$\langle \rangle$
	380 пл	388, 356 396, 375	A_u, E_u A_g, E_g	1.4, 0.6 3.7, 22.1	$\nu ZrF_m(\Delta) + \nu ZrF_m(P)$	
	377 ср	393, 332 329, 324 378, 348, 333	$egin{array}{llllllllllllllllllllllllllllllllllll$	0.1, 0.1 1.1, 3.3 26.3, 13.8 1.6	$\delta \operatorname{ZrF}_m(\Delta)$	*
	359 сл	368, 365 364, 360	A_u, E_u E_g, A_g	0.5, 1.3 16.2, 3.4	$v_{as} Zr F_m (P) + v Zr F_m(\Delta)$	\checkmark
		312, 306, 305	$egin{array}{c} A_u,\ A_u\ E_u \end{array}$	0.1, 2.8 4.0	$\omega \operatorname{Zr} \mathbf{F}_k, \delta_{sc} \mathbf{F}_k$	
	316 сл	336, 320 318, 307	$egin{array}{llllllllllllllllllllllllllllllllllll$	13.3, 6.7 18.2, 14.0		
	777 -	292, 289 269, 264 304, 294	$A_u E_u$ A_u, E_u $A_g, E_g A_g$	0.0, 4.6 2.8, 0.1 41.0, 31.8	$ ho \operatorname{Zr} F_m, \omega \operatorname{Zr} F_m(\mathbf{P})$	
	277 c	278, 267 246, 228 228, 206 247, 225 229, 227	$egin{array}{c} A_g, \ E_g \ A_g \ E_g \ A_g, \ E_g \ A_g, \ E_g \ A_u, \ E_u \ E_u, \ A_u \end{array}$	22.0, 15.0 49.0, 26.0 17.0 40.0 2.2, 1.0 0.0, 0.0	$twZrF_m$ (P) $+twZrF_k$	
		202 214, 202	$E_u \\ E_g, \ A_g$	0.7 32.0, 3.3	$ ho ZrF_k$	
		192, 191 187, 175	E_u, A_u E_g, A_g	0.3, 0.0 14.0, 0.0	$ ho ZrF_8$	
	158 с ш	178 и ниже	$5A_u, 5E_u$ $5A_u, 5E_g$	_	$ u, \ \delta ZrF_8 $ $ u, \ \delta ZeF_8 $	

Экспериментальное положение полос (cm^{-1}) в спектрах Na₇Zr₆F₃₁, рассчитанные частоты (cm^{-1}) колебаний группировки $[Zr_6F_{36}]^{12-}$ в кластере Na₈Zr₁₂F⁴⁻₆₀ и их отнесение

* Использованные обозначения зарегистрированных полос: о — очень сильная, с — сильная, ср — средней интенсивности, сл — слабая, пл плечо, ш — широкая.

** Использованные обозначения колебаний: u — валентные, δ — деформационные, δ_{sc} — ножничные, ω — веерные, tw — крутильные, ho маятниковые, comb — комбинации.

граней напротив Na(1): расстояния Zr-Zr — 4.297 Å, Zr-F_m-Zr — 2.24, 2.22 Å, а в общем ребре — Zr-F_m — 2.194, 2.221 Å.

В равновесной геометрии кластера $Na_8Zr_{12}F_{60}^{4-}$ положение шести внешних Zr-группировок в кластере

 $Na_8Zr_{12}F_{60}^{4-}$ было заморожено и рассчитаны частоты колебаний группировки $[Zr_6F_{36}]^{12-}(S_6).$ При снижении локальной симметрии кубооктаэдрической группировки $[\mathrm{Zr}_6\mathrm{F}_{36}]^{12-}$ $(T_h
ightarrow S_6)$ трижды вырожденные колебательные моды расщепляются: $T_g
ightarrow A_g + E_g$ и $T_u
ightarrow A_u + E_u.$

Рис. 5. Активные в спектре КР комбинации колебаний группировки $[Zr_6F_{36}]^{12-}$ с максимумами при 608 (*a*), 528 (*b*), 378 (*c*), 375 (*d*), 304 (*e*), 246 (*f*) cm⁻¹.

Для упрощенного представления частоты сгруппированы по преимущественным вкладам в соответствующее колебание (таблица). Как видно, проявляется кластерный эффект, а именно в каждой полосе присутствуют близкие по значению частоты, включающие возможные симметричные и асимметричные комбинации характеристических колебаний Zr-полиэдров и различных структурных элементов.

В рассчитанном ИК спектре кубооктаэдрической группировки $[Zr_6F_{36}]^{12-}$ можно выделить три группы активных полос валентных колебаний с симметрией A_u , E_u : $v_s ZrF_8$ (611, 588 cm⁻¹), $v_{as} ZrF_k$ (532, 529 cm⁻¹), вызванных преимущественно колебаниями концевых связей, и $v ZrF_m$ (482, 472 cm⁻¹) с основным вкладом колебаний мостиковых связей в треугольных гранях.

По данным расчетов в спектре КР наиболее интенсивными являются моды $v_s ZrF_8$, $v_{as} ZrF_k$, соответствующие им частоты ~ 608, 600 (A_g , E_g) и 528, 524 (A_g , E_g) сm⁻¹ (таблица, рис. 5). Характерным признаком наличия в структуре Na₇Zr₆F₃₁ треугольных граней можно считать рассчитанные значения частот валентных $v ZrF_m(\Delta)$ и

деформационных $\delta ZrF_m(\Delta)$ колебаний, расположенные в областях 490–470 и 400–330 сm⁻¹ соответственно.

Самые интенсвные в спектре КР симметричные деформационные колебания $\delta ZrF_m(\Delta)$ находятся при $378(A_g)$ и $375(E_g)$ сm⁻¹. В эту же область частот попадают валентные колебания $\delta \operatorname{ZrF}_m(\mathbf{P})$ реберных связей, наиболее интенсивные лежат при $364(E_g)$ и $360(A_g)$ сm⁻¹. Ниже по частоте расположены деформационные колебания концевых $Zr-F_k$ и реберных связей $Zr-2F_m-Zr$, из них наиболее интенсивны полносимметричные моды $\sim 304 (A_g)$ и 246 (A_g) сm⁻¹ (рис. 5, *e*, *f*). Эти колебания вызывают вынужденные колебания мостиковых связей в треугольных гранях. Из решеточных мод наиболее интенсивна полносимметричная (A_g) мода ν (ZrF₈)₆, связанная с одновременным поступательным движением каждой из группировок ZrF₈ друг к другу (дыхательная), согласно расчетным данным проявляется в области $160 \, \text{cm}^{-1}$.

В экспериментальном ИК спектре Na₇Zr₆F₃₁ полосы колебаний молекул H₂O отсутствуют (рис. 4, кривая *c*). Ниже 700 сm⁻¹ находятся характеристические колебания комплексных фторидоцирконатных анионов [16]. В соответствии с расчетными данными полоса с максимумом при 525 сm⁻¹ относится к валентным колебаниям v_{as} ZrF_k концевых связей, а широкая интенсивная полоса с максимумом 455 сm⁻¹ является, вероятно, составной и относится к валентным колебаниям мостиковых связей в треугольных гранях vZrF_m Δ) и к колебаниям мостиковых связей в ребре δ_s ZrF_m(P).

Пик с максимумом ~ 521 сm⁻¹ в экспериментальном спектре КР обусловлен преимущественным вкладом полносимметричной комбинации мод $v_{as} ZrF_k(A_g)$. Уширенная полоса с максимумом при 615 сm⁻¹ относится к симметричным комбинациям $v_s ZrF_8$ Zr-полиэдров в кубооктаэдре. Присутствие полос ~ 377 и 359 сm⁻¹ в спектре (преимущественно групповые колебания $\delta ZrF_m(\Delta)$ и $vZrF_m(\Delta)$) подтверждает наличие кубооктаэдров в структуре исследуемого соединения Na₇Zr₆F₃₁.

Отметим, что похожие колебательные спектры имеют оксофторидоцирконаты состава $M_2Zr_3OF_{12}$ (M = Tl, Rb, K, NH₄), за исключением характеристической линии $v_{as}ZrO$ в области 670 сm⁻¹ от фрагмента Zr₃O [17]. Для соединений $M_2Zr_3OF_{12}$, имеющих в структуре гексаядерную группировку $Zr_6F_{30}O_4$ (KЧ Zr = 8) [18,19], показательно тесное структурное родство с исследуемым Na₇Zr₆F₃₁ (производные от структуры флюорита со структурной единицей M_6F_{32} [15,20]).

Сравнивая структуры соединений $Na_7Zr_6F_{31}$ и $M_2Zr_3OF_{12}$ ($M = Tl^+$, K^+ , NH_4^+), можно отметить, что в оксофторидоцирконатах атом кислорода в металлоцикле (Zr_3O) стабилизирует слоистую анионную подрешетку. А во фторидоцирконате $Na_7Zr_6F_{31}$ дополнительное связывание Zr-полиэдров в металлоциклах (ZrF_8)₆ осуществляется избыточным ионом фтора, расположенным в кубооктаэдрической пустоте. В связи с этим можно допустить, что при нагреве $Na_7Zr_6F_{31}$ на воздухе в результате

603

пирогидролиза на начальной стадии ($T = 460^{\circ}$ C) происходит частичное изоморфное замещение избыточного иона F⁻ ионом кислорода с организацией дополнительных связей Zr-O-Zr при сохранении исходной каркасной структуры в оксофторидной фазе [Na₆Zr₆F₃₀·Na(O,F)]. В ИК спектре продукта нагревания (460°C) появляются полосы при 842 и 771 сm⁻¹ (рис. 4, кривая *d*), которые относятся к колебаниям Zr-O соответственно во оксофторидной и оксидной фазах ZrO₂.

Соединение $Na_7Zr_6F_{31} \cdot 12H_2O$

Полная гидратация соединения $Na_7Zr_6F_{31}$ с переходом в высший кристаллогидрат состава $Na_7Zr_6F_{31}\cdot 12H_2O$ сопровождается присоединением кристаллизационных молекул воды, которые предположительно различным образом окружают неэквивалентные катионы Na(1) и Na(2) в структуре исходной соли.

В сравнении с рентгенограммой безводного соединения рентгенограмма Na₇Zr₆F₃₁ · 12H₂O заметно отличается (рис. 1). Положение первого интенсивного дифракционного рефлекса в области углов $2\Theta = 7.74^{\circ}$ характеризует значение базального межплоскостного расстояния $d_{001} = 11.43$ Å в гидратной фазе. Наличие кратных ему отражений с индексами $d_{002} = 5.57$ Å и $d_{003} = 3.86$ Å свидетельствует о типично слоистом характере структуры гидратной фазы. Для слоистых соединений значение d_{001} совпадает с параметром *с* элементарной ячейки и напрямую коррелирует с межслоевым расстоянием.

Для выяснения характера структурных изменений при переходе $Na_7Zr_6F_{31} \rightarrow Na_7Zr_6F_{31} \cdot 12H_2O$ был проведен расчет модельной группировки Na₈Zr₁₂ $F_{60}^{4-}(S_6)$, в которой два атома Na(2) отдалены относительно друг друга, согласно рентгенограмме, на расстояние 11.43 Å и их положения заморожены (рис. 3, d). В оптимизированной геометрии кластера $Na_8Zr_{12}F_{60}^{4-}$ две треугольные грани, расположенные напротив атомов Na(2), слегка сжимаются (расстояния Zr. . . Zr 4.220 Å, Zr-F_m 2.114, 2.147 Å). Мостиковые связи в боковых треугольных гранях кубооктаэдра (напротив атомов Na(1)) — сильно увеличиваются (расстояния Zr...Zr 4.428 Å, Zr-F_m 2.206, 2.387 Å). В предельном случае мостиковые связи боковых граней разрываются и организуются отдельные анионные фрагменты, имеющие в составе трехчленные металлоциклы $(ZrF_7)_3$. При этом координационное число (КЧ) атома Zr уменьшается до 7, а количество концевых атомов F_k в каждом полиэдре Zr увеличивается.

В экспериментальном ИК спектре Na₇Zr₆F₃₁ · 12H₂O (рис. 4, кривая *a*) в области валентных колебаний молекул H₂O (ν OH) видны две пары полос с максимумами при 3510, 3431 и 3352, 3298 сm⁻¹, которые идентифицируются как относительно слабые и более прочные H-связи [21, 22]. Также присутствуют два набора полос при 1588, 1660 и 953, 812 сm⁻¹, относящихся к деформационным δ HOH и либрационным колебаниям

молекул H_2O соответственно. Наличие двух наборов полос в спектре можно объяснить присутствием двух типов кристаллизационных молекул воды, входящих в координационное окружение неэквивалентных катионов Na(1) и Na(2) в структуре полигидрата.

Можно допустить, что при переходе $Na_7Zr_6F_{31} \rightarrow Na_7Zr_6F_{31} \cdot 12H_2O$ контакты Na(2)-F разрываются и катионы Na(2) координируются шестью молекулами H₂O с образованием гидратированных $[Na(2)(H_2O)_6]^+$. катионов При трансформации структуры $Na_7Zr_6F_{31} \rightarrow Na_7Zr_6F_{31} \cdot 12H_2O$ в слоистую количество межслоевых контактов Na(1)-F сокращается и появляется возможность для присоединения по одной молекуле H₂O к каждому катиону Na(1). При наличии короткого контакта Na-OH₂ катионы Na(1)⁺ могут оказывать поляризующее влияние на молекулу воды, приводящее к образованию прочных Н-связей О-Н... F, что находит подтверждение в ИК спектрах. Таким образом, в экспериментальном ИК спектре набор полос 3510-3431, 1588 и 812 cm⁻¹ можно отнести к колебаниям молекул H_2O группировки $[Na(2)(H_2O)_6]^+$. А вторую группа полос с максимумами при 3352-3298, 1660 и 953 сm⁻¹ — к колебаниям молекул H₂O, координирующих катионы $Na(1)^+$.

В спектрах $Na_7Zr_6F_{31} \cdot 12H_2O$ в области колебаний аниона происходит увеличение полуширины и интенсивности полос с максимумом ~ 544 (ИК) и ~ 542 (КР) сm⁻¹ (рис. 4, кривая *a*), что, вероятно, связано со сближением по частоте комбинаций мод v_sZrF_7 и $v_{as}ZrF_k$ и обусловлено наличием циклических тримерных фрагментов.

При переходе к кристаллогидрату сдвиг линий $521 \rightarrow 544 \, {\rm cm}^{-1}$ свидетельствует об упрочнении связей Zr-F_k в Zr-полиэдрах. Присутствие полос $\nu ZrF_m(\Delta) \sim 490 \, {\rm cm}^{-1}$ (ИК) и 476 cm⁻¹ (КР) связано с наличием циклических тримерных фрагментов как в структуре безводного соединения, так и кристаллогидрата (таблица). Уширение и диффузность полос КР в области деформационных колебаний (диапазон 290–200 cm⁻¹) с участием концевых связей Zr-F_k можно объяснить разветвленной системой H-связей типа O-H...F в структуре гидрата.

Таким образом, соединение Na₇Zr₆F₃₁ · 12H₂O имеет предположительно слоистое строение. Анионные слои, имеющие в составе трехчленные металлоциклы, чередуются с прослойками гидратированных катионов Na⁺. Неэквивалентные катионы натрия Na(1) и Na(2) связаны в аквакомплексы с разными гидратным числами. Атом Na(1) имеет смешанное гидратно-фторидное, а Na(2) — гидратное окружение. Избыточный ион F⁻, по всей видимости, располагается в межслоевом пространстве и участвует в H-связях типа O-H...F.

Соединение $Na_7Zr_6F_{31} \cdot 6H_2O$

 движением ионов Na(2), лишенных своих водных лигандов H_2O , в положение, которое позволяет катионам связываться с концевыми атомами F анионного комплекса. Таким образом, в структуре Na₇Zr₆F₃₁ · 6H₂O катионы Na(2) меняют свое окружение с гидратного на фторидное с KЧ, равным 6. При этом, вероятно, прослойка катионов Na(1) со смешанным гидратно-фторидным окружением препятствует объединению Zr-полиэдров в кубооктаэдры.

В рентгенограмме $Na_7Zr_6F_{31}\cdot 6H_2O$ происходит смещение первого дифракционного максимума до 9.37 Å, что можно объяснить сближением анионных слоев в решетке частично обезвоженной фазы (рис. 1).

При частичной дегигдратации $Na_7Zr_6F_{31} \cdot 12H_2O \rightarrow Na_7Zr_6F_{31} \cdot 6H_2O$ ИК спектр упрощается последнего в области колебаний молекул H₂O (рис. 4, кривая b). Полосы vOH слабо связанных молекул H₂O в координации Na(2) исчезают. Остаются только полосы колебаний молекул H_2O , координирующих катионы $Na(1)^+$. Проявляется симметричная широкая интенсивная полоса с максимумом при 3296 ст⁻¹, которая соответствует валентным колебаниям однотипных молекул H₂O, вовлеченных в прочные H-связи O-H...F. Присутствие одной полосы либраций воды при 780 сm⁻¹ также подтверждает образование прочных Н-связей. Деформационное колебание бНОН проявляется в виде широкой полосы при 1640 ст⁻¹ с высокочастотным плечом. Вероятно, молекулы H₂O в структуре соли испытывают сильное возмущающее действие ионов Na⁺ [22].

Инфракрасные и спектры КР гидратов Na₇Zr₆F₃₁ \cdot 12H₂O и Na₇Zr₆F₃₁ \cdot 6H₂O в области колебаний аниона очень похожи, что подчеркивает близость строения их анионных подрешеток.

Выводы

Исследованы процессы дегидратации и термической устойчивости соединения $Na_7Zr_6F_{31} \cdot 12H_2O$ в широком интервале температур. Установлено, что в высоководном кристаллогидрате происходит разделение воды на два типа по температуре ее удаления из структуры. В результате частичной и полной дегидратации при нагревании соответственно до температур 115 и 215°C образуются промежуточная гидратная фаза состава Na₇Zr₆F₃₁ · 6H₂O и безводное соединение Na₇Zr₆F₃₁.

Методами колебательной спектроскопии изучено влияние гидратного числа внешнесферного катиона на строение анионной подрешетки кристаллогидратов состава Na₇Zr₆F₃₁ · nH₂O (n = 12, 6). Показано, что в кристаллогидратах реализуется схожее слоистое строение анионных подрешеток с KЧ Zr, равным 7. При полном обезвоживании и переходе в безводное соединение Na₇Zr₆F₃₁ происходит перестройка структуры в каркасную с увеличением KЧ Zr до 8. На основе квантово-химических расчетов проведено отнесение полос в колебательных спектрах Na₇Zr₆F₃₁.

Финансирование работы

Работа была выполнена в рамках государственного задания FWFN(0205)-2023-0003 Института химии ДВО РАН.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- J.-L. Adam. J. Fluor. Chem., 107, 265 (2001). DOI: 10.1016/S0022-1139(00)00368-7
- [2] Г.Н. Яковлев, Е.Ф. Мясоедов, Л.Д. Духовенская, В.И. Силин. Радиохимия, **21**(5), 687 (1979).
- [3] В.М. Ажажа, А.А. Андрийко, А.С. Бакай, С.В. Волков, С.В. Девяткин, А.Н. Довбня, С.Д. Лавриненко, А.А. Омельчук, Б.М. Широков. Вопросы атомной науки и техники. Серия: Физика радиационных повреждений и радиационное материаловедение, 86(3), 134 (2005).
- [4] C.J. Barton, W.R. Grimes, H. Insley, R.E. Moore, R.E. Thoma.
 J. Phys. Chem., 62, 665 (1958). DOI: 10.1021/j150564a008
- [5] J.H. Burns, R.D. Ellison, H.A. Levy. Acta Cryst., B24 (2), 230 (1968). DOI: 10.1107/S0567740868002013
- [6] E.M. Moulakou. Synthéses, caractérisations structurales et physico-chimiques de fluoruresd' eléments tétravalents (Université Blaise Pascal, Clermont-Ferrand, 2007). 167 p.
- [7] Ch.C. Underwood, C.D. McMillen, J.W. Kolis. J. Chem. Crystallogr., 44, 493 (2014).
 DOI: 10.1007/s10870-014-0532-4
- [8] А.В. Новоселова, Ю.М. Коренев, Ю.П. Симонов. ДАН СССР, 139 (4), 892 (1961).
- [9] М.М. Годнева, Д.Л. Мотов, В.Я. Кузнецов, Н.Л. Михайлова. Журн. неорг. химии, 47 (1), 119 (2002).
- [10] М.М. Годнева, В.Я. Кузнецов, М.П. Рыськина, В.В. Семушин, Н.Л. Михайлова. Журн.неорг. химии, 59(8), 1071 (2014).
- [11] R.D. Shannon. Acta Cryst., A32, 751 (1976).
 DOI: 10.1107/S056773947600155
- Y. Marcus. J. Chem. Soc. Faraday Trans., 87(18), 2995 (1991).
 DOI: 10.1039/ft9918702995
- [13] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery. // J. Comput. Chem., 14, 1347 (1993). DOI: 10.1002/jcc.540141112
- [14] В.А. Логвиненко, Ф. Паулик, И. Паулик. Квазиравновесная термогравиметрия в современной неорганической химии (Наука, Новосибирск, 1989).
- [15] M. Leblanc, V. Maisonneuve, A. Tressaud. Chem. Rev., 115
 (2), 1191 (2015). DOI: 10.1021/cr500173c
- [16] Е.И. Войт, Н.А. Диденко, К.Н. Галкин. Опт. и спектр., 118 (1), 97 (2015).
 DOI: 10.7868/S0030403415010262
- [17] Е.И. Войт, Н.А. Диденко, К.А. Гайворонская. Опт. и спектр., 124(3), 333 (2018).
 DOI: 10.61011/OS.2024.06.58636.5910-24

- [18] I. Mansouri, D. Avignant. J. Solid State Chem., 51, 91 (1984).
 DOI: 10.1016/0022-4596(84)90319-014.
- [19] M.A. Saada, A. Hemon-Ribaud, V. Maisonneuve, L.S. Smiri, M. Leblanc. Acta Cryst., E59, 131 (2003).
 DOI: 10.1107/S1600536803018567
- [20] E.A. Zhurova, B.A. Maximov, V.I. Simonov, B.P. Sobolev. Kristallografiya, 41, 433 (1996). DOI: 10.1134/1.170440
- [21] T. Seki, K.Y. Chiang, C.X. Yu, M. Okuno, J. Hunger, Y. Nagata, M. Bonn. J. Phys. Chem. Lett., 11 (19), 8459 (2020). DOI: 10.1021/acs.jpclett.0c01259
- [22] О.В. Сизова, В.И. Барановский. Журн. структур. химии, 29(1), 168 (1988).