# 01 Взаимодействие аммиака с пленкой дифталоцианина лютеция

© С.И. Расмагин

Институт общей физики им. А.М. Прохорова Российской академии наук, Москва, Россия e-mail: rasmas123@yandex.ru

Поступила в редакцию 13.06.2024 г. В окончательной редакции 13.06.2024 г. Принята к публикации 28.06.2024 г.

Создана пленка дифталоцианина лютеция на подложке из силикатного стекла. Измерены спектры поглощения света и поверхностное электрическое сопротивление пленки дифталоцианина лютеция на силикатном стекле в нормальных условиях и при воздействии газообразного аммиака. Проведен анализ данных спектров поглощения света в пленке дифталоцианина лютеция в отсутствие и при воздействии аммиака. Обнаружено влияние молекул аммиака на Q- и B-полосы спектра поглощения света в пленке дифталоцианина лютеция на силикатном стекле. Выявлено воздействие аммиака на электропроводность пленки дифталоцианина лютеция на силикатном стекле.

Ключевые слова: дифталоцианин лютеция, спектры поглощения, электрическое сопротивление, газ аммиак.

DOI: 10.61011/OS.2024.06.58635.6787-24

## Введение

Среди известных хромофоров видное место занимают металлфталоцианины. Металлфталоцианины относятся к классу органических полупроводников, но в сравнении с неорганическими полупроводниками (Si, AsGa, Ge, SiC) мало используются в микроэлектронике и оптоэлектронике. Также металлфталоцианины находят незначительное применение, например, в газовых датчиках [1]. Поэтому необходимо проводить исследования их оптических, фотоэлектрических и электрофизических свойств на предмет возможности их практического применения в вышеперечисленных областях.

Металлфталоцианины имеют ряд технологически значимых свойств. Пленки металлфталоцианинов, полученные методом сублимации, являются относительно чистыми с концентрацией примесей порядка  $10^{14} - 10^{15} \, \text{cm}^{-3}$ . Пленки металлфталоцианинов хорошо напыляются в вакууме на неорганические (например, стекла, неорганические полупроводники) и органические подложки (например, полимеры). Металлфталоцианины обладают хорошей термостабильностью, химической и термической стойкостью. Имеют 3 полосы поглощения в дальнем ультрафиолетовом диапазоне и от 2 до 4 полос поглощения света в оптическом и ближнем ультрафиолетовом диапазонах длин волн. Оптические и электрофизические свойства металлфталоцианинов обусловлены наличием *п*-электронной системы (двойные сопряженные углерод-азотные связи и углеродуглеродные связи). В молекулах металлфталоцианинов могут использоваться различные ионы металлов (Cu, Zn, Ni, Fe и др.) и редких земель (Lu, Er, Dy и др.). Изза большого размера ионы редких земель находятся вне плоскости лиганда и способны образовывать комплексы

дифталоцианины и трифталоцианины. Дифталоцианин редкоземельных металлов является комплексом, образованным из двух фталоцианиновых лигандов, между которыми расположен ион редкоземельного металла. Ион редкоземельного металла связан с лигандами ковалентными и координационными связями (рис. 1).

В настоящей работе была создана пленка дифталоцианина лютеция и исследованы оптические и электрофизические свойства. Химическую формулу дифталоцианина лютеция можно записать в общем виде  $Lu(C_{32}H_{16}N_8)_2$  или в краткой форме  $LuPc_2$ . Здесь символ Pc обозначает молекулу фталоцианина без комплексообразователя



Рис. 1. Структура молекулы дифталоцианина лютеция.

в качестве лиганда. На одном лиганде Рс находится 20 делокализованных *п*-электронов на бензольных кольцах и 18 делокализованных *п*-электронов на макрокольце, т.е. всего 38 делокализованных л-электронов в молекуле LuPc<sub>2</sub>. В молекуле LuPc<sub>2</sub> в двух лигандах Рс имеется 76 делокализованных *л*-электронов в восстановленной форме и 75 делокализованных *п*-электронов в нейтральной форме. Молекула дифталоцианина лютеция LuPc<sub>2</sub> в нейтральной форме имеет один неспаренный электрон на молекулярной орбитали 2а2, который делокализован на обоих лигандах. Молекулярная орбиталь  $2a_2$  (SOMO) дифталоцианина лютеция лежит между молекулярными орбиталями НОМО и LUMO. Здесь НОМО — высшая заполненная молекулярная орбиталь, LUMO — нижняя свободная молекулярная орбиталь, SOMO — однократно заполненная молекулярная орбиталь. Разность энергий LUMO-HOMO определяет ширину энергетической щели. В молекуле дифталоцианина для первого возбужденного состояния иона лютеция ширина энергетической щели определяется электронным переходом  $2b_1 \rightarrow 6e_3$ . В дифталоцианине лютеция в нейтральной форме ионы Lu<sup>3+</sup> являются акцепторами, а лиганды Pc<sup>2-</sup> и Pc<sup>1-</sup> выступают в роли доноров для иона лютеция. А в процессе взаимодействия лигандов между собой лиганд Pc<sup>1-</sup> выступает в роли акцептора, лиганд Pc<sup>2-</sup> является донором. Взаимодействие лигандов между собой происходит по механизму переноса заряда между лигандами [2]. Отметим, что взаимодействие молекул дифталоцианина лютеция в пленке происходит благодаря силам Ван-дер-Ваальса на ближнем расстоянии и силам Кулона на дальнем расстоянии между молекулами. Известно, что металлы с зарядом больше двух, к каким относятся также ионы  $Lu^{3+}$ , склонны к координированию с лигандами и другими молекулами [3]. Поэтому различные газы, например О2, NH<sub>3</sub>, NO, NO<sub>2</sub>, CO, CO<sub>2</sub> и др., хорошо адсорбируются на поверхности молекул фталоцианина с ионами лантаноидов в качестве комплексообразователя и, в частности, на поверхности молекул дифталоцианина лютеция [4-6]. Фталоцианины с лантаноидами способны связывать молекулы газов на поверхности пленки, что приводит к заметному изменению электропроводности и спектров поглощения света [7–10].

Цель настоящей работы — исследование влияния газообразного аммиака на спектры поглощения света и электрическое сопротивление пленки дифталоцианина лютеция на подложке силикатного стекла.

### Экспериментальная часть

Фталоцианины и дифталоцианины лантаноидов обладают высокой термической стабильностью, благодаря которой они способны сублимироваться в вакууме без разложения [11]. Это свойство позволяет создавать тонкие пленки металлфталоцианинов методом физического осаждения из газовой фазы. Для получения пленок дифталоцианина лютеция использовали метод термического вакуумного напыления при высоких температурах. Методом термического вакуумного напыления были приготовлены пленки дифталоцианина лютеция на подложке из силикатного стекла при разных температурах сублимации и времени напыления. Для измерения спектра поглощения света и поверхностного сопротивления выбрали пленку дифталоцианина лютеция, которая была получена при температуре сублимации  $t = 480^{\circ}$ С и времени напыления 5 min. В результате была получена кристаллическая пленка дифталоцианина лютеция Вформы с концентрацией примесей, не превышающей величину  $N_{\rm imp} = 10^{15} \, {\rm cm}^{-3}$ . Обозначим пленку дифталоцианина лютеция как Р480. Температура подложки из силикатного стекла во время напыления составляла  $t = 50^{\circ}$ C.

Создание пленок дифталоцианина лютеция на подложках выполнялось на вакуумной установке ВУП-5. Спектры поглощения света в пленках дифталоцианина лютеция получены на спектрометре Option Optics 2000 с динамическим диапазоном 300–1100 nm. В качестве источника излучения использовали вольфрамовую лампу мощностью 10 mW. Измерение поверхностного электрического сопротивления выполнено на тераомметре Е6-3. Измерение толщины пленки дифталоцианина лютеция проводилось на сканирующем атомно-силовом микроскопе ND-MDT.

## Результаты и их обсуждение

Воздействие различных газов на металлфталоцианы исследовалось в работах [12,13]. В настоящей работе исследовалось влияние газообразного аммиака на оптические и электрофизические свойства пленки дифталоцианина лютеция. Процесс адсорбции небольших молекул аммиака происходит на поверхности большой площади пленки дифталоцианина лютеция благодаря силам Ван-дер-Ваальса на ближних расстояниях и силам Кулона на дальних расстояниях. Молекулы NH<sub>3</sub> обладают донорными свойствами, а положительно заряженные ионы лютеция Lu<sup>3+</sup> проявляют акцепторные свойства. При взаимодействии между молекулами NH<sub>3</sub> и ионами Lu<sup>3+</sup> в молекуле LuPc<sub>2</sub> происходит передача неподеленной электронной пары NH<sub>3</sub> к иону лютеция Lu<sup>3+</sup>. Данный процесс происходит по акцепторно-донорному механизму, в результате которого образуется координационная связь между ионами Lu<sup>3+</sup> и молекулами NH<sub>3</sub>. Образование координационной связи Lu<sup>3+</sup>-NH<sub>3</sub> может приводить к изменению спектров поглощения света и электрического сопротивления [6].

Для измерения толщины пленки LuPc<sub>2</sub> использовали сканирующий атомно-силовой микроскоп NT-MDT (рис. 2). Измерения на атомно-силовом микроскопе (ACM) проводились при температуре  $t = 23^{\circ}$ C.

Из рис. 2 видно, что толщина пленки дифталоцианина лютеция находится в диапазоне 200–210 nm.



**Рис. 2.** АСМ-изображение пленки дифталоцианина лютеция LuPc<sub>2</sub>.



**Рис. 3.** Спектры поглощения света пленки LuPc<sub>2</sub> на подложке из силикатного стекла. *1* — красный спектр, пленка LuPc<sub>2</sub> без воздействия аммиака; *2* — зеленый спектр, пленка LuPc<sub>2</sub> при воздействии аммиака.

Наличие в молекулах дифталоцианина лютеция делокализованных  $\pi$ -электронов приводит к сильному поглощению света в видимом диапазоне 350–1000 nm. Для пленки Р480 были измерены спектры поглощения света без воздействия NH<sub>3</sub> и в процессе воздействия NH<sub>3</sub> на пленку (рис. 3). Измерения спектров поглощения света на пленке LuPc<sub>2</sub> проводились при температуре  $t = 24^{\circ}$ C.

Анализируя данные спектра поглощения света (рис. 3), делаем вывод, что в образце P480 имеются три пика поглощения и связанные с ними Q-, BV- и Вполосы поглощения. Для пленки P480 пик Q-полосы поглощения света соответствует длине волны  $\lambda_m = 667$  nm ( $E_Q = 1.86 \text{ eV}$ ), пик BV-полосы поглощения находится на длине волны  $\lambda_m = 64 \text{ nm}$  ( $E_{BV} = 2.67 \text{ eV}$ ) и, наконец, пик B-полосы поглощения соответствует длине волны  $\lambda_m = 352 \text{ nm}$  ( $E_B = 3.52 \text{ eV}$ ) без воздействия NH<sub>3</sub> и  $\lambda_m = 357 \text{ nm}$  ( $E_B = 3.47 \text{ eV}$ ) при воздействии NH<sub>3</sub>. Оптическая плотность (D) пика Q-полосы пленки P480 без воздействия NH<sub>3</sub> равна  $D_{\rm Q} = 1.13$  и при воздействии NH<sub>3</sub> составляет  $D_{Q+NH_3} = 1.02$ . Полуширина пиков Qполосы составляет  $\Delta \lambda = 32$  nm, т. е. Q-полоса достаточно узкая, но больше полуширины Q-полосы LuPc<sub>2</sub> в растворе тетрагидрофурана [14]. Оптические плотности пиков ВV-полосы пленки Р480 без воздействия и при воздействии NH<sub>3</sub> практически совпадают и равны  $D_{\rm BV} = 0.48$ . Оптическая плотность пика В-полосы пленки Р480 без воздействия NH<sub>3</sub> равна  $D_{\rm B} = 0.84$  и при воздействии  $NH_3$  составляет  $D_{Q+NH_3} = 1.52$ . Оптическая плотность пика Q-полосы спектра поглощения при воздействии NH<sub>3</sub> уменьшилась в 1.1 раза, что аналогично результату для пленки LuPc<sub>2</sub> при воздействии NO<sub>2</sub> в работе [6]. Оптическая плотность пика В-полосы спектра поглощения увеличилась при воздействии NH<sub>3</sub> в 1.8 раза. В результате воздействия аммиака на пленку дифталоцианина лютеция пик Q-полосы уменьшается в 1.1 раза, пик В-полосы увеличивается в 1.8 раза, и пик ВV-полосы практически не изменяется. Полуширина Q- и ВV-полос спектров поглощения света в результате воздействия NH<sub>3</sub> практически не изменилась.

Поглощение излучения света в Q-полосе с пиком  $\lambda_m = 667 \,\mathrm{nm}$  происходит на сопряженных двойных углерод-углеродных связях бензольных колец (n = 13)и сопряженных двойных азот-углеродных связях (n = 6) в макроцикле каждого из лигандов Рс. Здесь п число сопряженных двойных связей C=C и C=N. Пики поглощения с длинами волн  $\lambda_m = 667 \, \text{nm}$  (Q-полоса) в пленке Р480 соответствуют электронному переходу с НОМО 2 $b_1$  на LUMO 6 $e_3$  ( $\pi$ - $\pi^*$ -электронные переходы). Для пленки Р480 энергетический интервал между основным состоянием НОМО и возбужденным состоянием LUMO составляет  $E_{\text{HOMO-LUMO}} = 1.86 \,\text{eV}$ (или Е<sub>О</sub>). Данный электронный переход происходит с синглетного основного электронного уровня S<sub>0</sub> на валентные колебательные уровни C=C и C=N синглетного первого возбужденного уровня S<sub>1</sub>. В молекуле дифталоцианина лютеция в нейтральной форме пик Qполосы обусловлен одним возбужденным состоянием, которое вызвано локальным возбуждением лигандов. Этот тип возбуждения аналогичен для электронного перехода НОМО  $2b_1 \rightarrow$  LUMO  $6e_3$  для монофталоцианина лютеция.

Поглощение излучения в диапазоне с максимумом  $\lambda_m = 464$  nm происходит на сопряженных двойных углерод-углеродных связях бензольных колец (n = 13), т.е. излучение поглощается на 26  $\pi$ -электронах в молекуле LuPc<sub>2</sub>. Пик поглощения (BV-полоса,  $\lambda_m = 464$  nm) в спектре образца соответствует электронному переходу с молекулярного уровня 5 $e_1$  на уровень 2 $a_2$  ( $\pi$ - $\pi^*$ переходы) с энергетическим интервалом  $E_{\rm BV} = 2.67$  eV. Наличие пика поглощения света BV-полосы свидетельствует о нейтральной форме молекул дифталоцианина лютеция [LuPc<sub>2</sub>]<sup>0</sup> в пленке. В молекуле дифталоцианина лютеция в нейтральной форме присутствуют 37  $\pi$ -электронов. В молекуле [LuPc<sub>2</sub>]<sup>0</sup> в нейтральной форме присутствует один неспаренный электрон, который делокализован на двух лигандах  $P_c$ . Данный электронный переход  $5e_1 \rightarrow 2a_2$  происходит с уровня  $5e_1$  на уровень SOMO  $2a_2$  ( $\pi - \pi^*$ -электронные переходы). Электронный переход  $5e_1 \rightarrow 2a_2$  в молекулах пленки дифталоцианина лютеция обусловлен переносом заряда между лигандом  $Pc^{2-}$  и лигандом  $Pc^{1-}$ . Другими словами, молекулярная орбиталь BV-полосы дифталоцианина лютеция образуется путем расшепления молекулярных орбиталей лигандов  $Pc^{2-}$  и  $Pc^{1-}$  в результате их взаимодействия. Оптическая плотность BV-полосы для пленки P480 без воздействия NH<sub>3</sub> равна  $D_{BV} = 0.48$ , которая в 2.4 раза меньше для Q-полосы и в 2.1 раза меньше для Q-полосы при воздействии NH<sub>3</sub>.

Пик поглощения (В-полоса,  $\lambda_m = 352 \text{ nm}$ ) в пленке дифталоцианина лютеция без воздействия аммиака соответствует электронному переходу  $4a_1 \rightarrow 6e_1 \ (\pi - \pi^*$ переходы) с энергетическим интервалом  $E_{\rm B} = 3.52 \, {\rm eV}.$ При воздействии аммиака пик поглощения (В-полоса,  $\lambda_m = 357 \, \text{nm})$  в пленке дифталоцианина лютеция соответствует электронному переходу с молекулярной орбитали 4a<sub>1</sub> на более низкий колебательный уровень орбитали 6е1 ( $\pi$ - $\pi^*$ -переходы) с энергетическим интервалом  $E_{B+NH_3} = 3.47 \text{ eV}$ . Разность между энергетическими интервалами составляет 0.05 eV. Электронные переходы  $4a_1$ HOMO-1  $\rightarrow 6e_1$ LUMO+1 (В-полоса) возникают в молекулах пленки дифталоцианина лютеция благодаря поглощению излучения на сопряженных двойных углерод-азотных связях пирольных колец (n = 6), т.е. излучение поглощается на 12 *п*-электронах в молекуле LuPc2. Оптическая плотность В-полосы для пленки Р480 без воздействия NH<sub>3</sub> равна  $D_{\rm B} = 0.84$ , которая в 1.3 раза меньше для Q-полосы и в 1.5 раза больше для Qполосы при воздействии NH<sub>3</sub>. Данный электронный переход происходит с синглетного основного электронного уровня  $S_0$  на валентные колебательные уровни C=C синглетного второго возбужденного уровня S<sub>2</sub>.

Итак, при воздействии молекул аммиака на поверхность пленки дифталоцианина лютеция электронный переход происходит с синглетного основного электронного уровня  $S_0$  на более низкий колебательный уровень C=C синглетного второго возбужденного уровня  $S_2$ . Основные параметры спектров поглощения света пленки дифталоцианина лютеция без и при воздействии молекул аммиака приведены в таблице.

Таким образом, в результате воздействия аммиака на пленку дифталоцианина лютеция пик Q-полосы уменьшается в 1.1 раза, пик B-полосы увеличивается в 1.8 раза и пик BV-полосы практически не изменяется. Предположительно падение оптической плотности Q-полосы при воздействии аммиака вызвано уменьшением вероятности электронного перехода HOMO  $2b_1 \rightarrow$  LUMO  $6e_3$  (уменьшение заселенности молекулярной орбитали LUMO). Можно предположить, что рост оптической плотности B-полосы при воздействии аммиака обусловлен увеличением вероятности электронного перехода НОМО-1  $4a_1 \rightarrow$  LUMO+1  $6e_1$  (увеличение заселенности молекулярной орбитали LUMO+1).

Для образца Р480 (пленка LuPc<sub>2</sub>) было также измерено поверхностное электрическое сопротивление  $R_{\rm S}$  при температуре  $t = 23^{\circ}$ С без и при воздействии аммиака. Для более точного измерения поверхностного электрического сопротивления на пленку LuPc2 напылялись серебряные контакты. Для пленки LuPc<sub>2</sub> на подложке из силикатного стекла без воздействия NH<sub>3</sub> значение поверхностного электрического сопротивления составило  $R_{\rm S} = 2 \cdot 10^4 \,\Omega$ . Для пленки LuPc<sub>2</sub> на подложке из силикатного стекла при воздействия NH<sub>3</sub> значение поверхностного электрического сопротивления составило  $R_{\rm S} = 11 \cdot 10^5 \,\Omega$ . Видно, что воздействие молекул NH<sub>3</sub> на пленку LuPc<sub>2</sub> приводит к заметному росту поверхностного электрического сопротивления приблизительно в 5.5 раз. В вакууме пленки металлфталоцианинов (MPs) являются диэлектриками. Но на воздухе электропроводность пленок металлфталоцианинов зависит от газов в самом воздухе, проявляющих как акцепторные, так донорные свойства [15,16]. На воздухе пленки металлфталоцианинов начинают проявлять полупроводниковые свойства, имея в основном р-тип проводимости.

Проводимость *p*-типа можно объяснить образованием на поверхности пленки металлфталоцианина комплексного соединения [O<sub>2</sub>- MPs<sup>+</sup>] (в нашем случае атомы  $O_{2^{-}}$  координируются с ионами Lu<sup>3+</sup>), которое извлекает электроны из объема, создавая в нем дырки, что приводит к образованию р-типа проводимости. При взаимодействии молекул NH<sub>3</sub>, обладающих донорными свойствами, с пленкой фталоцианина лютеция происходит рекомбинация электронов неподеленный пары NH<sub>3</sub> с дырками молекул в пленке LuPc<sub>2</sub>. В результате рекомбинации электронов и дырок концентрация дырок в пленки LuPc<sub>2</sub> уменьшается и, следовательно, увеличивается электрическое сопротивление, в нашем случае в 5.5 раза. Таким образом, увеличение электрического сопротивления в пленке дифталоцианина лютеция при воздействии молекул аммиака можно использовать в качестве индикатора газа.

#### Заключение

В настоящей работе получили пленку дифталоцианина лютеция на подложке силикатного стекла и исследовали ее оптические и электрофизические свойства при воздействии аммиака. Исследовано как изменяются спектры поглощения света и электрическое сопротивление пленки дифталоцианина лютеция при воздействии аммиака.

В результате проведенных исследований пленок дифталоцианина лютеция на подложке из силикатного стекла без и при воздействии молекул аммиака можно сделать следующие заключения.

1. Энергия *Е*<sub>НОМО-LUMO</sub> энергетической щели Q-полосы пленки дифталоцианина лютеция равна

| Спектральная полоса                                                   | Длина волны<br>пика λ, nm | Полуширина<br>пика Δλ, nm | Смещение<br>пика δλ, nm | Энергия электронного перехода <i>E</i> , eV | Смещение уровня энергии $\Delta E$ , eV | Оптическая плотность D       | Отношения $D_1/D_2$ и $D_2/D_1$ |
|-----------------------------------------------------------------------|---------------------------|---------------------------|-------------------------|---------------------------------------------|-----------------------------------------|------------------------------|---------------------------------|
| Пленка 1. LuPc <sub>2</sub> без NH <sub>3</sub>                       |                           |                           |                         |                                             |                                         |                              |                                 |
| В-полоса<br>ВV-полоса<br>Q-полоса<br>VS —<br>колебательный<br>спутник | 352<br>464<br>667<br>604  | -<br>-<br>32<br>-         |                         | 3.52<br>2.67<br>1.86<br>2.05                | 0.05                                    | 0.84<br>0.48<br>1.13<br>0.37 | 1.1 раза                        |
| Пленка 2. LuPc <sub>2</sub> с NH <sub>3</sub>                         |                           |                           |                         |                                             |                                         |                              |                                 |
| В-полоса<br>ВV-полоса<br>Q-полоса<br>VS —<br>колебательный<br>спутник | 357<br>464<br>667<br>604  | -<br>-<br>32<br>-         | 5                       | 3.47<br>2.67<br>1.86<br>2.05                |                                         | 1.53<br>0.48<br>1.03<br>0.37 | 1.8 раза                        |

Параметры спектров поглощения света пленки LuPc2 без и при воздействии NH3

 $E_{\rm Q} = 1.86 \, {\rm eV}$  и не изменяется при воздействии NH<sub>3</sub>. Оптическая плотность Q-полосы спектра поглощения света при воздействии NH<sub>3</sub> уменьшается в 1.1 раза по сравнению с оптической плотностью без воздействия NH<sub>3</sub>.

2. Энергия  $E_{\rm B}$  электронного перехода, характерная для В-полосы пленки дифталоцианина лютеция, равна  $E_{\rm B} = 3.52 \, {\rm eV}$  и уменьшается до значения  $E_{\rm B} = 3.47 \, {\rm eV}$ при воздействии NH<sub>3</sub>. Оптическая плотность пика Вполосы спектра поглощения света при воздействии NH<sub>3</sub> увеличивается в 1.8 раза по сравнению с оптической плотностью без воздействия NH<sub>3</sub>.

3. Величина поверхностного электрического сопротивления пленки дифталоцианина лютеция при воздействии аммиака увеличивается в 5.5 раза.

Таким образом, подведем общие результаты исследований оптических и электрофизических свойств пленок дифталоцианина лютеция на силикатном стекле при воздействии газообразного аммиака.

1. Энергия  $\pi - \pi^*$ -электронных переходов, характерная для пиков спектров поглощения Q- и ВV-полос, в пленках дифталоцианина лютеция не изменяется при воздействии аммиака. Результат можно объяснить тем, что энергетическая щель Е<sub>НОМО-LUMO</sub> и электронный переход  $5e_1(\pi) \rightarrow 2a_2(\pi^*)$  не изменяются при воздействии аммиака на поверхность пленки дифталоцианина. Энергия  $E_{\rm B}$   $\pi - \pi^*$ -электронных переходов, характерная для пиков спектров поглощения В-полосы, в пленках дифталоцианина лютеция при воздействии аммиака на 0.05 eV меньше, чем энергия E<sub>B</sub> при отсутствии влияния NH<sub>3</sub>. Экспериментальный результат предположительно обусловлен тем фактом, что электронный переход в молекулах LuPc<sub>2</sub> при воздействии NH<sub>3</sub> происходит с синглетного основного электронного уровня S<sub>0</sub> на более низкий колебательный уровень С=С синглетного второго возбужденного уровня S<sub>2</sub>.

2. Оптическая плотность пика Q-полосы в пленке LuPc<sub>2</sub> уменьшается при воздействии аммиака. Результат можно объяснить созданием координационной связи между молекулами NH<sub>3</sub> и ионами Lu<sup>3+</sup>, которая приводит к уменьшению вероятности электронного перехода HOMO  $\rightarrow$  LUMO и, как следствие, уменьшению заселенности молекулярной орбитали LUMO. Оптическая плотность пика B-полосы пленки LuPc<sub>2</sub> значительно (в 1.8 раза) увеличивается при воздействии аммиака. Экспериментальный факт возможно объяснить тем, что в результате создания координационной связи между молекулами NH<sub>3</sub> и атомами водорода (H) бензольных колец молекул LuPc<sub>2</sub> увеличивается вероятность электронного перехода HOMO-1  $\rightarrow$  LUMO+1.

3. Уменьшение пика Q-полосы и увеличение пика Вполосы в спектре поглощения света при воздействии молекул аммиака открывает возможность использовать пленки дифталоцианина лютеция в качестве активного вещества для газовых сенсоров, например, напыляя LuPc<sub>2</sub> методом сублимации на торец оптоволокна, соединенного с удаленным оптическим спектрометром.

4. Значительное уменьшение электрического сопротивления пленки дифталоцианина лютеция при воздействии аммиака можно также использовать для создания газовых сенсоров, напыляя на поверхность пленки LuPc<sub>2</sub> металлические контакты, которые позволят регистрировать изменение электрического сопротивления.

#### Список литературы

- F.I. Bohrer, C.N. Colesniuc, J. Park, M.E. Ruidiaz, I.K. Schuller, A.C. Kummel, W.C. Trogler. J. Am. Chem. Soc., 131, 478 (2009).
- [2] J. Simon, J.-J. Andre. Molecular Semiconductors. Photoelectrical Properties and Solar Cells. Ed. by J.M. Lehn (Springer-Verlag Berlin-Heidelberg-New York-Tokyo, 1988).

- [3] С.И. Расмагин. Опт. и спектр., **131** (12), 1633–1641 (2023). DOI: 10.61011/OS.2024.06.58635.6787-24
- [4] E. Van Faassen, H. Kerp. Sensors and Actuators B, 88, 329– 333 (2003).
- [5] D. Xie, W. Pan, Y.D. Jiang, Y.R. Li. Mater. Lett., 57, 2395– 2398 (2003).
- [6] M. Debliquy, D. Lahem, A. Bueno-Martinez, C. Caucheteur. Sensors, 18 (3), 740, (2018). DOI: 10.3390/s18030740
- [7] E.G. Duruk, H.Y. Yenilmez, A. Altindal, Z. Bayir Altuntaş. Dalt. Trans., 44 (21), 10060–10068 (2015).
- [8] R. Saini, A. Mahajan, R.K. Bedi, D.K. Aswal, A.K. Debnath. Sensors Actuators B Chem., 198, 164–172 (2014).
- [9] L.K. Kumawat, N. Mergu, A.K. Singh, V.K. Gupta. Sensors Actuators B Chem., 212, 389–394 (2015).
- [10] J. Spadavecchia, G. Ciccarella, P. Siciliano, S. Capone, R. Rella. Sensors Actuators B Chem., 100, 88?93 (2004).
- [11] H. J. Wagner, R.O. Loutfy, C.K. Hsiao. J. Mater. Sci., 17 (10), 2781–2791 (1982).
- [12] J. Wright. Prog. Surf. Sci., 31, 1-60 (1989).
- [13] F.I. Bohrer, C.N. Colesniuc, J. Park, M.E. Ruidiaz, I.K. Schuller, A.C. Kummel, W.C. Trogler. J. Am. Chem. Soc., 131 (2), 478–485 (2009). DOI: 10.1021/ja803531r
- [14] С.И. Расмагин. Опт. и спектр., 130 (12), 1893–1898 (2022).
  DOI: 10.61011/OS.2024.06.58635.6787-24
- [15] B. Schollhorn, J.P. Germain, A. Pauly, C. Maleysson, J.P. Blanc. Thin Solid Films, 326, 245–250 (1998).
- [16] J.P. Germain, A. Pauly, C. Maleysson, J.P. Blanc, B. Schollhorn. Thin Solid Films, 333 (1–2), 235–239 (1998).