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Anisotropy of propagation of spatial surface wave in ferrofluid under the

influence of a horizontal magnetic field
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In the linear formulation, the problem of the propagation of a spatial wave on the free surface of a ferrofluid

under the influence of a uniform horizontal magnetic field is analytically solved. The resulting formula describes the

dependence of the magnetic susceptibility of the ferrofluid on the magnitude of the magnetic field vector. Gravity,

magnetic force, and surface tension are taken into account. It is assumed that the wavelength is much smaller

than the thickness of the ferrofluid layer. The study investigates how the angle between the wave vector and the

magnetic field vector affects both the phase and group velocities of the wave.
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Introduction

Monograph [1] presents the results of multiple studies

of spatial linear waves on the free surface of a normal

liquid. Regarding electrical conductive fluid paper [2]
theoretically shows the presence of anisotropy of surface

wave propagation. To study the anisotropy the method of

experiment using mercury was suggested.

The anisotropy of surface wave propagation in electrical

conductive fluid originates in case when through fluid the

applied from power source the horizontal electric current

passes having constant density, and homogeneous horizontal

magnetic field is applied, and created by them Lorentz force

is directed downwards. The anisotropy of wave propagation

is provided by perturbation of the Lorentz force caused

by change in the shape of the free surface. Study of this

phenomenon considering the magnetic field induced by the

electric current passing through fluid is given in [3].
Paper [4] plays the main role in development of ferrohy-

drodynamics. In particular it states the dispersion relation

for spatial internal waves on interface of homogeneous

ferrofluids with different densities, which fill the region

between horizontal plates upon presence of homogeneous

horizontal magnetic field. This dispersion relation after

simplification was used further to compare with the dis-

persion relation obtained in present paper. Based on

simplified dispersion relation the phase velocity of wave was

determined.

To describe phenomena in ferrofluids the equations given

in [5,6] are widely used.

In [7] the spatial waves on surface of the incompressible

fluid are discussed, it can be magnetized inhomogeneously

and isotropically in the external magnetic field. Fluid

occupies the bottom half-space. It is assumed that in the

studied fluid magnetized by the external field, the magnetic

field is induced due to its properties as
”
liquid magnet“.

The magnetic field is induced also in filled with air region

above the fluid. We studied the effect of both vertical

and horizontal components of the magnetic field on the

horizontal flat free surface. It was shown that field tangent

to the unperturbed flat surface increases the phase velocity

of surface waves, if this field is not perpendicular to the

wave front. At that the group velocity also increases. Field

with large strength normal to free surface destabilizes the

flat free surface. If the wave front is perpendicular to the

tangent of flat free surface of magnetic field, then the field

does not affect the phase and group velocities of wave.

Waves perpendicular to the tangential component of the

external field are the most dangerous in view of stability

deterioration of the free surface.

Present paper discusses the harmonic wave propagating

in horizontal direction [8] in ferrofluid located in applied

homogeneous horizontal magnetic field. The hypothesis of

”
liquid magnet“, like in [5,6], is not used.

The harmonic waves refer to class of linear dispersive

waves [9]. We studied wave which length is small as

compared to thickness of fluid layer. If there is no wave

the ferrofluid is in hydrostatic equilibrium state.

It is assumed that the wave vector k forms angle θ with

vector of magnetic field H0, occurring at moment of electric

magnet switching on. As opposed to [7] the effect of angle θ
on phase and group velocities of waves was studied, as well

as on equation of free surface in system of coordinates with

axis x parallel to vector H0.

A close (to that considered below) question about the pic-

ture of stationary waves caused on the surface of ferrofluid

by non-magnetizable obstacle moving in the ferrofluid was

studied theoretically and experimentally in [10]. It was

found that vertical magnetic field narrows the cone of
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stationary waves and increases their amplitudes. At that

behind the obstacle in area of trace for the linear magnetized

ferrofluid the critical value of magnetic field strength, deter-

mining occurrence of Rosenzweig instability, decreases. The

magnetic field parallel to the obstacle velocity spread the

waves cone and decreases their amplitudes until stationary

waves suppression. The horizontal field perpendicular to

obstacle velocity spreads the waves cone and stabilizes

amplitudes.

1. Problem formulation

We study the surface wave in ferrofluid filling the

container with non-magnetizable walls. With switched on

electrical magnet and wave absence the free surface of

the ferrofluid, magnetization vector M0 = χ(H0)H0 and

vector of magnetic induction B01 = µ0(H0 + M0) = µH0

are horizontal. Here µ0 = 4π · 10−7 H/m — magnetic

constant, µ(H0) = µ0[1 + χ(H0)] — magnetic permeability

of ferrofluid. There is no magnetic force due to homogeneity

of the magnetic field. In atmosphere air above the ferrofluid

B02 = µ0H0.

See paper [11], in which experimental study of turbulence

was performed, the turbulence is caused by waves on

surface of ferrofluid interfaced with air and staying in

homogeneous horizontal magnetic field. Aqueous ferrofluid

was prepared without use of the stabilizing organic sub-

stance as per procedure suggested in paper [12]. The

solution is stabilized due to the electric charges of colloidal

particles causing the mutual repulsion of particles. The

ferrofluid is sensitive to ionic composition of carrying

medium. Stabilization is implemented under the condition

that counterions in solution are weakly polarizable ions

N(CH3)
+
4 and ClO−

4 .

As example let’s take from [11] numerical values de-

termining parameters of ferrofluid: coefficient of surface

tension α = 0.059N/m, density ρ = 1324 kg/m3 , initial

magnetic susceptibility χl = 0.69 , saturation magnetization

Ms = 16.9 kA/m.

Using Langevin function [13] L(a) = cth a − 1/a of the

modified argument a = σH0, where σ = 3χl/Ms , we ap-

proximate according to [14] the experimental magnetization

curve of curve

M0(H0) = Ms L(σH0). (1)

here χl = χ(H0) at H0 → 0, Ms = M0(H0) at H0 → ∞.

At that we have χ(H0) = Ms
H0

L(σH0). Graph of the

function χ = χ(H0) is shown in Fig. 1.

Let’s introduce Cartesian rectangular coordinate system

x , y , z (Fig. 2). Origin will be placed on flat free surface

in the absence of wave. Vector H0 and axis x have same

direction, and axis z is directed opposite to vector of gravity

acceleration g. Let’s designate as θ ∈ [0, π/2] the angle

between vector H0 and wave vector k = (kx , ky , 0). In the

discussed problem θ = const is [15] one of similarity criteria.
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Figure 1. Magnetic susceptibility vs. field strength.

g

k

Air

Ferrofluide

2

1

x

yz

z x  y  t= ( , , )z

q

H0

Figure 2. Geometry of problem and designations.

In absence of wave the pressure in ferrofluid is expressed

by function p0(z ) = pa − ρgz , where pa — atmosphere

pressure. Let’s elevation of the free surface disturbed by the

wave — dashed curve in Fig. 2 — described by equation

z = ζ (x , y, t), where t — time.

Magnetic fields perturbed by the change in the

shape of the free surface, will be designated as

H j(x , y, z , t)=[H0 + h jx(x , y, z , t)]ax +h jy(x , y, z , t)ay +
+h jz (x , y, z , t)az , j = 1, 2, where h jx(x , y, z , t),
h jy(x , y, z , t), h jz (x , y, z , t) — small perturbations,

and ax , ay , az — unit vectors along axes x , y , z . Index

j = 1 relates to region occupied by ferrofluid, and index

j = 2 to air above the ferrofluid.
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As in studied mediums the electric current are absent,

then potentials ψ j(x , y, z , t) of magnetic field perturbations

exist, and we can write h j(x , y, z , t) = ∇ψ j . In this case,

H j(x , y, z , t) =
(

H0 +
∂ψ j

∂x

)

ax +
∂ψ j

∂y ay +
∂ψ j

∂z az .

Magnetic induction vector in region filled with air is

B2(x , y, z , t) = µ0

[(

H0 +
∂ψ2

∂x

)

ax +
∂ψ2

∂y
ay +

∂ψ2

∂z
az

]

.

(2)
Neglecting small values of second order we

determine the magnetization vector of ferrofluid

M(x , y, z , t) = χ(H0)
[(

H0 + ∂ψ1

∂x

)

ax + ∂ψ1

∂y ay + ∂ψ1

∂z az
]

and magnetic induction vector

B1(x , y, z , t)=µ0[1+χ(H0)]
[(

H0+
∂ψ1

∂x

)

ax +
∂ψ1

∂y
ay +

∂ψ1

∂z
az

]

.

(3)
In system of Maxwell equations one of the equations

is condition of absence of free magnetic charges [16].
Considering (2), (3) this condition is written as follows:

∂2ψ j

∂x2
+
∂2ψ j

∂y2
+
∂2ψ j

∂z 2
= 0, j = 1, 2. (4)

On free surface the boundary conditions of magnetostat-

ics are as follows

z = 0 : ψ1 = ψ2, µ(H0)
∂ψ1

∂z
− µ0

∂ψ2

∂z
= µ0H0χ(H0)

∂ζ

∂x
.

(5)
In regions 1, 2 far from the free surface the perturbations

of magnetic fields disappear.

The linear system of equations of hydrodynamics is

written as follows:

divu = 0, ρ
∂u

∂t
= −∇p1 + ρg + µ0H0χ(H0)∇

∂ψ1

∂x
. (6)

Here u = u(x , y, z , t) = (ux , uy , uz ) — ferrofluid veloc-

ity, ρ — density, p1 = p1(x , y, z , t) — perturbation of

pressure caused by wave.

After introduction of velocity potential u = ∇ϕ(x , y, z , t)
the first equation (6) takes form

∂2ϕ

∂x2
+
∂2ϕ

∂y2
+
∂2ϕ

∂z 2
= 0, (7)

and from second equation (6) the linearized

Cauchy−Lagrange integral follows

p1(x , y, z , t) = −ρ ∂ϕ
∂t

− ρgz + µ0H0χ(H0)
∂ψ1

∂x
.

On free surface the kinematic and dynamic conditions are

written as follows:

z = 0 :
∂ζ

∂t
=
∂ϕ

∂z
,

ρ
∂ϕ

∂t
+ ρgz − µ0H0χ(H0)

∂ψ1

∂x
− α

( ∂2ζ

∂x2
+
∂2ζ

∂y2

)

= 0.

(8)
Further the linked with each other problems of magneto-

statics (4), (5) and hydrodynamics (7), (8) are considered.

2. Anisotropy of wave propagation

Let us introduce designation r = xax + yay . Let’s flat at

initial time free surface is subjected to small perturbation,

when coordinates of points of the surface and desired

functions in equations (4), (7) are expressed using normal

modes [17] proportional to exp[i(kr− ωt)]:

(ζ (x , y, t), ψ j(x , y, z , t), ϕ(x , y, z , t))

= (Z, 9 j(z ), 8(z )) exp[i(kr − ωt)], j = 1, 2. (9)

Here i — imaginary unit, k = kxax + kyay — wave

vector, Z — constant, and frequency ω is determined using

equations (4), (7) and boundary conditions (5), (8).
Substituting expressions (9) in Laplace equations (4), (7)

we obtain

d2ψ1

dz 2
− k291 = 0,

d2ψ2

dz 2
− k292 = 0,

d28

dz 2
− k28 = 0, k2 = k2

x + k2
y . (10)

Considering (9) the boundary conditions (5), (8) are

written as follows:

z = 0 : 91=92, (1+χ(H0))
dψ1

dz
− dψ2

dz
= ikx ZH0χ(H0),

iωZ+
d8
dz

=0, iρω8−Z(ρg+αk2)+ikxµ0H0χ(H0)91 =0.

(11)
In region 1 it is easy to indicate the tending to zero at

z → −∞ solutions of first and third equations (10):

91 = A1 exp(kz ), 8 = A2 exp(kz ). (12)

In region 2 we have tending to zero at z → +∞ solution

of second equation (10):

92 = A3 exp(−kz ). (13)

Here A1, A2, A3 are arbitrary constants.

When substituting solutions (12), (13) into boundary

conditions (11) we obtain system of linear homogeneous

equations relatively to A1, A2, A3, Z:

A1 − A3 = 0, [1 + χ(H0)]kA1 + kA3 − ikx ZH0χ(H0) = 0,

kA2+iωZ =0, ikxµ0H0χ(H0)A1+iρωA2−(ρg+αk2)Z =0.

(14)
Then and only then the system (14) has solutions that

differ from zero one, when its determinant is zero. After

determinant calculation and equating to zero we obtain the

dispersion relation

ω2 = gk +
µ0H2

0χ(H0) cos
2 θ

ρ[2 + χ(H0)]
k2 +

α

ρ
k3. (15)

Then we determine

A1 = A3 =
iH0χ(H0)Z cos θ

2 + χ(H0)
, A2 = −

iω
k

Z. (16)
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Using (9), (12), (16) we determine solution of hydrody-

namic problem (7), (8):

ϕ(x , y, z , t) =
ω

k
Zq(x , y, t) exp(kz ),

ζ (x , y, t) = Z cos[k(x cos θ + y sin θ) − ωt],

where q(x , y, t) = sin[k(x cos θ + y sin θ) − ωt].
As in case of waves on calm water [9], the main

wave characteristics are phase c(k) = ω/k and group

C(k) = dω/dk velocities. Opposite to [9] these char-

acteristics depend also on the parameters H0 and θ.

Considering (15), we determine

c(k) =
[g

k
+ b(H0) cos

2 θ +
α

ρ
k
]1/2

, (17)

where b(H0) =
µ0H2

0χ
2(H0)

ρ(2+χ(H0))
,

C(k) = 0.5c(k)Q(k)/R(k),

where Q(k) = 1 + 2b(H0) cos
2 θ

g k + 3α
ρg k2,

R(k) = 1 + b(H0) cos
2 θ

g k + α
ρg k2.

At k = km =
√
ρg/α, θ ∈ [0, π/2] the phase velocity has

minimum

cm = c(km) =
(

2

√

αg
ρ

+ b(H0) cos
2 θ

)1/2

.

For considered ferrofluid km = 4.69 cm−1. Wave num-

ber km corresponds to wavelength λm = 2π/km = 1.34 cm.

As in case [9] of common fluid, cm = C(km) at θ ∈ [0, π/2].
As example we study effect of magnetic field with

strength H0 = 10 kA/m on phase and group velocities of

wave upon θ ∈ [0, π/2] increasing.
Fig. 3 in plane (k, c) shows passing through points

(km, c(km, 0)), (km, c(km, π/4)), (km, c(km, π/3)) the func-

tion graphs (17). From Figure we see that for any value

of c(k) > c(km) in each of cases θ = 0, π/4, π/3 there are

two allowable wave numbers.

According to terms used to describe the dispersive waves

in common fluid [9], in case of the ferrofluid the region

0 < k < km is gravitational branch, and region k > km —
capillary branch.

Fig. 4 shows graphs of function s(k) = C(k)/c(k) plotted
for θ = 0, π/4, π/3. It is evident that c(k) > C(k) in range

0 < k < km, whereas c(k) < C(k) at k > km.

In paper [4] when deriving the dispersion relation (42)
the system of coordinates was used, where axis x is directed

opposite to the vector of gravity acceleration g, and axes y ,
z are horizontal. Regarding wave which length is smaller as

compared to thickness of ferrofluid layer interfaced with air

the dispersion relation (42) after simplification is

ω2 = gk +
α

ρb
k3 +

µ0M2

ρb

kk2
y

βb(χ + 1) + k
,

where k =
√

k2
y + k2

z , βb =
(

χs +1
χ+1

k2
y + k2

z

)1/2
, χ = M

H ,

χs = dM
dH , ρb — ferrofluid density.

From here we find that

c(k) =
[g

k
+

α

ρb
k +

µ0H2χ2

ρb

cos2 θ

1 + (1− κ cos2 θ)1/2

]1/2

,

κ =
χ − χs

χ + 1
.
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Figure 3. Effect of direction of wave propagation on phase

velocity.
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So, the phase velocity of wave depends on the direction

of its propagation in relation to the magnetic field vector.

Conclusion

We discuss the problem of anisotropy of propagation

over free surface of ferrofluid of the spatial short wave

under action of homogeneous horizontal magnetic field. The

anisotropy effect manifests itself in dependence of values of

phase and group velocities on cos2 θ, where θ — angle

between the magnetic field vector and wave vector.

On plane of parameters (wave number, phase velocity)
the value of wave number km, implementing minimum of

phase velocity, separates the gravitational branch, where

C(k) < c(k), and capillary branch, where C(k) > c(k). In

this case, c(km) = C(km).
If θ = π/2, then created by wave change in time of free

surface shape does not result in magnetic force occurrence.

In this case at fixed value of the wave number the phase and

the group velocities in the ferrofluid are equal, respectively,

to the phase and the group velocities in common fluid

having similar to ferrofluid density and surface tension

coefficient.
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