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The critical behavior of the three-component Potts model on a square lattice has been studied using the Monte

Carlo method. Systems with linear dimensions L × L = N, L = 10÷ 320 are considered. Based on the theory of

finite-dimensional scaling, static critical indices are calculated: heat capacity α, susceptibility γ , magnetization β and

the critical index of the correlation radius ν . It is found that the obtained critical indices for the three-component

Potts model on a square lattice coincide quite well with the data for the rigid hexagon model, to which the

two-dimensional Potts model with the number of spin states q = 3 can be reduced.
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1. Introduction

Critical phenomena associated with second-order phase

transitions are divided into a limited number of flexibility

classes depending on the specific material properties, fun-

damental system symmetry, spatial size and number of order

parameter components [1,2]. The ideas behind the scaling

and flexibility hypothesis are fundamental for understanding

phase transitions (PT) and critical phenomena (CP) in

various systems. Theoretical and experimental investigation

methods face a number of problems in calculation of

critical parameters, determining the features, nature and

mechanisms of critical behavior for complex systems [3,4].
This and some other factors result in the fact that PT

and CP in such systems shall be preferably studied by

the Monte Carlo (MC) method, which is facilitated by

increasing computational capabilities of modern computers

and many advanced algorithms.

One of the models used to describe real physical systems

is the Potts model. It is obvious that the lattice structure

of this model is isomorphic to many systems such as:

complex magnetic, ferroelectric materials, multicomponent

alloys and liquid mixtures, as well as adsorption of noble

gases on graphite type adsorbents. The Potts model

is simple, but nontrivial in content and fully meets the

fundamental requirement that is used to study phase

transitions and multicritical phenomena [5]. Despite the

extensive theoretical investigations of spin lattice systems

described by various Potts models over the recent thirty

years, up to now, this model for q > 2 directly has not

been solved on various 2D and 3D lattices. Study of

magnetic and critical properties of these models is of high

fundamental and practical importance. On the one hand,

this is because this model has high applied significance.

Theoretical studies [6] report that the Potts model will

have the first-order PT at q > 4 and second-order PT at

q ≤ 4. These findings say nothing about the critical indices

at q ≤ 4 because this model was not solved accurately for

an arbitrary temperature. At the same time, this model with

q = 3 and q = 4 may be reduced to other models whose

behavior is well known. Therefore, the main objective of

the study is to investigate directly the critical behavior of the

Potts three-component square-lattice model using the Wolff

cluster algorithm of the MC method [7] and to compare the

obtained critical data with the existing literature data.

2. Three-component Potts model on a
square lattice and the study procedure

Let us formulate the three-component Potts model on a

square lattice.

The following aspects shall be taken into account for the

purpose of simulation:

1. In sites on the square lattice contain spins Si which

can be oriented in three symmetric directions of the

hypertetrahedron in space with dimension d = q − 1 so that

the angles between any two spin directions are equal (see
Figure 1).

2. The bond energy between two sites is equal to zero if

they are in different states (no matter which) and to |J| if the
interacting sites are in the same states (no matter which).

Taking into account these features, a microscopic Hamil-

tonian of such system can be written as [8]:

H = −1

2
J

∑

i, j

δ(Si , S j), Si = P1, P2, P3, (1)
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Figure 1. Standard three-component Potts modei on a square-

lattice.

where J is the exchange ferromagnetic (J > 0) interaction

parameter, P i is the symbol of site states with No. i ,

δ(Si , S j) =

{

1, if Si = S j ,

0, if Si 6= S j .

Systems with linear dimensions L × L = N, L = 10÷ 320

were studied. The initial configurations were set in such

a way that all spins were in the same states. To bring

the system to an equilibrium state, the relaxation time τ0
was calculated for all systems with linear dimensions L.
This nonequilibrium section was discarded. For each chain,

averaging was carried out on the Markov chain segment

with a length up to τ = 100τ0 . For the largest system,

L = 320, τ0 = 1.8 · 103 MCsteps per spin. In addition, to

improve the accuracy of calculations, averaging was carried

out over 10 different initial configurations.

Phase transitions in the three-component Potts model on

a square lattice in various dilution modes were carefully

investigated in [9]. This study [9] quite accurately defined

the critical temperature Tc using the Binder fourth-order

cumulants method. It should be noted that the PT

temperature Tc = 0.994(1) obtained for the given Potts

model agrees fairly well with an analytical value as obtained

by Potts [10] as follows

kBTc

|J| =
1

ln(1 +
√
3)

= 0.99497 . . . .

3. Simulation results

This study used the finite-size scaling theory [11] to

calculate the static critical indices (CI) of: heat capacity α,

susceptibility γ , magnetization β and critical index ν of the

correlation radius. According to this theory, the free energy

for a quite large system with PBC at temperature T close

to critical temperature Tc of an infinitely large system may

be written as [11]:

F(T, L) ∝ L−dF0(tL
1/ν ), (2)

where t = |T − Tc |/Tc , Tc = Tc(L = ∞) and ν is the static

critical correlation radius index of the infinite system

(L = ∞).
Equation (2) results in the equivalent equations for

heat capacity, susceptibility and spontaneous magnetization

corresponding to one spin.

C(T, L) ∝ Lα/νC0(tL
1/ν ), (3)

χ(T, L) ∝ Lγ/νχ0(tL
1/ν ), (4)

m(T, L) ∝ L−β/νχ0(tL
1/ν ), (5)

where α, γ , β is the static critical indices for the system

with L = ∞ associated with the hyperscaling relation

2− α = dν = 2β + γ [12,13].
In addition, a number of methods for determining the

critical correlation radius index ν was proposed using the

finite-size scaling theory [14]. In accordance with this

theory, the following relation is satisfied in the phase

transition point

Vn = L1/vgVn, (6)

where gVn -is some constant and the following expressions

may serve as Vn

Vi =
〈mi E〉
〈mi〉 − 〈E〉, (i = 1, 2), (7)

V3 =
dUL

dβ
=

1

3〈m2〉2
[

〈m4〉〈E〉 − 2
〈m4〉〈m2E〉

〈m2〉2 + 〈m4E〉
]

,

(8)
where β = 1/T , T is the temperature.

It follows from relations (4)−(5) that in a system with

L × L at T = Tc and fairly high L, susceptibility and

magnetization satisfy the following analytical expressions

χ ∼ Lγ/ν , (9)

m ∼ L−β/ν . (10)

These relations were used to determine γ and β . A similar

expression for heat capacity does not describe the practical

findings which was demonstrated in [14,15]. For approxima-

tion of the temperature dependence of heat capacity on L,
other expressions are usually used, for example [16]:

Cmax(L) = Cmax(L = ∞) − ALα/ν , (11)

where A is some coefficient.

To calculate CI α, β, γ and ν , dependences of C, m, χ and

Vn on L at T = Tc were built. Data review performed using

the nonlinear least-square method determined the values of

α/ν , β/ν , γ/ν and 1/ν . Then, the averaged values of ν at
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Critical indices

Method kBTc/J ν α γ β α + 2β + γ = 2

Theory [6,17]
5/6 1/3 13/9 1/9

2.00
0.833 0.333 1.444 0.111

Square lattice
0.994(2) 0.82(1) 0.36 1.44 0.10 2.00(our data)

Hexagonal lattice,
0.621(2) 0.84 0.33 1.44 0.11 1.99

MC method [18]

n = 1, 2 and 3 determined herein were used to determine

the indices α, β and γ .

Figures 2−5 shows typical log-log scale dependences

of susceptibility, magnetization, heat capacity and Vn for
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Figure 2. Typical dependence of susceptibility χ on linear lattice

dimensions L at T = Tc .
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Figure 3. Typical dependence of magnetization m on linear lattice

dimensions L at T = Tc .
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Figure 4. Typical dependence of heat capacity C on linear lattice

dimensions L at T = Tc .
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Figure 5. Typical dependence of Vn on linear lattice dimensions L
at T = Tc .

determining the critical correlation radius index ν on linear

lattice dimensions L for the Potts three-component square-

lattice model. It shall be emphasized that all obtained data

do not deviate from the straight line even at low L. It is

obvious that the number of various initial configurations

used or averaging and dimensions L ≥ 10 of the given
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systems make it possible to achieve the asymptotic critical

condition.

It is very important that ν was calculated directly from the

numerical experiment data under this study, while in many

other studies this index was derived from various scaling

ratios.

Critical indices determined from out studies are shown

in the table. The table shows that the measured numerical

CI values for magnetization β, susceptibility γ and critical

correlation radius index ν quite well match the theoretical

values in [6,17] based on the considerations in favor of the

fact that the Potts model with q = 3 and the rigid hexagon

model shall be applicable to the same flexibility class. Note

that CI α were calculated using expression (11). Moreover,

the table shows the CI values calculated in [18] for the Potts
model with q = 3 on hexagonal lattice.

As shown in this table, CI for the three-component Potts

model on various 2D lattices are described by one flexibility

class typical for 2D Potts model with q = 3.

4. Conclusion

This study used a single procedure to investigate critical

behavior of the three-component Potts model on a square

lattice. The main set of critical indices for the given Potts

model was determined using the finite-size scaling theory.

Analysis of the obtained CI for the three-component Potts

model on a square lattice has shown that the critical indices

for this model agree well with the data for the rigid hexagon

model [17] to which the 2D Potts model with q = 3 and

data obtained on the hexagon lattice may be reduced [18,19].
It is shown that critical behavior of the three-component

Potts model on a square lattice is described by the flexibility

class specific to the 2D Potts model with q = 3.
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