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The paper presents an experimental implementation of a technique for diagnosing the surface of a polycrystalline

copper sample during its plastic flow using an optical profilometer based on the principle of scanning white

light interferometry (SWLI) and fractal dimension (self-similarity structure) analysis. A distinctive feature of the

presented method is the deformation of the sample using a compact tensile testing machine with a mechanism

for opposite stroke traverses, which reduces any displacement of test area of the sample in observation field of

scanning white light interferometer during testing. This was provide to mine data of the same surface area during

deformation and avoid a number of experimental artifacts. From the experimental data, the values of the fractal

dimension were obtained using various modern computational methods, and possible correlations between the

experimental data obtained in this work and the data of other researchers were indicated.
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1. Introduction

A deformed solid body is a sophisticated complex

system where all variety of processes may take place as

addressed by the current material physics and nonlinear

dynamics [1–3]. In particular, for deformation of metallic

materials, main structural changes in their state are de-

scribed by defect assembly evolution that is represented by

a wide class of kinetic equations [4–8] that may be de-

rived, in particular, from thermodynamic considerations [9].
However, plastic deformation of metallic materials is a

spatially inhomogeneous and time-intermittent process due

to the discrete nature of motion of plastic deformation

carriers — dislocations [10–12]. It is the discrete nature

of dislocation processes that is the cause of local strain

and stress fluctuations resulting from dislocation density

fluctuations. Finally, the dislocation density fluctuations,

which increase in amplitude during plastic deformation,

become unstable [13,14] and this microscopic effect results

in macroscopic effect — necking in the deformed solid body

followed by its failure.

Thus, during deformation of metallic materials, we come

across emerging and developing microscopic instabilities

that ultimately result in a macroscopic effect — material

failure. This actually means that a solid body shall have

some properties that are self-similar at various large-scale or

structural levels. Mandelbrot introduced a fractal concept

in 1975 to describe such properties [15]. Unlike averaged

characteristic, fractal analysis is a versatile tool that makes

it possible to analyze the plastic deformation process at

various structural levels from a unified perspective and

associate the macroscopic properties of a material to

microscopic properties of a defect structure. Identity of

kinetic equations and their nonlinearities at various scale

levels of the system is the main reason for occurrence of

fractal systems in the deformed solid body.

At this point, there is a number of publications containing

the findings of both theoretic analysis and quantitative

estimation of the fractal dimension of defect structure

in plastic yield [16–22]. Structures inside a material

(cellular dislocation configurations, for example [17]), and
structures on the surface of a material (slip bands, for

example [19]) may serve as such. It should be noted that

modern experimental techniques associated, in particular,

with the investigation of surface texture directly during

plastic deformation make it possible to investigate not only

metallic materials, but also thin foils [23,24] that, due to

their dimensional anisotropy, can exhibit unique properties,

including self-similar ones.

Thus, structures on the surface of the deformed body

as well as dislocation structures and configurations inside

the deformed material are self-similar. During plastic

deformation of a metal sample, a strain texture is formed

on its surface as a result of strain micromechanisms taking

place during plastic yielding of the sample. A recent

comprehensive review [25] covers some experimental and

computational analyses of strain texture formation and

development patterns on free surface of metals and alloys

during their plastic deformation.

It is intuitive that quantitative properties of texture are

defined by a substructure and microstructure that evolve

during plastic deformation, i. e. fractal dimension of the
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deformed solid body surface is unambiguously interrelated

with fractal dimension of dislocation configurations inside a

solid body.

In this sense, a properly built technique for testing a

deformed solid body surface to extract fractal dimension of

the surface using modern methods of applied mathematics

is important because behavior of this property in strain

hardening can adequately reflect microstructure evolution

inside the material and, thus, indicate structural changes

until degradation and subsequent failure of metals and alloys.

Description of the material defect structure during strain

impacts and establishment of one-to-one correspondence

between fractal properties of this structure and experi-

mentally determined mechanical properties would make it

possible to forecast perspective materials during various

strain impacts using the obtained knowledge on the features

of defect assembly evolution and macroscopic conditions

of the experiment. Therefore, in terms of experimental

implementation of tis approach, this study is devoted to

the development of a surface testing technique for a solid

body deformed directly in the test zone using modern

precision tooling. In addition, fractal dimension extraction

by various modern applied mathematics methods will be

shown and possible correlations between the experimental

data obtained herein and by other researchers will be

provided.

2. Experimental and computational
techniques

A polycrystalline copper sample with a purity of 99.9%

for mechanical test has been prepared as specified in

ASTM E08-91. The sample gauge length was 10mm and

cross-section was 4× 2mm. The sample was machined

and polished to mirror finish. The prepared sample was

annealed in vacuum at 1000K, annealing time was 2 h.

After annealing, the average grain size in the polycrystalline

copper sample was about 100 . . . 200mkm.

For uniaxial deformation of the sample, Kammrath–Weiss

compact (dimensions 25× 16× 2 cm) static test machine

(Germany) was used to perform compression/tension with

force from 0 to 10 kN. It is featured by the opposite cross-

bar movement mechanism that avoids displacement of the

sample gauge length to the field of view of the microscope

or video camera during testing. And while previously the

test had been stopped at various strain levels in other surface

measurement studies, the sample was removed from the

machine grips and placed on the microscope beam table,

the proposed uniaxial deformation experiment stopped the

motion drive with preservation of the force loading on

the sample and the surface texture, formed by that time

of deformation, was read in stressed condition. The test

machine itself and the sample were in the field of view of

Zygo NewView 7100 optical profilometer that was used for

noncontact 3D measurement of the surface topography by

the scanning white light interferometry. This profilometer

has a resolution along the x and y axes of about 300 nm

and a vertical resolution along the z axis of at least 1 nm.

The test area in the x−y plane was 3700 × 3700 pixels

(1084 × 1084mkm, 1 pixel= 293 nm). Figure 1 shows the

general view of Zygo NewView 7100 optical profilometer

(Figure 1, a), Kammrath−Weiss static test machine in the

field of view of the optical profilometer (Figure 1, b),
deformed sample surface (Figure 1, c) and typical vertical

surface profile (empirical 2D model) measured using this

optical profilometer (Figure 1, d). It should be noted that

the image of the typical deformed sample surface profile

(Figure 1, d) clearly visualizes the strain texture in the form

of slip bands that have occurred as a result of dislocation

assembly evolution.

During uniaxial deformation at a uniform grip velocity of

300mkm/min, sample tension was stopped at engineering

stresses of 0; 20; 40; 80; 160; 195 and 200MPa, and the

surface texture formed by that time of deformation was read.

The surface texture readings represented a 3700 × 3700

square matrix filled with height values of the z axis

in mkm. The preliminary data review and processing

included interpolation of gaps, linear trend removal and

outlier filtering that was performed by the Gaussian process

regression method [26]. The essence of the method was

in approximation of the observed heights by the Gaussian

process using the Bayesian regression [26]. Then, the

real heights and approximated heights were compared at

each point on the coordinate grid. At points where the

absolute difference between the real and approximated

heights exceeded the pre-defined threshold, the real values

were replaced with the simulated ones. It should be

noted that the surface profiles measured at the beginning of

loading (at lower mechanical stresses) have more artefacts in

the form of sharp outliers that are successfully removed by

filtering. At the same time, the surface profiles obtained at

higher mechanical stresses are almost free of these artefacts.

Figure 2 shows an example of a linear surface transect

profile before and after filtering.

The preliminary data review and processing provided the

vertical profiles of the test surface at various engineering

mechanical stresses. Application of the techniques described

above is illustrated in Figure 3 by colored vertical profiles

of the test surface at engineering mechanical stresses of 80;

160; 195 and 200MPa. Figure 3 shows a surface fragment

of 1084 × 1084mkm. Colored vertical profiles of the test

surface at engineering stresses of 0; 20 and 40MPa are

almost uniform in color range (yellow) which generally

reflects the absence of plastic yielding related to elastic

deformation below the yield strength that is equal to 55MPa

for this sample.

Figure 3 illustrates the sequence of vertical surface profile

variation during plastic yielding and confirms that the

sample gauge length is not displaced into the field of view

of the optical profilometer during testing.

Modern computational methods are used to obtain the

necessary properties of surfaces (including fractal ones)
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Figure 1. General view of Zygo NewView 7100 optical profilometer (a), Kammrath−Weiss static test machine in the field of view of

the optical profilometer (b), deformed sample surface (c) and typical vertical surface profile (empirical 2D model) measured using this

optical profilometer (d).
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Figure 2. Linear surface transect profile before (gray curve) and

after (red curve) filtering.

through the analysis of numerical series and Two-/three-

dimensional sets (profiles). Despite its popularity, the

box counting method — the best known fractal dimension

estimation method is currently inferior to new methods both

in the computation speed and accuracy. In particular, [27]

shows exhaustive comparison of fractal dimension estima-

tion methods in terms of the modern statistical analysis.

By assuming that a Gaussian random field (the Gaussian

process generalization to two or more dimensions) is a suit-

able model for the test surface profiles, several methods that

used exactly the Gaussian field properties were developed

to estimate the fractal dimension of surfaces. It should

Physics of the Solid State, 2024, Vol. 66, No. 5
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Figure 3. Colored vertical profiles of the test surface at engineering mechanical stresses of 80 (a); 160 (b); 195 (c) and 200 (d)MPa.

Surface size is 3700× 3700 pixels (1084× 1084mkm, 1 pixel= 293 nm).

be noted that these methods are used most frequently to

analyze all kinds of topographic data in geophysics [28],
but are often encountered in various areas of physics [29],
ecology [30] and other sciences.

This study used three fractal dimension evaluation me-

thods. The first two methods, transect variation estimation

and transect increment estimation, were limited to the one-

dimensional Gaussian field analysis. Fractal dimension in

this case was calculated for all transects (profiles) by two-

dimensional height matrix rows and columns. Median of

the calculated fractal dimension distribution increased by

one gave the estimated fractal dimension of the surface

itself. The transect variation estimation for simultaneous

calculation of required parameters used two Gaussian

random field points, while the transect increment estima-

tion method used three points (difference scheme equivalent

in the Gunge−Kutta method). The third method — square

increment estimation was limited to the two-dimensional

Gaussian field and used four random field points. The

necessary mathematical procedures for these methods are

adequately addressed in [31] and briefly described in the

appendix hereto.

All three methods were implemented using the sli-

ding window scheme: fractal dimension was calculated

by averaging several values obtained in the window

2000× 2000 pixels in size (1 pixel= 293 nm) sliding at

intervals of 500 pixels throughout the surface. With initial

surface condition (0MPa) and achieved maximum stress

(200MPa) for the statistical data set, several fragments with

different surface texture of the deformed portion of the

sample were read. In this case, averaging was performed

on all surface fragments for this stress value.

3. Experimental findings and discussion

As mentioned above, during uniaxial deformation at

a uniform grip velocity, sample tension was stopped at

engineering mechanical stresses of 20; 40; 80; 160; 195

and 200MPa, and the surface texture formed by that time

of deformation was read. After mathematical processing

of the textures, fractal dimension of the sample surface

was estimated at the specified values of the achieved

engineering mechanical stress by three methods: transect

Physics of the Solid State, 2024, Vol. 66, No. 5
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Figure 4. Loading curve of the polycrystalline copper sample

in the engineering coordinates
”
relative strain–mechanical stress“

and fractal dimensions calculated by the three methods addressed

herein.

variation estimation, transect increment estimation and

square increment estimation.

Figure 4 shows the loading curve of the polycrystalline

copper sample in the engineering coordinates
”
relative

strain — mechanical stress“, and fractal dimensions calcu-

lated by the three methods at the relative strains correspond-

ing to the chosen mechanical stresses.

Initial condition of unstressed sample surface (0MPa)
shall correspond to a mirror flat surface and its fractal

dimension shall be equal to the Euclidean dimension, i. e.

2, but the values calculated by the three methods are within

2.15 . . . 2.25. Displacement of the fractal dimension from

the Euclidean dimension by 0.15 . . . 0.25 might be caused

by a group of factors: surface cleanliness (the sample surface

is a non-ideal flat optical reflector in the initial condition)
and by optical and computational noise of hardware and

processing algorithms.

At the initial loading of the sample up to the yield

strength (engineering stresses of 20 and 40MPa), the fractal
dimension grows to 2.3 . . . 2.4, which is shown in the Detail

in Figure 4. We believe that fractal properties of the surface

vary due to the defect (dislocation) assembly evolution

that, basically, shall be absent below the yield strength.

However, the observed increase in the fractal dimension

may be caused by activation of easy glide in separate

crystallites (grains) located on the surface and favorably

oriented to activation of the easy dislocation glide systems

at low engineering stresses. Thus, the surface texture to

be formed may be described as occurrence of rare, but

long slip lines with a low height (several Burgers vector

units) in separate grains, which is shown in Figure 1, d.

At the initial sample loading stage (Detail in Figure 4), there
is some discrepancy in the fractal dimensions estimated

by the chosen methods. When the engineering strain is

about 10−3 (engineering stress is 40MPa), the transect

variation estimation shows the fractal dimension lower than

the values calculated by other two methods. We suppose

that this may be associated with the number of generalized

difference variation arguments for the random field values

(see the Appendix). The first method (transect variation

estimation) uses two random field values in iteration, the

second method (transect increment estimation) uses three

values and the third method (square increment estimation)
uses four values. Increase in the random field values for

iteration increases the probability that a slip line fragment

will get into the calculation iteration and, therefore, that the

obtained fractal dimension will increase.

With further increase in the engineering stress (80; 160;
195MPa), classical stress-strain behavior is observed and

corresponds to strain hardening followed by the increasing

fractal dimension trend up to 2.65 (Figure 4). Again, it

should be noted that there is some discrepancy in absolute

estimated fractal dimension values by the three methods

at engineering stresses of 80; 160 and 195MPa, but the

general smooth growth trend of the fractal dimensions is

not disturbed. The difference in absolute values is probably

caused by the same ratio of the number of generalized

difference variation arguments for the random field values

and by the strain texture features. With increase in sample

stress and total strain, groups of slip lines, elastic-plastic

strain zones at grain boundaries (Figure 3, a), signs of cross
slip (Figure 3, b) and considerable increase in the surface

height range (Figure 3, c) may be observed on the surface

and demonstrate that high plastic deformation has been

accumulated and some grain shapes have been distorted.

The final loading stage was the achieved engineering

stress of 200MPa that appeared to be quite close to the

ultimate strength of 215MPa. However, strain localization

with necking was not observed at such stress and the

material retained the acceptable stress-induced plastic yield

stability for qualitative recording of the strain texture.

Figure 3, d shows the achieved properties of the strain

texture as a result of plastic yield of the material such

as drastic change in some grain boundaries, grain surface

filling with a dense grid of slip lines, significant height

differences that form the texture. It should be noted that

all three methods show very close fractal dimensions at this

experiment point.

Since the measurements, calculations or simulation of

fractal dimension on the polycrystalline copper surface

have been performed before by other authors, then it is

not unreasonable to compare the values achieved herein

with the values of other authors within this guidance

paper. Fractal dimensions vs. relative shear stress measured

in 10−3G (G — shear modulus) will be shown. Actually,

according to the Taylor relation (τ = αGb
√
ρ, where τ is

the true shear stress, α ∼ 0.5 is the geometrical factor that

is weakly dependent on the temperature, b is the Burgers

vector, ρ is the density of dislocations), such choice of

an argument makes it dependent only on the density of

Physics of the Solid State, 2024, Vol. 66, No. 5
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Figure 5. Results of fractal dimension estimation by three meth-

ods addressed herein and results obtained by other authors (the
legend lists the fractal dimension calculation method, experimental

procedure and reference to the corresponding studies). The range

of stresses corresponding to the yield strength of the polycrystalline

copper are shown in yellow.

dislocations, i. e. its evolution is supposed to govern the

fractal property variation of the surface. Therefore, all

analyzed experimental data may be unified in terms of

dependence only on the governing property — density of

dislocations, and, in future, materials with different strain-

stress properties may compared on a single diagram.

Figure 5 shows the results of fractal dimension estimation

by the three methods described by us and the results

achieved by other authors. They are addressed in detail

below.

In [16], a 2D dislocation model of a phase field was used

to simulate the dislocation structure in a single slip plane

(phase field simulation). In this model, the dislocation

assembly was represented by an integer scalar phase field

whose values at each point prescribed the shear in the

Burgers vector units. Scalar field jumps defined the dis-

location line arrangement and random obstacles simulated

forest dislocations. The scalar field values at each point of

time were calculated in the pre-defined initial conditions

using the real parameters of the polycrystalline copper

assuming the work minimization principle. Frequency

distribution of the constant scalar field areas (shear within

such areas remained unchanged from point to point) was

approximated by the inverse exponential function whose

exponent increased by one provided the estimated fractal

dimension.

In [17,18], uniaxial tension tests were carried out along

axis [100] of the pure copper single crystals. Images of the

cellular dislocation substructure made by the transmission

electron microscopy were digitalized and binarized. Fractal

dimension was calculated by the box counting method. The

method was used to plot the dependence of the number

of boxes containing at least one dislocation grid point on

the box side length. The dependence was approximated

by the inverse power law and the exponent plus one gave

the estimated fractal dimension. Authors of [17,18] also

described another fractal dimension calculation method that

was based on the count of dislocation cells whose size

exceeded the set out threshold (gap method). The cell size

measurement procedure was not defined. Dependences of

the number cells on the threshold were approximated by the

inverse power law and the exponent increased by one gave

the estimated fractal dimension.

In [19], uniaxial tension tests were carried out on pure

(99.98%) polycrystalline copper. Surface measurements

were made at different deformation values using the scan-

ning white light interferometer and the macroscopic surface

curvature effects were neutralized. Fractal dimension was

calculated by the box counting method that was used to plot

a dependence of the number of cubes containing at least one

surface point on the cube side length. The dependence was

approximated by the inverse power law and the exponent

gave the estimated fractal dimension. The resulting fractal

dimension at each deformation value was calculated by

averaging several measurements made in different areas in

the center of the sample.

In [20], uniaxial tension tests were carried out on pure

(99.99%) polycrystalline copper. Surface measurements

at various deformation levels were carried out using the

atomic-force microscope and white light interferometer.

Two to five linear profiles on the tension axis were

taken from each surface and two to three profiles in the

perpendicular direction were taken. Each profile was used

to calculate the height difference with the height spacing

that was assumed as the argument. The dependence

was approximated by the power law with an exponent

unambiguously related to the fractal dimension by a linear

transformation (Hurst exponent method). Fractal dimension

for each deformation value was calculated by averaging of

several profiles separately for the atomic-force microscope

and white light interferometer.

All shown results with possible errors exhibit a rising

trend within the test unified shear stress range. Moreover,

two groups of results may be distinguished. The first group

([19,20]) exhibit the fractal dimension growth in the range

of about 2.0 . . . 2.2 and the second group ([16–18] and

herein) exhibit the fractal dimension growth above the yield

strength in the range of about 2.3 . . . 2.8.

At this point, it is still a debated question whether such

”
offset“ of one group of results relative the other group is

caused by the features of the computational methods or by

sample preparation that changes the fractal dimension of

the initially unloaded sample upwards from the Euclidean

Physics of the Solid State, 2024, Vol. 66, No. 5
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dimension. However, the fact that the fractal dimension

and stress (and, thus, the density of dislocation assembly)
are in one-to-one correspondence suggests that the fractal

dimension unambiguously if not fully reflects the dislocation

assembly evolution during the plastic yield process.

It should be noted that the equivalent fractal dimen-

sion behavior was observed on the amorphous glass sur-

faces [32]. This is probably due to the shear band vertices

that represent dislocation-type defects [33] which means that

their behavior may perfectly correlate with the dislocation

assembly behavior in metallic materials. This fact is rather

controversial, however, it is interesting in terms of common

flow of deformation processes in different condensed media

and detection of common properties (in particular, fractal

dimension of the defect assembly) to allow unambiguous

description of such processes.

4. Conclusion

The study demonstrates an experimental surface test tech-

nique for the polycrystalline copper in uniaxial deformation

that was performed using the compact test machine with

the opposite cross-bar movement mechanism directly in the

field of recording of the white light interferometer. The

data obtained experimentally on the same surface area were

analyzed by modern computational methods and fractal

dimensions were calculated at different applied stresses.

The fractal dimension demonstrated the rising trend in the

stable plastic yield area from the yield strength almost to

its instability point. Comparison of the results obtained

herein with the results of other authors did not show any

obvious discrepancies in the fractal dimension behavior that

was discussed herein, but rather identified the features and

patterns of the utilized computational methods. Though

the modern computational methods used by the research

community do not change the general picture of the rising

fractal dimension trend during plastic yielding of the test

sample, they can result in the
”
datum“ drift or demonstrate

sensitivity to certain plastic yield stages. Nevertheless, the

obtained one-to-one correspondences between the fractal

dimension and stress that is associated with the density of

dislocations through the Taylor relation demonstrate the role

of the fractal dimension as an unambiguous indicator of the

dislocation assembly state in plastic yielding.
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Appendix (Supplementary materials)

As mentioned above, this study used three fractal

dimension evaluation methods. All these methods are

based on the analysis of the Gaussian fields with different

sizes. Let’s introduce some mathematical notations. Given

a d-dimensional random field Xt written as

{Xt : t ∈ Rd}. (1)

Here, t are coordinates in the d-dimensional space.

In practice, the coordinates are only set in the regular grid

vertices. In our case, coordinates of the square grid where

the 2D field values are set are defined as normalized to the

number of points on the square grid side

t =

(

t1
t2

)

=
1

n

(

i1
i2

)

, where i1, i2 = 1, 2, . . . , n, (2)

where i1, i2 are grid indices, n is the number of points on

the square grid side.

Further, a variogram notion is introduced. This means

a random field value difference variation in two point

as function of the point spacing. For this purpose, the

variogram describes the degree of data difference depending

on the data spacing. The generalized variogram of degree p
(p > 0) is written as

γp(t) =
1

2
E

[

|Xu − Xu+t|p
]

, (3)

where E is the expected value and the difference of

random field values in two points is taken by the absolute

value. Assuming that Xt in the Gaussian random field, the

variogram at t → 0 satisfies the expression

γp(t) ∼ ‖ct‖ α
2

p, (4)

where α ∈ (0, 2], c is some constant and double square

brackets denote the Euclidean norm. The fractal dimension

is related to α by the following expression:

D = d + 1− α

2
(5)

and, accordingly, the fractal dimension estimation is limited

to calculation of α.

Two fractal dimension estimation methods of the surface

that are limited to a one-dimensional case: the transect

variation estimation and transect increment estimation, use

the two-dimensional height matrix rows and columns. The

fractal dimension is calculated in this case for all transects

(profiles) that are defined as a one-dimensional random

field
{

Xt : t = i
n

}

, where i = 1, 2, . . . , n. Median of the

calculated fractal dimension distribution plus one gives the

estimated fractal dimension of the surface itself.
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The transect estimation of the fractal dimension is defined

by the expression:

D̂V,p = 2− 1

p

{

L
∑

l=1

(

s l − 〈s〉
)

logV

(

l
n

)

}

×
{

L
∑

l=1

(

s l − 〈s〉
)2

}−1

. (6)

Here, L ≥ 2 (for calculations, L = 2 is generally chosen),

s l = log l
n and 〈s〉 = 1

L

∑L
l=1 s l . The actual fractal dimen-

sion is defined as the slope of linear dependence of logV
(

l
n

)

on log l
n .

The transect variation estimation uses the generalized

first-order difference variation as V (l/n) :

V̂ (1)
p

(

l
n

)

=
1

2(n − l)

n
∑

i=1

|Xi/n − X(i−l)/n|p. (7)

The transect increment estimation uses the generalized

second-order difference variation as V (l/n) :

V̂ (2)
p

(

l
n

)

=
1

2(n − 2l)

n−l
∑

i=1

|X(i+l)/n − 2Xi/n + X(i−l)/n|p.

(8)
The third fractal dimension estimation method is related

to a 2D random field. This is the square increment

estimation that is based on the generalized square increment

variation V̂SI,p
(

k
n

)

written as

V̂SI,p

(

k
n

)

=
1

2N(k)

∑

S(k)

|Xi1/n,i2/n − Xi1/n, j2/n

− X j1/n,i2/n + X j1/n, j2/n|p. (9)

Here, summation is performed within the following set

S(k) =

{

(i1, i2, j1, j2) ∈ {0, 1, . . . , n}4 :

∥

∥

∥

∥

(

i1
i2

)

−
(

j1
j2

)∥

∥

∥

∥

= k

}

, (10)

where k is the distance and N(k) is the cardinal number

of S(k).
The square increment estimation of fractal dimension is

written in a similar way as (6):

D̂ = 2− 1

p

{

∑

k∈K

(

sk − 〈s〉
)

log V̂SI,p

(

k
n

)}

×
{

∑

k∈K

(

sk − 〈s〉
)2

}−1

. (11)

Here, sk = log k
n . The actual fractal dimension is defined

as the slope of linear dependence of log V̂SI,p
(

k
n

)

on log k
n ,

where K = {
√
2, 2

√
2}.
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