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Temperature Green’s function of the dielectric constant of a ferroelectric
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The application of the Green’s temperature function method using the probabilistic Boltzmann factor to describe

the temperature dependence of the dielectric constant of a ferroelectric is presented. Using the example of

a ferroelectric solid solution of lead zirconate titanate, the Green’s temperature function of the temperature

dependence of the dielectric constant is calculated taking into account the presence of activation processes caused

by the interaction of domain and defect structures of the ferroelectric. Using the method of activation-relaxation

of dielectric constant, the activation energies of these processes were determined: disruption of domain walls from

structural defects (oxygen vacancies); migration of defects (oxygen vacancies) and decay of the domain structure;

dielectric response of a domainless paraelectric.
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1. Introduction

Examination of the response of functional materials to

the variation of ambient conditions is a critical objective of

fundamental and applied physics. Among a wide variety

of approaches to mathematical description of time and

amplitude dependences of properties of these materials,

differential equations are most widely used. One of the

methods of their solution is Green’s function method that

has several modifications: single-time, two-time, causal and

temperature.

The study uses the analysis of experimental temperature

dependence of ferroelectric permittivity ε(T ) measured

with slow temperature variation to determine temperature

Green’s function G of permittivity. Possibility to use

Green’s functions in this case is based on the appli-

cability of statistical mechanics methods to ferroelectric

phase transitions [1,2], and on previous studies of general

properties of Green’s functions. Thus, as early as in 1960

Zubarev pointed out in [3] that two-time Green’s functions

(retarded and advanced) are be applicable to the study

of processes with a minor deviation from the state of

statistical equilibrium to determine temperature-dependent

energy of elementary excitations of systems with interaction

and low attenuation. Later, Bonch-Bruevich and Tyablikov

in [4] correlated the thermodynamic potential of a statistical

system with the simplest one-boson Green’s function that

allows calculation of the thermodynamic system response

to external exposures. Following research has shown

consistency of the Green’s function method for description

of ferroelectric phase transitions using order-disorder type

ferroelectric materials, KH2PO4, with two-time fermionic

Green’s function [5] and PbHPO4 [6]. Another application

of the Green’s function method is the simulation of dielec-

tric response of thin-film variable-composition ferroelectric

(Ba,Sr)TiO3 [7] and transition of multilayer ferroelectric thin

film from the ferroelectric to paraelectric state [8], and the

calculation of solid solution permittivity, including multiple

phonon scattering on clusters consisting of impurities [9].
For the second-order ferroelectric phase transition described

by the fluctuation approach formalism in a crystal with

strong electron-phonon interaction, the Matsubara quantum

Green’s functions in a temperature dependence of thermo-

dynamic potential near the phase transition temperature

made it possible to consider the effect of thermal and

quantum fluctuations on the phase transition [10]. In

addition, the use of atomistic Green’s function method

in solid-state physics enables structural features of a test

sample to be considered, in particular, grain boundaries in

polycrystals and their influence on phonon distribution and

heat transfer mechanisms through grain boundaries [11].
This was the fundamental nature of these issues that was

behind the selection of this study.

2. Experiment procedure

For the experiment, a ceramic sample 10mm in diameter

and 1mm in thickness (Pb0.95Sr0.05)(Zr0.53Ti0.47)O3 —
ferroelectric with perovskite crystal structure was pre-

pared. This is a solid solution with tetragonal

and rhombohedral symmetry phases and ferroelectric-

paraelectric phase transition at a Curie temperature

of TC = 550K. Phase composition was measured using

DRON-3 (Cu-Kα) X-ray diffractometer. Such composition

was selected due to high values of electrophysical proper-

ties [12], wide range of engineering applications [13], high
processibility of synthesis and sintering of ceramic sam-

ples [14], and by low Curie temperature due to the presence

of Sr2+ that substitute Pb2+ in sites A of A2+B4+O2−
3
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perovskite compared with undoped Pb(Zr0.53Ti0.47)O3

(TC = 650K).
Temperature dependence of permittivity of the sample

was obtained at 1 kHz and electric field strength 1V/mm

on a setup connected to a personal computer. The setup

consisted of a heating cell, RFT Trennstelltrafo LTS 002 au-

tomatic transformer, E7-28 broadband immitance analyzer,

TPM251 programmable PID temperature gauge and control.

3. Findings and discussion

To find the temperature Green’s function of ferroelectric

permittivity, temperature dependence of ferroelectric per-

mittivity (Pb0.95Sr0.05)(Zr0.53Ti0.47)O3 was measured (Figu-
re 1).
Mathematical analysis of description by the first-order

linear differential equation was performed.

The Green’s function method is applicable to a physical

system in transit to a new state of equilibrium under external

exposure, if this process can be described by a differential

equation.
dξ
dq

+ γ · ξ = ϕ(q), (1)

where ξ(q) is the parameter characterizing the system;

q is the amplitude external exposure of the system; γ is

the parameter characterizing the system capability to the

state of equilibrium; ϕ(q) is the external exposure that

disturbs equilibrium.

When permittivity is assumed as a parameter charac-

terizing a ferroelectric material and temperature varia-

tion is assumed as external exposure, then equation (1)
will be written as

dε
dT

+ A · ε = B(T ), (2)

where ε is the permittivity; T is the temperature; A is the

coefficient (negative with increase of ε as T grows and

positive with decrease of ε as T grows); B(T ) is function

of temperature exposure of the sample. Such representation

is justified by an experimental fact that ferroelectric permit-

tivity varies nonlinearly when the ferroelectric temperature

varies (Figure 1). As shown in [15] using ferroelectric

(Pb0.95Sr0.05)(ZrxTi1−x)O3 (x = 0.45, 0.51, 0.60), the tem-

perature dependence of permittivity may be divided into

segments or which equation specific to thermo-activation

processes is valid

εi (T ) = a i · exp

(

±Ui

kT

)

, (3)

where a i is the coefficient equal to relative permittivity as-

sociated with physical process in the i-th segment when the

temperature tends to a limit; Ui is the permittivity activation

energy due to a physical process in the i-th segment of

ε(T ),with preceding
”
±“ that considers permittivity growth

or reduction process as the temperature grows.
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Figure 1. Temperature dependence of permittivity of ferroelectric

(Pb0.95Sr0.05)(Zr0.53Ti0.47)O3 on the Curie temperature TC .

On the basis that equation (3) may be reduced to

equation
dε
dT

= −
U

kT 2
· ε, (4)

and equation (2) is written as:

dε
dT

=

(

B(T )

ε
− A

)

· ε, (5)

an expression for the temperature exposure function B(T )
introduced by us for the Green’s function method applica-

bility may be derived

B(T ) = A +
εU
kT 2

. (6)

However, in future calculations, B(T ) is an auxiliary

function that does not need to be defined.

The required activation energies and correspond-

ing temperature intervals of the given ferroelectric

(Pb0.95Sr0.05)(Zr0.53Ti0.47)O3 were determined by the per-

mittivity activation/relaxation method described in [16]
according to the temperature dependence of permittivity

εi(T ) in a separate i-th segment of ε(T ):

εi(T ) = a0 exp

(

(

−
Ui

kT

)

·

(

1−

(

kT
U0

))

)

, (7)

where Ui is the activation energy in the i-th segment;

a0 and U0 are the experimental temperature dependence

of permittivity of a particular sample; k is the Boltzmann

constant; T is the temperature.

Therefore, four thermo-activation processes described by

equation (3) with specific parameters are addressed and the

corresponding activation energies were obtained: 0.08, 0.33,

1.68, 0.46 eV (Figure 2).
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Coefficient a i and activation energy Ui from equation (3) for

(Pb0.95Sr0.05)(Zr0.53Ti0.47)O3, and R-squared value R2 of ε(T ) by

equation (1) in segments 1−4 (Figure 2)

i a i Ui , eV R2

1 1.43 · 104 0.08 0.9406

2 8.34 · 106 0.33 0.9749

3 4.29 · 1019 1.68 0.9951

4 9.31 · 10−1 0.46 0.9909

The obtained approximating dependences are close to the

experimental points, which is proved by the fact that R2 is

close to 1 (Table).
The first three processes take place below the Curie

temperature (in the ferroelectric state of the sample) and the

fourth process takes place above the Curie temperature

(in the paraelectric state of the sample). In view if this, the

question now arises of whether the representation described

herein agrees with the Curie−Weiss law for dielectric

susceptibility above the Curie temperature

χ(T ) =
C

(T − T0)
, (8)

that, considering permittivity ε and dielectric susceptibility χ

(ε = χ + 1), may be written as

ε(T ) = 1 +
C

(T − T0)
, (9)

where C is the Curie−Weiss constant, K; T is sample

temperature, K; T0 is the Curie−Weiss temperature (close
to the Curie temperature TC), K.
To reduce equation (3) (for T > TC) to the Curie−Weiss

law, it is necessary to expand the exponential function in

the Taylor’s series limited by the first two terms

ε(T ) = 1 + ln(a) +
U
kT

, (10)

and replace the variables by equating equations (9)
and (10). Thus, an expression for the Curie−Weiss

constant C may be derived in the paraelectric region with

one activation process provided that C is independent

on temperature

C =
U − kT0 ln(a)

k
. (11)

To implement this condition, the following equation shall

be met
T
T0

ln(a) =
U
kT

, (12)

that is possible in the paraelectric phase at T > T0

and U > kT .
Calculation of the Curie−Weiss constant C using equa-

tion (11) reflects the dependence of this parameter of the
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Figure 2. Comparison of experimental temperature depen-

dence of ferroelectric permittivity (Pb0.95Sr0.05)(Zr0.53Ti0.47)O3

with model dependences derived from equation (8) with activation

energies U : 1 — 0.08 eV; 2 — 0.33 eV; 3 — 1.68 eV; 4 — 0.46 eV.

ferroelectric material on its internal structure: activation en-

ergy spectrum of dipole structural elements (U), dielectric
properties (ln(a)), ferroelectric phase transition (T0). This

may explain that the Curie−Weiss constant C calculated

from experimental data may have several various values

for the same ferroelectric material. Thus, the temperature

dependence of permittivity written as (3) does not con-

tradict the Curie−Weiss law in the paraelectric region and

supplements it in the ferroelectric region (below the Curie

temperature).

For each of the four activation processes addressed herein,

physical processes that cause permittivity variation with

temperature growth may be provided [15]. These processes

are associated with the presence and interaction of domain

and defect structures in the ferroelectric material. Thus,

the first process corresponds to initial vibrations of domain

walls; the second process corresponds to domain wall

breakdown from the structure defects (oxygen vacancies);
the third process corresponds to defect migration (oxygen
vacancies) and domain structure disintegration; the fourth

process corresponds to dielectric response of domain-free

paraelectric material. The domain structure disintegra-

tion process as defined before in [17,18] for ferroelectric

(Pb0.95Sr0.05)(ZrxTi1−x)O3 (x = 0.46, 0.48, 0.53, 0.58) was

in that heating of the sample at the critical temperature Td

below the Curie temperature TC by 10−30K resulted in

variation of the shape of diffraction lines corresponding to

the polarization direction in the perovskite lattice cell that

was maintained even in case of sample ageing to room tem-

perature. Thus, redistribution took place in the intensities of

doublet line (200) for the tetragonal symmetry samples and

of doublet line (220) for rhombohedral symmetry samples.
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Permittivity of the ferroelectric material is due to the

presence of several subsystem components (electronic,ionic,
dipolar, domain) and temperature dependence of permittiv-

ity in the simplest case is a sum of reactions of individual

subsystems on temperature variation. This results in the

presence of permittivity activation energy spectrum [15],
that is exhibited as a ferroelectric response to temperature

variation. The state of each of the subsystems is not equilib-

rium, but rather depends on the temperature, therefore the

temperature activation energy of this subsystem Ui or the

corresponding temperature Ti may be chosen as a parameter

for each of the i-th subsystem.

According to [19], solution of equation (2) is written as a

convolution with Green’s function G:

ε(T ) =

∫

G(T, Ti)B(T )dT, (13)

where G(T, Ti) is Green’s function of equation (13) that

defines the dielectric response of the ferroelectric material

to the temperature variation at T which took place at Ti .

Then, considering the dependence of Green’s function on T ,
Ti and T−Ti , G shall satisfy the following equation

dG
dT

+ A · G = δ(T − Ti), (14)

here, δ(T−Ti) is the delta Dirac function. Since at

T < Ti G = 0, in point T = Ti it has a single jump G = 1,

and at T > Ti equation (14) is reduced to homogeneous

∂T G = −AG with initial condition G = 1 at T = Ti , then so-

lution of equation (3) may be explicitly found as

G(T, Ti) = 2(T − Ti) · exp

[

−

T
∫

Ti

A(τ )dτ

]

, (15)

where 2(T−Ti) is the Heaviside function equal to zero at

T < Ti and equal to 1 at T > Ti .

Considering the case of one subsystem (electronic, ionic
or domain) that undergoes temperature activation and has a

constant temperature coefficient A, we obtain an expression

for the temperature Green’s function:

G(T, Ti) = 2(T − Ti) · exp(−A · T ). (16)

For the following analysis, physics of the addressed

temperature process shall be considered. In particular,

that the transition between the ferroelectric and paraelectric

states of the ferroelectric material is the phase transition at

which the perovskite lattice symmetry ABO3 changes from

the tetragonal (or rhombohedral) to cubic which is followed

by displacement of A, B,O ions to new positions.

As Khon pointed out in [20], lattice behavior during

phase transformations in solid bodies has two atomic

displacement mechanisms: athermal and thermally activated.

For the thermally activated mechanism addressed in the

dielectric response model of the ferroelectric material,

atomic displacements between the adjacent potential energy
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Figure 3. Temperature dependence of Green’s function G of per-

mittivity of ferroelectric (Pb0.95Sr0.05)(Zr0.53Ti0.47)O3, calculated

by equation (6) in temperature ranges 1−4 with corresponding

activation energies U = 0.08, 0.33, 1.68 and 0.46 eV.

surfaces will be caused by thermal fluctuations. This results

in the known temperature dependence of probability P of

the ion transitions between potential energy surfaces with

the transition activation energy 1U :

P ∝ exp

(

−
1U
kT

)

. (17)

Then, using the statistical approach described by Livshits

and Pitaevky in [21] that is valid for thermo-activation

processes and replacing the exponential factor by the

Boltzmann constant, we get

G(T, Ti) = 2(T − Ti) · exp

(

−
Ui

kT

)

, (18)

where Ui are the energies of activation of the process

flowing at. T > Ti .

It shall be noted that, like in our study, the Green’s

function method has been already used previously for

simulation the dielectric response of ferroelectric mate-

rial [22], and the Boltzmann probability factor was used

to describe temperature and frequency dependence of

dielectric susceptibility [23]. However, an explicit form of

the temperature Green’s function for a ferroelectric material,

being a specific functional material, has not been defined

before.

The calculated temperature Green’s function for

permittivity determined from the temperature de-

pendence of permittivity using ceramic ferroelectric

(Pb0.95Sr0.05)(Zr0.53Ti0.47)O3 are shown in Figure 3.

As shown in Figure 3, in points whose temperatures

correspond to the change in physical mechanism of per-

mittivity activation process (1 → 2, 2 → 3, 3 → 4), Green’s
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function is broken. This occurs because the temperature

distribution of activation energies is discrete herein. In

case of continuous temperature distribution of the dielec-

tric response activation energies, the temperature Green’s

function will presumably have another form. For processes

in the ferroelectric phase, an attempt to find other physical

mechanisms with other activation energies may be made

to remove these break points because no lattice symmetry

variation takes place here (rhombohedral or tetragonal

for our samples). In the phase transition point, lattice

symmetry changes to cubic and other physical mechanisms

(dielectric response of a domain-free crystal) are responsible
for thermo-activation processes. The model proposed herein

addresses only the processes of some proximity on both

sides of this point, rather than the direct thermo-activation

mechanism of the phase transition point.

4. Conclusion

The study has established that introduction of Green’s

function into the temperature dependence of permittivity

made it possible to describe this dependence by first-

order differential equation at temperatures both below and

above the ferroelectric phase transition temperature. Thus,

an explicit form of the temperature Green’s function for

permittivity of the ferroelectric material was defined.

Statistical approach using the Boltzmann probabil-

ity factor applied to the mathematical description of

temperature dependence of permittivity of ferroelectric

(Pb0.95Sr0.05)(Zr0.53Ti0.47)O3 solid solution in the approx-

imation of discrete temperature distribution of permittivity

activation energies allowed the temperature Green’s function

of permittivity to be calculated and the temperature depen-

dence to be plotted. The required permittivity temperature

activation energies caused by the interaction between the

domain and defect structures of the ferroelectric material

were calculated by the permittivity activation/relaxation

method.

Thus, the temperature Green’s function method used for

the permittivity of the ferroelectric material considering

the experimental activation energies of its domain and

defect structures gave an expression for the temperature

dependence of permittivity in the form of the integral of

convolution with the function of temperature exposure of

the sample. The Green’s function method may be used for

the analysis and description of temperature dependences of

permittivity of ferroelectric materials measured at various

frequencies and amplitudes of an external electric field

and in the presence of a shifting constant electric field.

However, it is necessary to consider potential shift of phase

transition temperature as well as variation of the activation

energy spectrum of the domain and defect structures of

ferroelectric materials.
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