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Hall effect and quantum oscillations of magnetoresistivity

in the topological insulator Bi2Se3.

The role of bulk and surface carriers
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At temperatures of 5 and 10K and in magnetic fields up to 9 T, the field dependences of the magnetoresistivity

and Hall resistivity of a topological insulator Bi2Se3 single crystal were measured. It was shown, that the Hall effect

is due to bulk carriers, while the Shubnikov−de Haas oscillations are associated with two-dimensional carriers.
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1. Introduction

Topological insulators are assigned to a new class of

quantum materials whose production and comprehensive

study is of high fundamental and applied interest. Electronic

structure of such materials is quite unusual: the inside of a

topological insulator is a semiconductor, while its surface is

a two-dimensional metal. Such metallic surface states are

spin-polarized and protected against scattering. Topological

insulators are very promising for thermoelectronic applica-

tions [1–4], spintronic devices and quantum computers [5–7]
as well as in micro- and nanoelectronics [8,9].

Bi2Se3 is classified a topological insulator. On the

one hand, its electronic structure is well studied both

experimentally and theoretically [10–12]. On the other

hand, the existing literature on electronic properties of

bismuth selenide not always accurately agree and correlate

together: in particular, this is applicable to such properties

as current carrier concentration and mobility [13–17]. This

may be associated both with different quality of the given

crystals and the difference in methods that are used to get

information on particular electronic parameters.

This study reports the results of experimental exam-

inations of the Hall resistivity and Shubnikov−de Haas

oscillations in the magnetoresistivity of Bi2Se3 single-crystal

followed by calculation of the charge carrier concentrations

using the Hall effect and Shubnikov−de Haas effect data.

2. Experiment

Topological insulator Bi2Se3 single-crystals were grown

by the Bridgman−Stockbarger method. Bi, Se components

were taken in stoichiometric ratio 2 : 3, then these com-

ponents were mixed and placed in a quartz tube. The

tube was evacuated up to 10−4 atm and sealed tight. Then

the tube was heated up to 850◦C and held during 30 h.

At the second stage, the prepared components were ground

and placed in a quartz tube with elongated sharp tip

coated with a graphite on the inside. The tube was

evacuated to a residual pressure of ∼ 10−4 atm, sealed and

placed in a furnace with a large temperature gradient of

approx. 50 deg/cm. Then the tube was heated up to a

temperature about 750◦ C until the input components were

fully molten. The tube was held for 2 h, then slowly placed

in a cold zone of the furnace at a rate of ∼ 3mm/h. Single-

crystals grown during this process had a cylindrical shape

with sharp tip, ∼ 5−7mm in diameter and ∼ 10−20mm

in length. Resistance ratio of the synthesized crystals

RRR (ρ300K/ρ5K) ≈ 4.8, which is comparable with the

known literature data [18,19]. For magnetotransport

measurements, a sample was prepared by chipping the

whole single-crystal, the sample dimensions were equal to

0.35× 1.3× 3.22mm.

Figure 1 shows the fragment of diffraction pattern

recorded on the Bi2Se3 surface and the detail shows single-

crystal photo. It can be seen that all peaks may have (00l)
index, whence it follows that the single-crystal surface

coincides with (00l) type plane.

Magnetoresistance ρxx and Hall resistivity ρxy were

measured using a 4-point scheme at the Collaborative

Access Center of the Institute of Metal Physics, Ural

Branch, Russian Academy of Sciences, on PPMS-9 physical

measurement system at 5 and 10K and magnetic fields up

to 9 T.

3. Results and discussion

Figure 2 shows field dependences of the Hall resistivity

ρxy of Bi2Se3 single-crystal at 5 and 10K. It is shown that

ρxy has a negative value and depends linearly on magnetic
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Figure 1. The fragment of natural chip diffraction pattern of

Bi2Se3 single-crystal. The detail shows the photo of Bi2Se3 single-

crystal and its chip.

field. This means that electrons are the main type of current

carriers. In accordance with the one-band model, their

concentration may be estimated as follows

nHall = 1/(eRH), (1)

where RH = ρxy/B is the Hall coefficient, e is the electron

charge. The calculated values of nHall are listed in the table

which shows that the carrier concentration decreases slightly

with temperature and this agrees with the data in [12,18,20].
Figure 3 shows the field dependences of the magnetore-

sistivity of Bi2Se3 at 5 and 10K. At both temperatures,

magnetoresistivity smoothly increases as the magnetic field

grows, and the temperature rise results in the growth of ρxx .
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Figure 2. Field dependences of the Hall resistivity of Bi2Se3single-crystal at a) 5 and b) 10K.

The Shubnikov–de Haas oscillation analysis is another

method to determine electronic structure and, in particular,

to estimate current carrier concentration. Figure 3 shows

that magnetoresistivity oscillations are observed in fields

higher than 7 T. According to the Onsager quantization rule,

the extreme cross-section area of the Fermi surface AF is

related to the oscillation frequency F as follows

F = AF~/(2πe), (2)

where ~ is Planck’s constant. Figures 4, a and b show

oscillating parts of the magnetoresistivity calculated by

subtracting the monotone polynomial parts from the de-

pendences in Figure 3. To define the oscillation frequency

the fast Fourier transform was plotted and is shown

in Figure 4, c and d. Note that at both temperatures

single frequencies as listed in the table correspond to these

oscillations. Using F and AF, the wave vector on the Fermi

surface kF and the bulk electron concentration n3D
SdH may be

calculated as follows

kF =
√

AF/π, (3)

n3D
SdH =

1

3
k3
F/π

2. (4)

The calculated electronic structure parameters are listed

in the table.

It shown that the concentrations calculated from the

Hall effects and Shubnikov–de Haas oscillations differ by

more than twice. Such difference may be in various types

of current carriers that contribute to the Hall effect and

Shubnikov–de Haas effect. Thus, topological insulators are

known to have on their surface massless Dirac fermions

with linear dispersion law. The Lifshitz–Onsager quantiza-
tion rule is the most widely known method of determining
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Electronic structure parameters of Bi2Se3 single-crystal at 5 and 10K

Temperature
nHall , n3D

SdH, F , AF, kF, n2D
SdH, d,

1019 cm−3 1019 cm−3 T Å−2 Å−1 1012 cm−2 nm

5K 3.98 1.97 230 0.02196 0.0836 5.56 1.4

10K 3.96 1.91 225 0.02148 0.0827 5.44 1.37

No t e. nHall is the current carrier concentration determined from the Hall effect, n3D
SdH

is the bulk carrier concentration determined from the Shubnikov−de

Haas effect, F is the oscillation frequency, AF is the extreme cross-section area of the Fermi surface, kF is the wave vector on the Fermi surface, n2D
SdH

is

the two-dimensional carrier concentration determined from the Shubnikov−de Haas oscillations, d is the two-dimensional layer thickness.
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Figure 3. Field dependences of the magnetoresistivity of Bi2Se3single-crystal at a) 5 and b) 10K.

the Dirac fermions from oscillations:

n = F/B + 1, (5)

where n is the integer index of the Landau level cor-

responding to the valley on the oscillating part of the

magnetoresistivity, n + 1/2 is the semi-integral index corre-

sponding to the peak, 1 = β + δ, β is the Berry phase factor

corresponding to the Berry phase, δ is the phase factor

depending on the Fermi surface geometry. When the system

has Dirac fermions, then β = 1/2 [21]. From (5) it follows

that the point of intersection of the straight line n = f (1/B)
with the y-axis gives the phase factor 1. Figure 5 shows

n = f (1/B) curves and the corresponding values of 1 are

equal to −0.26 and −0.47 for 5 and 10K, respectively.

Also note that frequencies derived from n = f (1/B) were

equal to 230.67 and 224.26 T, that matches well the values

calculated using the fast Fourier transform (see the table).
It is well known that δ may be equal to: 1) zero: δ = 0

for the two-dimensional Fermi surface, and 2) δ = ±1/8 for

the three-dimensional surface. Here, sign
”
+“ is used for

electrons and sign
”
−“ is used for holes [22–24]. In our

case, sign
”
+“ is used for the three-dimensional Fermi

surface because electrons are the main type of carriers as

follows from the Hall effect. According our data, 1 is equal

to −0.26 and −0.47 for 5 and 10K, respectively. Assuming

that δ = 0, then 1 = β . But if δ = ±1/8, then β = −0.385

and −0.695 for 5 and 10K, respectively. Hence, the

nontrivial Berry phase takes place in both cases that is one

of the arguments in favor of the fact that these oscillations

are caused by two-dimensional states.

The difference of β on the ideal value |β| = 1/2 may be

explained by nonideality of the Dirac dispersion law. Thus,

theoretical study [25] shows that if the dispersion law has a

quadratic contribution besides the linear contribution, then β

differs from the ideal value. Such nonideal values of β were

observed for Bi2Se3 and Bi2Te3, for example, in [15,17,26].

Other experimental studies [13,27,28] showed that in pure

topological insulators Bi2Se3 and in Cu-doped Bi2Se3with

high carrier concentrations n > 3 · 1019 cm−3, oscillations

were observed only up to certain values of θ between

the magnetic field direction and crystallographic axis c
perpendicular to the sample plane and the dependences
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Figure 4. Oscillating parts of the magnetoresistivity of Bi2Se3single-crystal at a) 5 and b) 10K. Fast Fourier transforms of the oscillating

parts of magnetoresistivity at c) 5 and d) 10K.

of oscillation frequencies were written as F ∝ 1/ cos θ.

This indicated that these oscillations are caused by two-

dimensional states, while for three-dimensional states, oscil-
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Figure 5. Dependences of the Landau level index on the reverse

magnetic field n = f (1/B) at 5K (circles) and 10K (boxes).
The detail shows straight line segments near zero.

lations shall be observed up to 90◦ . In particular, in [13] this
is associates with large number of two-dimensional channels

in Bi2Se3. Besides the angular measurements of oscillation

frequency, in [16] ,kF for Bi2Se3 with n = 5.6 · 1019 cm−3

was measured using the angle-resolved photoelectron spec-

troscopy (ARPES) and, as emphasized by the authors,

agrees well with kF determined in their study [16] from

oscillations, which is also a good argument (in addition

to F ∝ 1/ cos θ) in favor of the fact that the oscillations

are caused by two-dimensional state. It shall be also

noted that the studies on observation over oscillations

caused by two-dimensional states in topological insulators

with high carrier concentrations (n > 3 · 1019 cm−3) show

that the Fourier transform exhibits quite high frequency

F > 150 T [13,16,27–29], while in studies on observa-

tion over oscillations in Bi2Se3 with carrier concentration

∼ 1017−1019 cm−3 oscillations have much lower frequen-

cies F < 100 T due to three-dimensional ellipsoidal Fermi

surface [30–32].

The data obtained herein shows that a nontrivial Berry

phase was observed. The oscillation frequencies are quite

high (F > 200 T), as well as current carrier concentrations

are relatively high (n > 3.9 · 1019 cm−3). Note also that
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values of kF agree well herein (table) with values of

kF for the Dirac states obtained using ARPES in [16]
(kF = 0.084 Å−1) and [11] (kF = 0.08 Å−1). The foregoing

suggests that the observed oscillations in the magnetoresis-

tivity (Figure 2) are caused by the Dirac fermions with the

2D Fermi surface, while the main contribution to the Hall

effect is made by the 3D carriers. This may explain the

observed difference in concentrations determined from the

Hall effect and Shubnikov−de Haas effect. Anyway, the 2D

carrier concentration may be estimated as follows

n2D
SdH = k2

F/(4π). (6)

In addition, using expression

d = n2D
SdH/nHall, (7)

the 2D conducting layer thickness may be also estimated.

The calculated values of n2D
SdH and d for 5 and 10K are listed

in the table. Note that the calculated values agree quite

well with [13], where n2D
SdH = 7.8 · 1012 cm−2, d = 1.7 nm

and nHall = 4.7 · 1019 cm−3.

4. Conclusion

The study of the magnetoresistivity and Hall effect of

topological insulator Bi2Se3 single-crystal with resistance ra-

tio RRR ≈ 4.8 detected the Shubnikov−de Haas oscillations

both at relatively low (5K) and higher (10K) temperatures.

The current carrier concentrations and electronic structure

parameters were estimated from the Hall effect (nHall) and

Shubnikov−de Haas effect (n2D
SdH) data. It is shown that

the value of nHall is more than twice higher than n3D
SdH.

The analysis of the obtained data suggest that the observed

difference is due to the fact that oscillations are related to

2D current carriers, while the main contribution to the Hall

effect is made by 3D carriers.
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V. Kucek, L. Benes, J. Navratil, C. Drasar. J. Solid State Chem.

277, 819 (2019).

[21] W. Zhao, X. Wang. Adv. Phys.: X 7, 1, 2064230 (2022).

[22] Y. Zhao, H. Liu, C. Zhang, H. Wang, J. Wang, Z. Lin, Y. Xing,

H. Lu, J. Liu, Y. Wang, S.M. Brombosz, Z. Xiao, S. Jia,

X.C. Xie, J. Wang. Phys. Rev. X 5, 3, 031037 (2015).

[23] H. Murakawa, M.S. Bahramy, M. Tokunaga, Y. Kohama,

C. Bell, Y. Kaneko, N. Nagaosa, H. Hwang, Y. Tokura. Sci.

342, 6165, 1490 (2013).

[24] M. Busch, O. Chiatti, S. Pezzini, S. Wiedmann, J. Sánchez-

Barriga, O. Rader, L.V. Yashina, S.F. Fischer. Sci. Rep. 8, 1,

485 (2018).

[25] A. Taskin, Y. Ando. Phys. Rev. B 84, 3, 035301 (2011).

[26] S. Barua, K.P. Rajeev, A.K. Gupta. J. Phys.: Condens. Matter

27, 1, 015601 (2014).

[27] B.J. Lawson, Y.S. Hor, L. Li. Phys. Rev. Lett. 109, 22, 226406

(2012).

Physics of the Solid State, 2024, Vol. 66, No. 5



646 B.M. Fominykh, A.N. Perevalova, S.V. Naumov, V.V. Chistyakov, V.V. Marchenkov

[28] E. Lahoud, E. Maniv, M.S. Petrushevsky, M. Naamneh,

A. Ribak, S. Wiedmann, L. Petaccia, Z. Salman, K.B. Chashka,

Y. Dagan, A. Kanigel. Phys. Rev. B 88, 19, 195107 (2013).
[29] S.I. Vedeneev. Phys. — Usp. 60, 4, 385 (2017).
[30] N.P. Butch, K. Kirshenbaum, P. Syers, A.B. Sushkov,

G.S. Jenkins, H.D. Drew, J. Paglione. Phys. Rev. B 81, 24,

241301(R) (2010).
[31] J.G. Analytis, J.-H. Chu, Y. Chen, F. Corredor, R.D. McDo-

nald, Z.X. Shen, I.R. Fisher. Phys. Rev. B 81, 20, 205407

(2010).
[32] K. Eto, Z. Ren, A.A. Taskin, K. Segawa, Y. Ando. Phys. Rev.

B 81, 19, 195309 (2010).

Translated by E.Ilinskaya

Physics of the Solid State, 2024, Vol. 66, No. 5


