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In this work, the atomic mechanism of transformation between the bcc- (β) and hcp- (α) phases of zirconium

at low temperatures was studied using ab initio calculation methods. An exact two-parameter method is proposed

for describing the Burger transformation mechanism, which takes into account the differences in the values of the

equilibrium volumes of the phases, as well as the difference between the values of the degree of tetragonality c/a of

real hexagonal crystals and the value of the ideal ratio. Using the proposed method for describing the transformation,

a potential energy surface was calculated and the path of the minimum energy of the system during the β−α

transition in zirconium was determined. The influence of pressure on the shape of the energy landscape and

the path of transformation of the crystal lattice in the range from 0 GPa to 25GPa was analyzed. It has been

demonstrated that the use of single-parameter methods for describing the bcc−hcp transformation of the crystal

structure may be incorrect.
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1. Introduction

Zirconium is a Group 4 metal, in solid state has three

allotropic modifications. At normal pressure and low

temperature, zirconium exists in hcp modification (α)
that remains stable up to 1135K [1], above which phase

transition to bcc modification takes place (β). Melting

temperature of zirconium is 2128K. As pressure rises, β−α

transition temperature decreases [2], and at low temperature

zirconium forms a hexagonal ω-phase with three atoms

in the lattice cell [2–6]. Zr has a high strength-weight

ratio, outstanding corrosion and oxidation resistance, and

low neutron capture cross-section. Owing to its properties,

Zr plays an important role in aerospace, nuclear power and

chemical industries [7–9].
In 1934 Burgers described a microscopic mechanism

of phase transition from bcc to hcp using Zr as an

example [10], analyzed orientational crystallographicrela-

tions between bcc- and hcp-lattices in phase transition

and proposed a mechanism describing this transformation.

According to Burgers, bcc and hcp lattices are related as

(011)bcc ‖ (0001)hcp and [1̄1̄1]bcc ‖ [12̄10]hcp, while lattice

rearrangement may be divided into two interconnected

processes. The first process includes a long-wavelength

shear in the cubic lattice along [1̄1̄1] direction in (112) plane
that changes the angle between [1̄1̄1] and [1̄11̄] from 109.5◦

to 120◦ and results in the appearance of regular hexagons

in (011) planes. The second process is defined as shuffle of

atomic layers parallel to (011) in opposite [011̄] directions
bringing the atoms in regular positions in the ideal hcp

lattice. Hereinafter these processes are denoted as η (shear)

and ε (shuffle), respectively. The Burgers mechanism is a

common β−α transformation model in Zr and has been

supported by experimental and theoretical studies [11–13].
Simulating path for the Burgers mechanism may be

described in various ways. For example, two parameters de-

scribing the shift and alternating atomic layer displacement

in a lattice may be used for description. Studies [14–17]
may serve as examples. For such description method

of the Burgers mechanism, the system energy during

transformation is described by the surface, while a particular

lattice transformation path may be defined as a minimum

energy path along this surface. Another description

method of the Burgers mechanism involves one-parameter

transformation paths where two transition parameters are

replaced by one parameter [18–20]. Such approach reduces

the problem dimensions, however, requires a particular path

to be prescribed for the crystal system that, as will be

shown herein, not always provides a correct representation

of atomic transformation mechanisms. In addition, the

transformation description not always considers a change in

phase volume during transition and difference of c/a of the

hcp phase from the ideal
√
8/3, which more often occurs

in real systems. Moreover, this uncertainty is observed both

for two-parameter and one-parameter methods [15,20].
This study investigates in detail the atomic mechanism

of β−α transformation in Zr. The effect of pressure on

the transformation path was analyzed in the range from 0

to 25GPa. The incorrectness of using single-parameter

methods for description of lattice transformation during

bcc.hcp phase transitions is shown using the example of

zirconium.
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2. Methods

This study used a two-parameter method for description

of bcc−hcp lattice transformation. The transformation de-

scribed by this method follows the Burgers mechanism [10].
The transformation is explicitly described by a cell with

lattice vectors

[

√
3

2
abcc, 0, 0

]

,

[

√
3

2
abcc cos(θ),

√
3

2
abcc sin(θ), 0

]

,

[0, 0,
√
2 abcc],

where [001] direction corresponds to [011] direction in the

bcc cell, and by the atomic basis consisting of two atoms in

(0,0,0) and
(

1/2, 1/2, 1/2
)

positions. The shuffle η in [1̄1̄1]
direction is parametrized by the angle θ between vectors

[

−
√
3

2
abcc,

√
3

2
abcc,−

√
3

2
abcc

]

and
[

−
√
3

2
abcc,−

√
3

2
abcc,

√
3

2
abcc

]

,

and shuffle ε of (011) atomic planes is parametrized by

relative displacement δ of atom(1/2 + δ, 1/2− δ, 1/2) in

position corresponding to the hcp cell. θ varies from 109.47

to 120◦ and δ varies from 0 to 1/6, that corresponds to

the variation of η and ε from 0 to 1, respectively. To

consider the variation of volume per atom and obtain

correct c/a , the lattice parameters were linearly scaled from

the values corresponding to bcc to hcp. This study correlates

the volume variation with shear η, therefore scaling of lattice

constants was performed only in the direction of variation

of this parameter. The method is schematically illustrated

in Figure 1.

To calculate a particular transformation path at various

pressures, total energies of all possible intermediate struc-

tures between bcc and hcp shall be known. All these

structures and their energies are unambiguously defined by

η and ε. The total energies of these structures were calcu-

lated by ab initio methods in terms of the electronic density

functional theory implemented using VASP package [21–23]
and plane wave basis for representation of the electron wave

function and PAW-potentials [24,25] to set the crystal ion

core potential. The criterion for exiting the electronic self-

consistent cycle is the difference in energy between the last

two iterations of 10−5 eV. Exchange and correlation in the

electronic gas were described in the generalized gradients

approximation in PBE parametrization [26]. The plane

wave basis cutoff energy was equal to 500 eV. To build

a grid of k-points, the study used automatic generation

provided in VASP using the Monkhorst−Pack method [27]
with the density of integrating grid by the Brillouin zones

18× 18× 10.

For potential energy surface analysis by the second-

order spline method, an interpolation function was built

using the ab initio calculation data. The minimum energy

a

b c

[111]

(011)

θ

abcc

bbcc

cbcc

δ

Figure 1. Illustration to the proposed Burgers transformation

description method Green spheres — Zr atoms. Black lines show

the bcc lattice cell, red lines show the cell used in this work.

paths along the energy surfaces at different pressures were

found by the gradient descent method. Interpolation and

search for paths were implemented in Mathematica software

package [28].

3. Results

To describe the transformation using the method de-

scribed in the present study, at first, ab initio calculations

of bcc and hcp phase relaxation at 0K were performed

and equilibrium specific (per atom) volumes and axial

parameter ratios c/a at 0, 5 and 25GPa were determined.

These results together with some literature data are shown

in the table. The volume and c/a of Zr hcp obtained

herein differ by less that one percent from the theoretical

results obtained by Wang et all. [31]. Deviation from the

experimental data for α-Zr is about 2% and 1% for specific

volumes and c/a , respectively. The table shows the

difference in Zr bcc phase volumes at 0Gpa calculated

herein at zero temperature and measured experimentally

by Zhao et al. [32] at T = 973K. However, the deviation

is 5%, it lies on the boundary of predictions acceptable

for theoretical calculations. In addition, the deviation from

the experimental data may be explained by considering the

temperature expansion effect. In addition, the discrepancy

between the data and experiment can be explained if we

take into account the effect of thermal expansion. Taking

into account the effect of thermal expansion in an explicit

form requires the use of the molecular dynamics method,
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Comparison of specific volumes of Zr phases and c/a of Zr hcp phase at different pressures (given in brackets) calculated in the present

study and in some previous studies

bcc Zr
Low-temperature ab initio calculations Experiment at 973K

This study Anzellini et all. [29] Stavrou et all. [30] Wang et all. [31] Zhao et all. [32]

22.6 (0GPa) 22.65 (0GPa) 22.83 (0GPa) 23.87 (0GPa)

V , Å3/atom 21.65 (5GPa) 21.87 (3.96GPa) 21.62 (5.35GPa) 21.93 (6.38GPa)

18.53 (25GPa) 18.48 (25GPa) 18.48 (25GPa) 18.63 (24.61GPa)

hcp Zr
Low-temperatureab initio calculations Experimental studies at 300K

This study Wang et all. [31] Stavrou et all. [30] Akahama et all. [33] Anzellini et all. [29] Zhao et all. [32]

23.26 (0GPa) 23.43 (0GPa) 23.33 (0.74GPa) 23.37 (0GPa) 23.13 (0.69GPa) 23.29 (0GPa)

V , Å3/atom 22.23 (5GPa) 22.27 (5.35GPa) 22.28 (5.57GPa) 22.41 (4.33 GPa) 22.08 (5.71GPa) 22.11 (4.93GPa)

19.18 (25GPa) 19.59 (21.97GPa)

1.602 (0GPa) 1.597 (0GPa) 1.592 (0GPa)

c/a 1.615 (5GPa) 1.603 (5.35GPa) 1.594 (4.93GPa)

1.656 (25GPa)

which in the framework of ab initio calculations is quite

resource-intensive and was not carried out in this work.

Then, using the obtained equilibrium lattice parameters

at various pressures, ab initio calculation methods were

used to determine the dependence of the total energy of Zr

crystal with varying parameters (η, ε) on the 10× 10 grid.

Using these data, energy variation surface 1E Zr in

transformation from α to β modification, its contour map

and minimum energy path at 0, 5GPa and 25GPa were

built, all results are shown in Figure 2.

Foremost it may be noted that the results in Figure 2 show

instability of β Zr modification to shear η and shuffle ε

fluctuations, which fully corresponds the fact that β Zr

is dynamically unstable at low temperatures because its

phonon spectrum contains imaginary frequencies [34]. The
shown data demonstrate high energy asymmetry in (η, ε)
at each pressure. It is shown that the shear η and the

related lattice cell volume variations at low pressures have

a low effect on the energy in the bottom halfplane ε < 0.5.

At low pressure, the system energy varies most of all in

the shuffle direction ε, and 1E(ε) at any η has its valley

that moves towards hcp as η increases. In addition, the

minimum energy path at low pressure goes primarily in ε

direction at the start of transformation and then, when the

system is no longer able to reduce its energy by means

of shuffle, changes its direction towards η. The change in

enthalpy during a phase transition at zero pressure is equal

to the energy difference between the bcc and hcp phases,

which in this work is equal to the value of the function 1E
at the point (1,1) of the surface shown in Figure 2, a and

is 1E(1, 1) = 85meV/atom. This agrees well with the ab

initio values calculated in the previous studies: 84meV/atom

Liu et all. [13] and 80meV/atom Wang et all. [31]. The

literature data on the experimentally measured thermal

effect of the bcc−hcp phase transition in zirconium is

very scarce. Study [35] reports a transition enthalpy of

40meV/atom that is twice as low as the theoretically

calculated value.

The energy surface shape and minimum energy path vary

greatly as the pressure increases. It can be seen that as the

pressure grow from 0 to 5GPa, the system energy starts

responding more actively to the shear in η direction, that is

shown by the change in the minimum energy path slope at

the beginning of the transformation. When pressure increase

to 25GPa, the system energy surface changes critically. The

valley on 1E(ε) disappears at any η, moreover, as shown

in Figure 2, the contour lines are almost perpendicular

to the η axis at ε < 0.5 and only when ε approaches 1,

the energy variation in shear becomes obvious. All this

suggests that the system energy changes at high pressure

during transformation is mainly associated with the lattice

volume and shape variations. At 25GPa, a structure

with energy lower by 10.5meV than that of hcp occurs

in (1,0) point, therefore the minimum energy path is parallel

to the η axis. The ω phase of Zr is known to become

energy-favorable at high pressure. This suggests that atomic

configuration in (1,0) point is some intermediate structure

on the transformation path to the omega phase. More

detailed investigation of this problem requires an individual

transformation mechanism to be built.

It should be pointed out that to describe the transforma-

tion by one-parameter methods as, for example, by Friak

et. all. [20], the minimum energy path shall be a simple

straight line on the contour map — (0,0)−(1,1) diagonal.
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Figure 2. (a) The contour maps of the energy surface 1E Zr in shear and shuffle coordinates in the bcc−hcp transformation at different

pressures. 1E = E(η,ε)−E(0,0) — structure energy variation in (η, ε) point with respect to bcc. (0,0) point — bcc, (1,1) point — hcp.

Red line shows the minimum energy path. (b) Crystal structure energy variation 1E in transformation from bcc to hcp via the minimum

energy paths along the corresponding surfaces.
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However, the data in Figure 2 show that the minimum

energy path is not a straight line from bcc to hcp at any

pressure. When using one-parameter methods, one can try

to take into account the features of the potential energy

surface of the given system in the wxplicit formulation

of the transformation path, but the search for such an

atomic mechanism is far from a trivial task for most

real systems, even without taking pressure into account.

Pressure consideration may make the problem much more

complicated. The foregoing allows us to argue that the one-

parameter transformation description methods are incorrect

and give wrong representation of the atomic mechanisms of

phase transitions.

4. Conclusion

This study uses the electronic density functional theory

to investigate the atomic mechanism of Zr bcc−hcp phase

transformation under pressure by the modified Burgers

mechanism. For this, crystal structure relaxation was

calculated and the equilibrium parameters of bcc and hcp

phases were determined at low temperature with pressures

from 0 to 25GPa. Zr phase energy surface was calculated

for the bcc−hcp transformation in (ε, η) coordinates and the

minimum energy path was determined. Using the findings,

analysis of the pressure effect on the atomic mechanism of

transformation was performed. It was shown that pressure

greatly changes the energy surface landscape, which leads

to a change in the sequence of intermediate crystalline

structures along the minimum energy path. It is sown

that the transformation path is not a simple straight line

on the contour map of the energy surface, which, together

with discovered strong dependence of the surface shape

on pressure, makes the one-parameter description of the

bcc−hcp crystal structure transformation incorrect.
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