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Quantized nature of abrupt plastic deformation
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The nature of the elastoplastic invariant of plastic flow, which connects the characteristics of the elastic and plastic

components of deformation, is considered, and its connection with fundamental physical constants is established. It

is shown that abrupt plastic deformation can be considered as a macroscopic quantum effect associated with the

discreteness of the crystal lattice.
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Plastic (irreversible) deformation is commonly character-

ized as a result of motion and multiplication of disloca-

tions [1] that are accompanied by a change in the structure

of a deformed medium, which consists in accumulation of

lattice defects. In recent years, plastic flow has increasingly

been viewed as an autowave process [2,3], since it turned

out to be difficult to characterize plasticity on the basis of

dislocation theory only. Such attempts, which employed cer-

tain concepts from the theory of non-equilibrium processes

(synergetics), have also been undertaken earlier [4–7].

Autowave representations of the nature of plastic flow

have been verified experimentally and grounded theoret-

ically. This approach relies on the notion of paramount

importance of localization of plastic deformation and

generation of self-excited autowave processes, which are

related to the self-organization of a plastically deformed

active medium, in the course of plastic flow. A special

technique for in situ observation of autowaves of localized

plastic flow with the use of speckle photography has been

developed [3]. Autowaves are characterized by their length

λ and propagation velocity Vaw ; notably, the wavelength

is only weakly dependent on the material properties and

assumes a value of ∼ 10−2 m in virtually all cases, while the

velocity depends on loading rate and falls within the range

of 10−5 6 Vaw 6 10−4 m/s. Owing to a vast difference in

scales, autowaves of localized plasticity cannot be related

directly to the parameters of dislocation substructures or

dislocation deformation mechanisms of the Frank−Read

kind. However, larger-scale plastic flow features, such as

Lüders bands and fronts [8], are regarded as variants of

autowave plasticity modes.

The aim of the present study is to interpret the key

equations of the autowave plasticity theory and establish

their relation with certain physical constants. As was

demonstrated in [3], the development of localized autowave

plastic deformation of a medium is governed by invariant

relation
λVaw

χVt
= Ẑ ≈

1

2
, (1)

where χ is the interplanar distance and Vt is the velocity of

transverse elastic waves. The importance of expression (1)
consists in the fact that it relates the characteristics of plastic

(λVaw) and elastic (χVt) material deformation.

The physical nature of relation (1) has been discussed

in [2,3]. One more possible explanation, which was

conceived following the publication of [9], is presented

below. It has been demonstrated in [9] that extreme values

of physical characteristics of materials may be estimated on

a scale set by the Hartree system of units, which allows

one to express the coefficients of key relations in a more

physically meaningful way.

Specifically, the length scale in the Hartree system of units

is set by the Bohr radius of a hydrogen atom:

a0 =
~
2

me2
= 5.291 · 10−11 m. (2)

Having applied this expression and relations Vt ≈ (G/ρ)1/2

and Vt ≈ ωDa0 for the transverse sound velocity [10], the
author of [9] managed to demonstrate that

Vt ≈
e2

~

(

m
2M

)1/2

, (3)

while the Debye cutoff frequency is

ωD ≈
E
~

(

m
M

)1/2

. (4)

In accordance with the notation adopted in [9], ~ = h/2π in

Eqs. (2)−(4) is the reduced Planck constant, e and m are

the charge and the mass of an electron, and M is the atom

mass. The deformed medium is characterized in this case

by shear modulus G, density ρ, and binding energy E . The
meaning and the procedure of evaluation of this quantity

were not specified in calculations performed in [9].

The critical step taken in the present study consists in

performing the χ → a0 substitution in Eq. (1) in accordance
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Dependence of the plasticity parameter of metals on the mass of

atoms. The correlation coefficient is ∼ 0.8.

with [9]. This substitution yields

λVaw =
χVt

2
≈

~

2(mM)1/2
≈

ξ

M1/2
∼ M−1/2, (5)

where coefficient ξ = ~/2
√

m ≈ 5.5 · 10−20 J · s · kg−1/2.

Dependence (5) allows for experimental verification, since

the values of the plasticity parameter for 19 different

metals have already been determined in [2,3]. The data

presented in the figure in coordinates λVaw−(α/M)1/2

(α = 1.66 · 10−27 kg is the atomic mass unit) confirm the

linearity of relation (5), and the corresponding estimate is

ξ ex p ≈ 5.4 · 10−20 J · s · kg−1/2; i.e., ξ ≈ ξ ex p. In addition,

the value of λVaw ≈ 10−7 m2/s determined in studies into

plastic flow of materials [11] matches the minimum value of

viscosity for a number of possible motions in a condensed

medium that were analyzed in [9]. Thus, although experi-

mental data have an evident spread due to the complexity

of observation of localized plasticity regions in certain cases,

the obtained dependence is suitable for further analysis.

In discussing this result, we note that plastic flow

is commonly regarded now as a discrete sequence of

relaxation jumps of stress and deformation related to the

thermally activated crossing of local barriers of various

nature by dislocations [12,13] and their subsequent quasi-

viscous motion between barriers or over them. In view

of the macroscopic nature of localized plasticity autowaves,

it is hard to specify the type of barriers and the way

of overcoming them; we may thus limit ourselves to the

semi-empirical approach to thermally activated plasticity

mechanisms [13].

It is assumed that the jump-like mechanism of deforma-

tion is general in nature and should be observed in any

deformation regime. Therefore, it should be supposed that

a smooth plastic flow curve consists of numerous jumps,

which, however, may in certain cases be indiscernible to

recording instruments. At the same time, macroscopic

manifestations of abrupt deformation have been examined

in detail [14–16].
The presence of the Planck constant in Eq. (5) sug-

gests an analogy between abrupt deformation and physical

phenomena the quantum nature of which illustrates their

macroscopic scale. As is known [10,11], these phenomena

are superfluidity, superconductivity, and the quantized

Hall effect. Their key equations include combinations of

fundamental constants, which necessarily contain ~ [17], as
coefficients. Specifically, combination ~c/e (c is the speed

of light) specifies the magnetic flux quantum for vortices in

a superconductor. In superfluid He, ratio ~/MHe sets the

vortex rotation velocity [17]. In the quantized Hall effect,

combination e2/~ is the quantum of conductance of two-

dimensional electronic systems [18].
This is the reason why coefficient ξ = ~/2

√
m of Eq. (5)

written in the form of a combination of fundamental

constants ~ and m may be regarded as a sign of possibility

of quantum-mechanical interpretation of the nature of

macroscopic abrupt plastic deformation. This belief is

strengthened by a comparison of the data on all mentioned

macroscopic quantum phenomena (see a brief summary in

the table).
The interpretation of plasticity as a quantum effect, which

is guided by the form of expression ξ4 = ~/2
√

m, may

appear unusual for researchers working in the field of

plasticity physics, since the characteristic spatial scale of

macroscopic plasticity phenomena exceeds considerably the

scales on which quantum mechanics is applied traditionally.

Specifically, the ratio of autowave λ and dislocation b
(Burgers vector) scales is λ/b ≈ 108.

However, one may make a number of compelling

arguments in favor of the proposed interpretation. First of

all, deformation quantization appears to be perfectly natural

at the dislocation level, since Burgers vector b ≈ 10−10 m

specifies the minimum possible slip in a crystal lattice and

may be regarded as a quantum of shear deformation [19].
In addition, an analogy between dislocations and quantized

vortices in superfluid helium or quantized currents in type

II superconductors has already been noted [20]. The

generalized dispersion law of plastic flow autowaves for

phonons and autolocalizons [2] also bears a similarity to

the dispersion curve for phonons and rotons in superfluid

helium [21]. This similarity may be explained if one

takes the view proposed in [22] regarding the analogy

between plastic flow and superfluidity. According to this

interpretation, elements of a deformable medium are akin

to atoms of a superfluid liquid in being simultaneously

engaged in slow motions of separate volumes in the

process of macroscopic shape change of a body as a

whole and in motion of dislocations with high velocities

(potentially up to Vdis l ≈ Vt [1]) that supports this shape

change. Two viscosity coefficients of a deformable medium

corresponding to these motions differ by several orders of

magnitude [23].
The evident physical reason behind the manifestation

of quantum effects in macroscopic plastic deformation
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Comparison of macroscopic quantum phenomena

� Phenomenon Quantized Coefficient

parameter (quantum)

1 Superconductivity [10] Magnetic flux 8 = ξ1i ξ1 = π~c
e

2 Superfluidity [10] Vortex rotation rate v = ξ2r−1i ξ2 = ~

MHe

3 Quantized Hall Hall conductance ξ3 = e2

~

effect [11] GH = ξ3i
4 Abrupt Elongation on jump ξ4 ≈

~

2
√

m

plastic deformation δL = ξ4(Vaw

√
M)−1i

Note. r is the vortex radius, MHe is the mass of a He atom, and i = 1, 2, 3 . . . .

processes is the close connection between the autowave

plasticity mechanism and the lattice characteristics, which is

defined distinctly by elastoplastic invariant (1) [2]. Indeed,

the generation of autowaves of localized plastic flow, which

acts as the mechanism of self-organization of a deformable

medium, is effected in a crystalline medium with its very

existence and properties governed by quantum-mechanical

laws [10]. It is evident that the processes of transformation

of elastic and plastic deformation fields in a medium capable

of self-organization, which form the basis for the autowave

mechanism of plastic flow and the generation of localized

plasticity autowaves, are subject to the quantum nature of

interparticle bonding in crystals.

The macroscopic abruptness is easy to explain within this

interpretation if one makes a natural assumption that an

integer number i = 1, 2, 3 . . . of autowaves with length λ

should fit within sample length L (i.e., L = λi). This is

equivalent to quantization of a localized plasticity autowave.

Let us rewrite Eq. (5) in the form

λ =
~

2(mM)1/2
1

Vaw
=

ξ

M1/2Vaw
(6)

and, taking relation λ ≈ δL/i into account, determine the

sample elongation from Eq. (6):

δL ≈
~

2(mM)1/2
i

Vaw
= ξ

i
M1/2Vaw

=
ξ

κ
i . (7)

Coefficient κ = Vaw

√
M in Eq. (7) characterizes the type

of deformed material and the deformation conditions, since

Vaw ≈ 10Vmach [2], where Vmach is the rate of motion of the

movable gripper of a testing machine.

A numerical order-of-magnitude estimate of δL obtained

in accordance with Eq. (7) for an Al sample at i = 1 and

characteristic velocity Vaw ≈ 1.8 · 10−4 m/s of a localized

plasticity autowave [3] is δL ≈ 10−4 m, which corresponds

to a deformation increment ∼ 10−3. This estimate agrees

with the parameters of an individual deformation jump

measured experimentally in studies into abrupt deforma-

tion [15,16].
Thus, the jump-like nature of plastic deformation may

be regarded as a corollary of discretization of elongation of

a deformed sample; according to Eq. (7), the presence of

jumps is obligatory. The specifics of evolution of abrupt

deformation suggest that this phenomenon is of a quantum

nature.

The presented data support the existence of a certain

similarity between abrupt deformation and macroscopic

quantum phenomena in condensed media. We managed to

reveal a clear connection between the elastoplastic invariant

of plastic flow and physical constants, namely, the Planck

constant (~) and the rest mass of an electron (e). There

emerge reasons to believe that macroscopic localization

of plastic flow may be regarded as a quantum effect

underpinned by the discreteness of a crystal lattice.
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