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Sputtering thresholds during ion bombarding of different targets
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Collision models leading to an explanation of the position of energy thresholds during sputtering of various

materials are analyzed. The totality of available experimental and computational data can be described within the

framework of a model that takes into account multiple collisions. An empirical curve is proposed to describe the

position of the thresholds over the entire possible range of mass ratios of colliding particles. The strong influence

of the shape of the surface potential barrier on the position of the sputtering energy threshold is shown.
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The process of sputtering of materials under ion bom-

bardment is used to clean and etch surfaces, fabricate

thin films, and perform surface analysis. Sputtering is the

governing factor in destruction of electrodes in electrical

equipment and structural materials in plasma facilities.

Sputtering processes are being studied extensively [1–7].
Our studies [8–10] were focused on sputtering of Be and W

(materials considered to be promising for the construction

of the first wall and the divertor of the ITER tokamak) by

hydrogen isotopes.

The dependence of sputtering yield Y on energy E0 of

a bombarding particle is threshold in nature (Fig. 1). The

curve in Fig. 1 represents the results of our calculation for a

planar barrier, while dots correspond to the experimental

data from [11]. It should be noted that near-threshold

experimental data are extremely scarce [5,12–15]. An exact

knowledge of sputtering thresholds is of prime importance

for fusion research. With the temperature of ions in near-

surface plasma being below the sputtering threshold, a small

change in the threshold leads to a dramatic increase in the

number of plasma particles involved in sputtering, which

may lead to catastrophic failure of the first wall of a tokamak

reactor.

To be sputtered, a particle needs to overcome sublimation

energy Us [16] (surface binding energy). It can be seen from

Fig. 2 that sublimation energies vary rather widely. They

exert a significant influence on the process of sputtering.

The case of normal incidence of a beam onto a target is

examined in the present study.

Two distinct cases need to be considered for a sur-

face potential barrier preventing the escape of a particle

from a target: if this barrier is spherical, the escape

condition is written as E2 > Us [17], while the condition

for a planar potential barrier (smooth surface) changes to

E2 cos
2 θ > Us [17], where E2 is the energy of a sputtered

particle and θ is the angle of particle escape relative to the

normal to the surface. Figure 3, a presents the experimental

results from [12,14,15], the data from [11] obtained via

computer modeling for a planar potential barrier, and the

results of our calculation for two types of a surface potential

barrier.

Energy E2 transferred in collision by a scattered particle

to a target atom is

E2 = E0γ cos
2 θ1, γ =

4M1M2

(M1 + M2)2
, (1)

where θ1 is the scattering angle of the recoil particle. The

dependence of parameter P = γEth/Us (Eth is the threshold

energy) on ratio M2/M1 is shown in Fig. 3, a.

It can be seen from Fig. 3, a that the experimental data

are scattered widely between the results of our calculations

for two limit cases of a surface potential barrier. The data of

our calculation for Be and W targets agree closely. In region

M2/M1 < 1, the calculated data of Behrisch [11] for a

planar potential barrier lie 16% higher than the results of our
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Figure 1. Sputtering yield Y for a tungsten target and bombarding

Ne atoms as a function of their energy E0. The curve is the

result of our calculation for a planar barrier. Dots represent the

experimental data taken from [11].
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Figure 2. Sublimation energies for different materials [16].

calculation. At M1 > M2, a bombarding particle transfers its

energy to numerous recoil particles. In a subsequent cascade

of collisions, a particle with its energy exceeding the surface

binding energy escapes from the surface and is regarded as

a sputtered one. The process of sputtering is characterized

in this case by the cascade Sigmund theory [17]. In the

M1 < M2 case, the sputtering mechanism changes, and the

contribution of sputtering of surface layers by a flux of

backscattered particles becomes significant. A theoretical

description of this case was presented in [18]. Condition

Eth = Us/[γ(1− γ)] (i.e., P = 1/(1− γ)) was proposed for

the threshold energy in [19]. It follows from Fig. 3, a that

this formula remains adequate at M2/M1 > 5.

Let us examine the case of a spherical potential barrier

and E2 > Us . In scattering by angle β, energy E1 of a

bombarding particle is written as

E1

E0

=

[

M1

M1 + M2

]2

×

(

cos β ±

{(

M2

M1

)2

− sin2 β

}1/2)2

= K1(β), (2)

where E0 is the energy of a bombarding ion; M1 and

M2 are the masses of a bombarding ion and a surface

atom, respectively; and β is the scattering angle. If a

bombarding particle gets scattered off a surface layer, a

recoil particle propagates into the bulk of a target and may

contribute to sputtering only via a cascade of collisions

with other target atoms. Let us consider a bombarding

particle that propagates over distance d within the target

and gets scattered by angle β; in doing so, it should turn

by angle greater than 90◦ and knock out a surface atom.

In this case, E1/E0 6 (M2 − M1)/(M2 + M1) = (1− γ)0.5

and sputtered particle energy E2 = γE1 = γ(1− γ)0.5. Let

us introduce a correction for the energy loss related to

electronic stopping of a bombarding particle in back-and-

forth propagation over interparticle distance d within the

target. In this case, E1 = (1− γ)0.5E0 − dE/dx · 2d and

E2 = γE1 > Us . Here, dE/dx are the electronic stopping

powers for threshold energy Eth. The expression for

parameter P is

P =
γEth

Us
= (1− γ)−0.5

(

1 +
γ

Us

dE
dx

2d

)

. (3)

It can be seen from Fig. 3, b that the model of a single

collision provides an adequate fit to the data for a spherical

barrier only at M2/M1 > 10. As is known, the energy

lost by a particle in the case of a double collision and

scattering by angle β/2 is lower than the energy lost in

single scattering by angle β . If the overall turn angle

of a fast particle is fixed, the energy loss is minimized

when scattering angles are equal and both scattering events

proceed in the same plane. Formula (3) takes the following

form for double scattering in this case:

P = γ
Eth

Us
=

1

K2
1(β)

×

(

1 +
γ

Us

d
sin β

(

dE
dx

(E1) + K1(β)
dE
dx

(E0)

))

. (4)
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Figure 3. Dependence of parameter P = γEth/Us on mass ratio M2/M1. a — Results of computer modeling for a planar potential

barrier from [11], results of modeling with our program for planar and spherical barriers, and experimental data from [12,14,15]. b —
Spherical potential barrier: data obtained in computer modeling with our program and estimates provided by formulae (3) and (4). b —
Planar potential barrier: results of computer modeling from [11], results of modeling with our program, estimates obtained using formula

(5), and experimental data from [12,14,15]. d — Empirical curve characterizing the entire set of processed data (6). Segments of curves

corresponding to different values of collision multiplicity m of a bombarding particle and collision number n of target atoms are shown.

Here, dE/dx(E1) and dE/dx(E0) are the electronic losses

for bombarding particle energies E1 and E0, respectively,

and K1(β) was described above (see (2)). Analyzing

the variation of kinetic energy and deceleration by target

electrons within different segments of the trajectory, one

may obtain an expression for arbitrary collision multiplicities

m and n of bombarding and target particles, respectively.

It can be seen from Fig. 3, b that the model of double

scattering (m = 2) provides a close fit to the data for

a spherical barrier at M2/M1 > 1.5. At M2 ≈ M1, a

contribution from triple collision (m = 3) is possible.

The cascade mechanism is dominant at M2/M1 < 1. A

bombarding particle transfers energy γE0 cos
2 θ1 to a recoil

atom, where θ1 is the recoil atom scattering angle. In a

subsequent cascade, colliding particles have equal masses.

After the first collision of this kind, the energy of the

second particle is E2 = γE0 cos
2 θ1 cos

2 θ2. The product

of cosines reaches its maximum value at θ1 = θ2 = θ if

sum θ1 + θ2 is fixed. We assume that θ1 + θ2 > 90◦ .

Thus, E2 = 0.25γE0 = Us and P = γEth/Us = 4. In a triple

collision, θ = 30◦ and P = 1/ cos6 θ = 2.37. The value of

P increases if the correction for particle electronic stopping

is introduced. At n = 2, P = 4.36; at n = 3− P = 2.58.

In the case of a planar barrier, the escape condition for

a sputtered particle changes to E2 cos
2 θ > Us . In single

scattering, E2 = γE0K1(β); i.e., γE0K1(β) cos2 θ > Us . The

maximum value of energy E2 corresponds to a head-on

collision. Therefore, θ = π − β . We seek the maximum

value of parameter K1(β) cos4 β at β > π/2. It is attained

at β = π. Next, we introduce the correction for electronic

stopping of a bombarding particle in the target. It can be

seen from Fig. 3, c that single scattering does not provide an

adequate fit to the data at M2/M1 < 10. The introduction

of double and triple scattering yields P values that lie close
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Dependence of parameter P = γEth/Us on the number of collisions without and with account for the correction for deceleration by

target electrons

n P θ, ◦

Pcor (Be) Pcor (W)

α = 1.5 α = 1 α = 0.5 α = 1 α = 0.7 α = 0.5

2 64 60 66.2 65.5 64.7 66.9 66.1 65.5

3 16 45 17.9 17.3 16.6 18.6 17.8 17.3

4 8.33 36 10.2 9.58 8.94 10.9 10.1 9.59

5 5.62 30 7.63 6.93 6.26 8.40 7.50 6.94

6 4.31 25.7 6.46 5.70 4.98 7.31 6.32 5.71

7 3.55 22.5 5.87 5.03 4.26 6.81 5.72 5.05

8 3.06 20 5.57 4.65 3.82 6.62 5.41 4.67

9 2.73 18 5.44 4.43 3.53 6.60 5.26 4.45

10 2.48 16.4 5.41 4.31 3.34 6.69 5.21 4.33

11 2.30 15 5.46 4.26 3.20 6.87 5.24 4.28

to the discussed data at M2/M1 > 1.4. In the vicinity of

M2 ≈ M1, triple scattering provides a better description of

the analyzed data. The introduction of the correction for

electronic stopping leads to an increase in P and allows one

to obtain a closer fit to the analyzed data at M2/M1 < 10.

Note that the P = 1/(1 − γ) curve proposed earlier goes

20% lower at M2/M1 > 50.

Let us examine the curve behavior in the region of

operation of the cascade mechanism with a planar potential

barrier. Energy ratio E1/E0 in a single elastic collision of

a fast particle is characterized by quantity K1(β). Since

target particles have equal masses, the energy ratio in

a single collision of two target particles is characterized

by quantity cos2 β, where β is the trajectory turn angle.

At M2/M1 < 1, cos2 β > K1(β); therefore, the minimum

energy loss in the examined case is achieved in cascades

involving target particles, and the energy loss in the contrary

case (at M2/M1 > 1) is lower in cascades involving fast

particles.

In the first collision, a fast particle transfers energy

to a target particle: E1 = E0γ cos
2 β . Since angle β

is always smaller than 90◦, another collision (or several

collisions) of target particles is needed for a particle to

escape from the target. Analyzing a collision cascade and

taking the particle escape condition for a planar barrier

into account, we find E2 cos
2 θ = γE0 cos

4 β cos2 θ > Us .

Escape angle θ of a sputtered particle is measured from

the normal to the surface, and θ = π − 2β . The threshold

energy is maximized at β = θ = 60◦ . In double scattering,

P = γEth/Us > 64. In triple scattering, γE0 cos
8 θ > Us ,

θ > 45◦, and γEth/Us > 16. The formula for n-fold
scattering is

P = γ
Eth

Us
>

1

cos2(n+1) θ
. (5)

The values of P are listed in the table. In a model with

elastic collisions only, P continues to decrease with an

increase in scattering multiplicity. The quantity corrected for

particle energy loss due to electronic stopping is designated

as Pcor . The values of specific electronic energy loss dE/dx

were taken from SRIM tables [20]. These dE/dx value

were multiplied by correction factor α. It can be seen from

the table that the introduction of inelastic losses slows down

the reduction of Pcor at higher n and leads to saturation of

this dependence on the number of collisions at large n and

arbitrary values of α. A close fit to the analyzed data is

achieved at n ≈ 5−7.

Figure 3, d presents the empirical curve that was obtained

by parameter fitting with the aim of obtaining the closest

agreement with processed data. The formula for this curve

is

γ
Eth

Us
=

5.56

1 + 0.164

(

M2

M1
+ 0.509

)2
+ 1.177. (6)

The entire set of data is characterized well with curve

segments corresponding to varying collision multiplicities m
of a bombarding particle and collision numbers n of target

atoms (Fig. 3, d).

Thus, the dependence of the threshold position on the

mass ratio of colliding particles is attributable to differ-

ences in the mechanism of sputtering at M2/M1 < 1 and

M2/M1 > 1. At M2/M1 < 1, the role of a bombarding

particle is reduced to transferring energy to target particles.

The positions of thresholds are specified by a cascade of

n ≈ 5−7 collisions of target particles. At M2/M1 > 1,

collisions of a bombarding particle with target atoms

produce a flux of backscattered atoms, which collide with

atoms in the surface layer to induce sputtering. Triple

and double scattering of a bombarding particle produces

a significant contribution at 1 < M2/M1 < 2. The model of

single scattering provides a fine description of the analyzed

data at M2/M1 > 10 if the energy loss related to particle

deceleration by target electrons is taken into account.
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