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Self-similar vortex
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An analytical approach is proposed to describe a computer model of a
”
sand heap“that describes positive 1/ f

fluctuations. The solutions to the proposed equations are random processes with power-law behavior of power

spectra and distribution functions of random fluctuations.
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Random processes are called self-similar if they have

no preferred spatial or time scales. Power-law depen-

dences of the spectral density and distribution functions

are characteristic features of such processes. Self-similar

random processes (self-similar vortex structures included)
are found in physics, geophysics, biology, and other fields

of science [1–6]. Power-law dependences enable the emer-

gence of prominent spikes and large-scale vortices, which

are observed in ocean currents, atmospheric phenomena

related to cloud and tornado formation, and astrophysical

phenomena involved in the formation of galaxies [7–9]. Self-
similar random processes associated with non-equilibrium

phase transitions were discovered experimentally in critical

heat and mass transfer regimes: in transition from bubble

boiling of a liquid to film boiling [10], critical flow of a

boiling-up liquid [11], and acoustic cavitation [12].

Computer
”
sand heap“ models employing the concept

of self-organized criticality are applied in the interpretation

of numerous random processes with strong self-similar

fluctuations [1]. Such a system evolves without fine tuning

of parameters, and the distribution is similar to fluctuations

in the critical state. Self-similar random processes are often

characterized on the basis of fractional integration of white

noise (fractional diffusion equation, fractal-structure diffu-

sion [13–16]). Random processes obtained via modeling

of this type require vast computational resources and are

generally non-stationary.

We have proposed an analytical approach to charac-

terization of self-similar random processes with strong

fluctuations that shortens and simplifies considerably the

calculation procedure (compared to fractional integration).

This approach involves the use of a system of nonlinear

stochastic equations that characterizes the stochastic dy-

namics in the context of interacting non-equilibrium phase

transitions.

The system of stochastic equations is written as

dϕ
dt

= −ϕψ2 + ψ + ξ1(t),

dψ
dt

= −ψϕ2 + 2ϕ + ξ2(t), (1)

where ϕ and ψ are dynamic variables and ξ1 and ξ2 are

Gaussian δ-correlated noises.. System of equations (1)
characterizes random walks in potential corresponding to

the superposition of interacting subcritical and postcritical

phase transitions. This system was derived with the use

of the Landau phase transition theory by expanding the

thermodynamic potential in order parameters of subcritical

and postcritical phase transitions with account for their

interaction and rotating the coordinate axes by π/4 [17].
In the case of numerical finite-difference integration,

system (1) takes the following form [17]:

ϕi+1 = (ϕi + ψi1t)(1 + ψ2
i 1t)−1 + pi1t0.5,

ψi+1 = (ψi + 2ϕi1t)(1 + ϕ2
i 1t)−1 + qi1t0.5, (2)

where pi and qi are vectors of Gaussian random numbers

with zero mean and variance σ 2 and 1t is the time

interval (integration step). At 1t → 0, system (2) matches

system (1), which has a non-stationary solution. At a finite

1t, the system has a stationary solution [18]. Stochastic

equations are specific in that the time differential is a

second-order infinitesimal with respect to the stochastic

variable differential [19]. The time interval is raised to a

power of 0.5 in Eqs. (2).
The second equation in systems (1) and (2) is the master

one, while the first equation is the slave. The solution of the

master equation characterizes the evolution of fluctuations

that have Gaussian
”
tails“ of the distribution function

(variable ψ). This allows one to use the classical expression

for entropy in estimation of the solution stability [20]. The

solution of the slave equation yields a self-similar random

process with a power-law distribution (variable ϕ). At

a critical noise intensity (σ1 = σ2 ≈ 1), the ϕ fluctuation

power spectrum assumes the shape of the spectrum of

flicker noise Sϕ ∼ 1/ f . The spectrum of variable ψ has

the form of Sψ = 1/ f 2.

Positive and negative fluctuations are the solution of

systems (1) and (2). Positive values of fluctuations are
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considered in the computer
”
sand heap“ model. System of

equations (1) and its numerical counterpart (2) characterize
random walks in two hyperbolic valleys of potential of

interacting phase transitions that lead to fluctuations of

different signs. If we introduce mirror reflection of phase

trajectories from the ordinate axis, only positive values of

variables will remain. This corresponds to the computer

”
sand heap“ model. Mirror reflection of trajectories is

effected by introducing the modulus sign into equations.

System (2) then takes the form

ϕi+1 = (|ϕi | + |ψi |1t)(1 + ψ2
i 1t)−1 + pi1t0.5,

ψi+1 = (|ψi | + 2|ϕi |1t)(1 + ϕ2
i 1t)−1 + qi1t0.5. (3)

The calculation of ϕi and ψi realizations was performed

in 16 384 integration steps with magnitude 1t = 0.02. An

ensemble of 128 realizations was used to determine the

distribution functions and power spectra. Numerical solu-

tions demonstrate that product ϕ(t)ψ(t) ≈ 1 is preserved;

consequently, the power spectrum of the quantity reciprocal

to ψ(t) (i.e., variable 1/ψ(t)) matches the spectrum of

self-similar random processes ϕ(t) and has the form of

S1/ψ ∼ 1/ f [20,21]. This property provides an opportunity

to derive a master stochastic equation for variable ψ(t)
based on system (1) and define variable ϕ(t) as a quantity

reciprocal to ψ:

ϕ =
ψ

ε + ψ2
,

dψ
dt

=
1

ψ
− σ 2

θ ψ + ξ(t), (4)

where ε is a small constant that excludes divergence of

reciprocal function 1/ψ when ψ accidentally approaches

zero. With the properties of white noise taken into account,

one may write σ 2
θ = σ 21t in numerical calculations [19,21].

The second equation of system (4) characterizes random

walks in a force field with a logarithmic potential. In the

case of numerical integration, system (4) takes the following

form (with mirror reflection of phase trajectories taken into

account):

ϕi =
ψi

ε + ψ2
i

,

ψi+1 = |ψi | +
|ψi |1t

ε + ψ2
i

− σ 2ψi1t2 + qi1t0.5. (5)

Figure 1 presents (in logarithmic coordinates) the P(ψ)
and P(ϕ) distribution functions averaged over an ensemble

of 128 realizations. At large values of ψ, the P(ψ)
distribution function has a Gaussian

”
tail,“ while the P(ϕ)

distribution function decreases as a power function at large

ϕ. The Gaussian behavior of
”
tails“ of variable ψ allows

one to estimate the stability of a random process with

the use of the formulae of classical statistics utilizing the

Gibbs−Shannon principle of maximum entropy [22–24].
The maximum entropy corresponds to the critical noise

value. Power spectra of fluctuations were determined

from calculated realizations by fast Fourier transform with
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Figure 1. P(ψ) (1) and P(ϕ) (2) distribution functions derived

from the numerical solutions of system (5). The dashed curve

represents the P ∼ ϕ−3 dependence.
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Figure 2. Power spectra of variables ψ(t) (1) and ϕ(t) (2) derived
from the numerical solutions of system (5).

subsequent averaging over an ensemble. Averaged power

spectra of variables ϕ and ψ are shown in Fig. 2. The

power spectrum of variable ϕ takes the form of Sϕ ∼ 1/ f
at a critical noise intensity (σc ≈ 1.4) that, owing to the one-
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Figure 3. Vortex trajectories of random processes ψ(t) (1) and ϕ(t) (2) in polar coordinates.

dimensionality of the second equation of system (5), is
√
2

times higher than the critical intensity in two-dimensional

systems (1) and (2). The power spectrum of variable ψ

takes the form of Sψ = 1/ f 2. The power spectra of variables

calculated from Eqs. (5) match the corresponding spectra

calculated based on system (3).

Positive power-law fluctuations from system (5) provide

an opportunity to characterize a self-similar vortex if

one switches over to the system of equations in polar

coordinates: r = ψ(t) and r = ϕ(t), angle θ = 2π1t−1t .
The obtained vortices are shown in Fig. 3. Fragment 1

in Fig. 3 corresponds to a vortex lacking self-similarity

r = ψ(t), since the P(ψ) distribution function has Gaussian

”
tails.“ Fragment 2 in Fig. 3 illustrates a self-similar vortex

r = ϕ(t) with a power-law distribution function.

Thus, an analytical approach to description of the com-

puter
”
sand heap“ model, which characterizes a self-similar

random process, was proposed. This approach involves

the use of a system of nonlinear stochastic equations,

which characterizes the stochastic dynamics in the context

of interacting non-equilibrium phase transitions, and its

viability was demonstrated through the example of a random

vortex. Fluctuation processes with a power-law behavior of

power spectra and distribution functions of fluctuations are

the solutions of proposed stochastic differential equations.
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