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Excitation and ionization of a particle in a double quantum well

by an extremely short light pulse
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The excitation and ionization of a particle in a double one-dimensional quantum well excited by an extremely

short light pulse is considered theoretically. In the sudden perturbation approximation, analytical expressions for

the population of bound states and the probability of ionization of the particle are obtained when the pulse duration

is shorter than the characteristic time associated with the energy of the ground state of the particle. It is shown that

the population of bound states and the ionization probability are determined by the ratio of the electrical area of

the pulse to the value of its atomic scale, which is inversely proportional to the characteristic size of the system in

the ground state. The results obtained demonstrate the possibility of controlling the ultrafast dynamics of electrons

in heterostructures based on double quantum wells.
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Introduction

Generation of electromagnetic impulses of femto- and

attosecond duration made it possible to study and control

the motion of wave packets in difference substances [1].
The results of recent experiments using attosecond impulses

demonstrated the ability to study the response of the

bound electrons in gas [2], to measure the delay in the

time response in the dielectric [3]. Using attosecond

impulses, it became possible to identify the impact of

the bonding between the nuclei and electrons on the

photoionization of the hydrogen molecule [4], to visualize

the induced electron coherence in real time [5], to control

the shape of the absorption line in the hydrogen molecule

using XUV attosecond impulses [6] and to obtain other

results that were important from the fundamental point

of view. The significance of the conducted research

was acknowledged by the recent Nobel Prize in physics

for the experimental methods of light attosecond impulse

generation to study the dynamics of electrons in the

substance [7].
Usually the ultrashort impulses generated in practice

from the regular sources, such as lasers with passive

synchronization of modes or attosecond impulses in the

units with the generation of high-order harmonics, contain

several half-waves of the field intensity, i.e. are bipolar [1–6].
And their electric area

SE ≡

+∞
∫

−∞

E(t)dt

(E(t) — intensity of the electric field in the specified point

of the space, t — time) is always close to zero. The limit

possibility for the reduction of the duration of laser impulses

in the specified spectral range is the generation of unipolar

impulses that contain the half-cycle of the single polarity

field intensity oscillations and have the non-zero electric

area [8].
Many papers [8–13] have been recently dedicated to the

study of the possibility to generate such monopolar impulses

and their interaction with the substance. These papers

resulted in development of a new area in the contemporary

optics —
”
optics of both unipolar and subcycle light“ [9].

Unipolar impulses may quickly transmit the impulse to

the charged particle in the same direction and, therefore,

may be used for ultrafast and effective control of the

quantum systems properties compared to the regular bipolar

impulses, charge acceleration, holography with ultrahigh

time resolution and other interesting applications [8–26].
Finally, if the impulse duration is less than the specific

time related to the energy of the particle ground state

(the period of electron rotation in the Bohr orbit), the

standard Keldysh theory of photoionization [27] becomes

inapplicable. In this case the impact of unipolar, half-cycle

impulses on the microobjects is determined by the electric

area of the impulse, and not its energy [8–26]. In such

case in order to characterize the extent of impact of half-

cycle impulses on the quantum systems, it is necessary to

introduce a new value — atomic measure of area, which

is inversely related to the specific size of the system in the

ground state multiplied by the electron charge [16,19].
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Figure 1. Double rectangular quantum wells and even and odd

internal wave functions of the particle in them.

The results of the early theoretical studies show the

possibility of using unipolar impulses with non-zero electric

area for the effective and ultrafast control of atomic and

molecular systems [9–19]. The papers [20–24] studied the

impact of the shortest impulses on the particle in the one-

dimensional potential well. Besides, a single rectangular

quantum well was considered, which either had a very

large depth (in the limit of the infinitely large), or a very

small depth [20,23], when the well had only one energy

level [22,24]. The case of the delta-shaped well (potential
of zero radius) was considered in the paper [21]. The

model of the one-dimensional rectangular potential well is

widely used in the problems of interaction of ultrashort

light impulses with various nanostructures, nanoparticles

etc. [28–30].
Structures from double quantum wells comprising a pair

of rectangular wells divided by a potential barrier are of

specific interest [31]. Such structures and their properties

are the subject of active research [32–35] in virtue of

their multiple applications in different fields of science and

engineering [28,31]. In the limit of the very narrow and

deep well such system may be roughly approximated by

two delta-shaped potential wells, i.e. the double zero radius

potential (ZRP)
This paper, based on the solution of the Schrödinger’s

equation in the approximation of sudden disturbances,

studies the interaction of the shortest impulses (SI) with

the particle in the double quantum well, comprising two

deep and narrow rectangular quantum wells separated by

the barrier (Fig. 1). The impulse duration is deemed to be

shorter than the specific time related to the energy of the

particle in the ground state, therefore, the analysis applies

the approximation of sudden disturbances [52–57]. It was

shown that the populations of the bound states and the

probability of ionization are determined by the ratio of the

electric area of the impulse to its measure, which is inversely

related to the specific size of such nanostructure.

The considered system of double
quantum wells

Let us consider the system of the double quantum well,

comprising two one-dimensional rectangular quantum wells

separated by a barrier (Fig. 1).
For simplicity of the analysis, we will consider the

wells to be very deep and simultaneously narrow, which

simplifies the analytical calculations, however, it does not

interfere with the common nature of the conclusions made.

In this case to simplify the calculations, we approximate this

potential function by two delta-shaped potential wells (two-
center ZRP). Wave functions and internal values of such

system energy may easily be found [58].
The stationary Schrödinger’s equation with such one-

dimensional potential has the following form

ψ′′ +
2m
~2

(E −U(x))ψ = 0, (1)

where the electron potential energy profile is assumed as

U(x) = −V0δ

(

x −
L
2

)

−V0δ

(

x +
L
2

)

, (2)

where V0 —
”
capacity“ of each well, L — distance between

the wells.

According to [58], such double well may either have even

or odd internal states. They are schematically shown in

Fig. 1. The expression for the wave function of even state

has the following form

ψeven(x) =



























Ceven

(

1 + eκ0L
)

eκ0(x+L/2), x ≤ −L/2,

Ceven

(

eκ0(x+L/2) + e−κ0(x−L/2)
)

= Ceveneκ0L/2cosh κ0x , −L/2 < x < L/2,

Ceven(1 + eκ0L)e−κ0(x−L/2), x ≥ L/2,

where the normalization factor is indicated

Ceven =

√

κ0

2eκ0L (eκ0L + 1 + κ0L)
,

and the indicator of the exponent κ0 is the solution to the

equation

κ0L =
mV0L

~2

(

1 + e−κ0L
)

. (3)

Similarly, the wave function of the odd state has the

following form

ψodd(x) =



























Codd

(

1 + eκ1L
)

eκ1(x+L/2), x ≤ −L/2,

Codd

(

eκ1(x+L/2) + e−κ1(x−L/2)
)

= Codd sinh κ1x , −L/2 < x < L/2,

Codd

(

1 + eκ1L
)

e−κ1(x−L/2), x ≥ L/2,
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with the normalization factor

Codd =

√

κ1

2eκ1L (eκ1L − 1− κ1L)
,

and the indicator of the exponent κ1 is the solution to the

transcendental equation

κ1L =
mV0L

~2

(

1− e−κ1L
)

. (4)

These expressions use the designation κ = 2m|E|
~2 , E —

particle energy in the bound state, which is found numer-

ically. If V0 <
~
2

mL , such well has always only one discrete

level of energy, corresponding to the even wave function

ψeven(x), which is the only solution to the equation (3). The
equation (4) in this case does not have non-trivial material

solutions. On the contrary, if V0 >
~
2

mL , the well contains two

discrete levels of energy, besides, the main level corresponds

to the even wave function ψeven(x), and the excited one —
to the odd one ψodd(x) [58]. Accordingly, in this case the

equation (3) and the equation (4) have the only solution for

the values κ0 and κ1. Solutions with complex κ1, compliant

with the solid spectrum, are not considered by us.

Theoretical consideration and discussion
of results

Dynamics of the quantum system in the external field of

SI is described by one-dimensional temporal Schrödinger’s

equation for the wave function of the electron 9(x , t) [59]:

i~
∂ψ

∂t
= [Ĥ0 + V (t)]9.

Here Ĥ0 — internal Hamiltonian of the system, ~ —
the reduced Planck’s constant. V (t) = −qxE(t) — energy

of system interaction with the SI field in the dipole

approximation, q — electron charge.

The duration of the attosecond impulses currently gen-

erated may already be shorter than the specific intraatomic

periods [60–67]. Therefore, to find the amplitudes of bound

states after the impulse, we will consider that the duration of

SI τ is shorter than the specific time related to the particle

energy in the ground state, Tg = 2π~/E , τ ≪ Tg = 2π~/E .
When τ ≪ Tg , Keldysh theory of photoionization be-

comes inapplicable [19,27], therefore, to find amplitudes

of bound states and probability of ionization, we will use

the approximation of the sudden disturbances introduced

by Migdal, Pauli and Schiff [52–54] and studied by other

authors [15,55–57]
In the approximation of sudden disturbances the wave

function of the particle after the impulse is recorded

as [15,17–19,23,24]:

9e(x) = ψ0(x)ei q
~

SE x . (5)

After SI passage the wave function of the particle 9e(x)
may be decomposed into internal functions of the non-

disturbed Hamiltonian of the system (in our case these
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Figure 2. The population of the ground (even) state after the

exposure of the medium to the shortest exciting impulse.

are states ψeven(x) and ψodd(x), introduced in the previous

section): 9e(x) =
∑

n anψn(x). Here an — amplitude of the

bound state (index n complies with either the even or the

odd state), expressions for which are recorded in the form

of

an =

∞
∫

−∞

ψ∗
n (x)ψeven(x)ei q

~
SE x dx . (6)

If before the arrival of the impulse the system was in

the ground state, i.e. ψeven(x), then from (6) it is easy to

produce the expression for the amplitude of the ground even

state after impulse passage:

aeven =

∞
∫

−∞

ψ2
even(x)ei q

~
SE x dx ,

and for the odd state:

aodd =

∞
∫

−∞

ψodd(x)ψeven(x)ei q
~

SE x dx .

Populations of these states are determined by the square of

the module of the corresponding amplitudes.

Let us introduce the following value:

SQW =
~

qL
,

which we will call the specific measure of electric area for

the double quantum well. This value is similar for other

simplest quantum systems [16,18,19,21–24]. Then from the

formulas (5),(6) we produce the following expressions for

the population of the ground (even) state after the exposure
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of the medium to the shortest exciting impulse:

wground = C4
evenL2e2κ0L

(

8κ0L

4κ20L2 + S2
E/S2

QW

)2

×

∣

∣

∣

∣

(1 + eκ0L) cos
SE

2SQW
+ κ0L

2SQW

SE
sin

SE

2SQW

∣

∣

∣

∣

2

(7)

and for the population of the excited (odd) state:

wexcited = 4C2
evenC

2
oddL2

∣

∣

∣

∣

(

(κ0 + κ1)L(2e(κ0+κ1)L + eκ1L − eκ0L)

(κ0 + κ1)2L2 + S2
E/S2

QW

+
(κ1 − κ0)L(eκ1L + eκ0L)

(κ1 − κ0)2L2 + S2
E/S2

QW

)

× sin
SE

2SQW
+

(

(eκ1L − eκ0L)

(κ0 + κ1)2L2 + S2
E/S2

QW

+
(eκ0L − eκ1L)

(κ1 − κ0)2L2 + S2
E/S2

QW

)

·
SE

SQW
· cos

SE

2SQW

∣

∣

∣

∣

2

. (8)

Remember that the odd state exists only if: V0 > ~
2/mL.

Finally, the probability of ionization of the double quan-

tum well may be produced as

w ioniz = 1− wground − wexcited. (9)

One can see that these populations and ionization are

determined by the ratio of the electric area of the impulse

to its atomic measure, which is proportionate to the

well width, and not the energy of impulses, which is

matched with the result of early studies for single quantum

wells, atoms, molecules and other systems [16,18,19,21–
24]. Note that the produced expressions are fair, when

τ ≪ Tg . The calculation results of the populations in this
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Figure 3. The population of the excited (odd) state after the

exposure of the medium to the shortest exciting impulse.
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Figure 4. The probability of electron ionization in the double

quantum well upon exposure of the medium to the shortest

exciting impulse.

approximation are matched with the results of the direct

numerical solution to the Schrödinger’s equation [18,22–24]
for different systems, therefore the issue on the feasibility of

this approximation in this paper is not considered (see some

comments on its applicability in the Appendix).
Dependences of the excitation probabilities of both levels

and the probability of ionization on the parameters of the

well and the electric area of the exposing impulse are

demonstrated in Fig. 2−4.

It is seen clearly from these figures that in case of

electric area close to zero the system remains in the ground

(even) state. The second excited state is not populated, no

ionization takes place. This circumstance is quite evident,

since the electric area of the impulse has the sense of the

transmitted mechanical impulse to the system, which in this

case is equal to 0.

As the electric area grows, when it becomes comparable

or exceeds the measure SQW , the population of the second

state and the probability of ionization increase. It is

evident that in this case the half-cycle impulse of the field

quickly transmits the mechanical impulse to the system

that is already comparable to its measure SQW , which

results in its quick excitation and ionization. The produced

results show the possibility of ultrafast control of electron

dynamics in the double quantum wells, which opens the

new opportunities for the studies in this area using half-

cycle impulses.

Conclusion

This paper, based on the approximated solution to

the Schrödinger’s equation in the approximation of sud-

den disturbances, produced analytical expressions for the

populations of the even and odd states and probability

of particle ionization in the double rectangular quantum

well, excited by a single SI with duration of shorter
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than the specific time, related to the particle energy in

the ground state, Tg = 2π~/E . The wells are assumed

to be deep and narrow, which makes it possible to

approximate them with delta-shaped wells. However, it does

not interfere with the common nature of the conclusions

made.

The produced expressions show that in this case the value

of populations and probability of ionization is determined

as the ratio of the electric area of the impulse to its atomic

measure. This conclusion is compliant with the early studies

of authors for the atomic, molecular systems and single

quantum wells, both one- and three-dimensional ones [16–
26]. These results show that the half-cycle impulses with

non-zero electric area make it possible to provide noticeable

and quick excitation and ionization of electrons in the

double quantum wells in contrast to the bipolar impulses

with the area close to zero.

The produced results may be used in analysis of electron

excitation in the heterostructures based on double quantum

wells by shortest impulses. The conducted research shows

the new opportunities in using half-cycle impulses for

ultrafast excitation of the quantum wells on the basis of

double quantum wells and therefore opens new directions

for research in the optics of unipolar light and physics of

heterostructures.

Funding

This study was supported financially by the Russian

Science Foundation, project No. 21-72-10028.

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

On compliance with the results,
produced within the standard theory of
disturbances and approximation of sudden
disturbances

We would like to note that in the limit of the weak

field the results produced with the help of approximation of

sudden disturbances reduce to the result produced within

the regular theory of disturbances. This corresponds to the

case when the intensity of the exciting field is much less

than the intraatomic field in the system and the duration of

the exciting impulse is much less than the specific time of

the internal dynamics of the quantum system.

In this case it is easy to show that the approximated

solution to the Schrödinger’s equation using the standard

theory of disturbances and the approximated solution to the

Schrödinger’s equation using the approximation of sudden

disturbances match precisely. This issue was previously

discussed in [15]. Below this circumstance was considered

in detail.

Indeed, the solution to the Schrödinger’s equation in the

approximation of the sudden disturbance has the following

form

ψ(r̄ , t) = ψ(r̄,−∞) · e

iq
~

r̄
t
∫

−∞

Ē(t′)dt′

, (51)

where it is assumed that the exciting impulse starts acting

at the moment of time t = −∞.

In the standard theory of disturbances, which is fair for

the small amplitudes of exciting field, the population of

the bound n-state of the quantum well is provided as the

expression

wn =
d2

kn

~2

∣

∣

∣

∣

∣

∣

t
∫

0

E(t′)eiωknt′dt′

∣

∣

∣

∣

∣

∣

2

. (52)

First we will assume that initially the system was in k-th
state, dkn — dipole moment of transition between k-th and

n-th energy level, ωkn — frequency of this transition.

Approximation of the sudden disturbances is used, when

the duration of the exposure is shorter than the specific time

of the system:

ωknτp ≪ 1. (53)

(see Schrödinger’s equation (2), where you can neglect

the internal Hamiltonian, Ĥ0 for the time of exposure, see

also [68]). Physically it means that for the time of impulse

exposure the electron will not manage to shift noticeably

in the orbit. However, the field should not be so strong to

remove the electron from the orbit, which imposes certain

limitations on the amplitude of excitation impulses as well

(see in more detail the applicability of approximations of

sudden disturbances in [69,70]).

In this case the population of the state with the number

from the expression (P1) is determined in the following

manner:

wn =

∣

∣

∣

∣

∣

∣

∣

∫

R

ψk(r̄) · e

iq
~

r̄
t
∫

0

Ē(t′)dt′

ψn(r̄)dr̄

∣

∣

∣

∣

∣

∣

∣

2

. (54)

When the field amplitude is small, the exponent under the

integral sign may be decomposed in the following series:

e

iq
~

r̄
t
∫

0

Ē(t′)dt′

≈ 1 +
iq
~

r̄

t
∫

0

Ē(t′)dt′. (55)

Then, using the condition of orthogonality of the system

wave functions, we get for the populations in approximation
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of the sudden disturbances

wn =

∣

∣

∣

∣

∣

∣

∫

R̄

ψk(r̄) ·



1 +
iq
~

r̄

t
∫

0

Ē(t′)dt′



ψn(r̄)dr̄

∣

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∣

∫

R̄

ψk(r̄) ·
iq
~

r̄

t
∫

0

Ē(t′)dt′ · ψn(r̄)dr̄

∣

∣

∣

∣

∣

∣

2

=
q2

~2

∣

∣

∣

∣

∣

∣

∫

R̄

ψk(r̄) · r̄ · ψn(r̄)dr̄

∣

∣

∣

∣

∣

∣

2

·

∣

∣

∣

∣

∣

∣

t
∫

0

Ē(t′)dt′

∣

∣

∣

∣

∣

∣

2

=
d2

kn

~2

∣

∣

∣

∣

∣

∣

t
∫

0

Ē(t′)dt′

∣

∣

∣

∣

∣

∣

2

, k 6= n. (56)

The expression produced in this manner in approximation

of the sudden disturbances in the approximation of the weak

field matches the expression (P2) for the populations within

the standard theory of disturbances, where one can neglect

the exponent under the integral as a result of meeting the

condition ωknτp ≪ 1.

Therefore, this analysis illustrates that at small amplitude

of the exciting impulse the calculation results of the

populations in the approximation of the sudden disturbances

reduce to the results produced within the standard theory

of disturbances.
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