06;10

Связанные ориентационные эффекты и большая анизотропия эффективных параметров новых 2–1–2-композитов на основе сегнетоэлектриков

© В.Ю. Тополов

Южный федеральный университет, Ростов-на-Дону, Россия E-mail: vutopolov@sfedu.ru

Поступило в Редакцию 26 февраля 2024 г. В окончательной редакции 15 апреля 2024 г. Принято к публикации 15 апреля 2024 г.

Исследованы ориентационные зависимости коэффициентов электромеханической связи k_{3j}^* , параметров приема $(Q_{3j}^*)^2$ и факторов их анизотропии в 2–1–2-композитах при поворотах главных кристаллографических осей [011]-поляризованного сегнетоэлектрического кристалла и оснований сегнетокерамических стержней. Проанализировано выполнение условий большой анизотропии $|k_{33}^*/k_{3f}^*| \ge 5$ и $(Q_{33}^*/Q_{3f}^*)^2 \ge 10$ с учетом двух мод вращения в композитах на основе одного из кристаллов: 0.935Pb(Zn_{1/3}Nb_{2/3})O₃-0.065PbTiO₃ или 0.72Pb(Mg_{1/3}Nb_{2/3})O₃-0.28PbTiO₃. Результаты следует учитывать при создании высокоэффективных пьезоактивных композитов для преобразователей, сенсоров, акустических и энергосберегающих устройств.

Ключевые слова: пьезоактивный композит, ориентационные зависимости, анизотропия, коэффициент электромеханической связи, параметр приема.

DOI: 10.61011/PJTF.2024.15.58435.19906

В настоящее время связности 2-2- и 1-3-композитов на основе сегнетоэлектриков (СЭ) [1-3] являются весьма востребованными, а модификации структур таких композитов [4,5] способствуют улучшению ряда параметров для практических приложений, основанных на пьезоэффекте. К таким параметрам относятся коэффициенты электромеханической связи (КЭС) [1-3,5] и параметры приема (ПП) [4], которые связаны с преобразованиями энергии вследствие пьезоэффекта. Предложенный недавно трехкомпонентный 2-1-2-композит [4] характеризуется сочетанием элементов связности 2-2 и 1-3, которые ранее часто рассматривались порознь в различных композитных структурах. Совместное влияние 2-2- и 1-3-структур и ориентационных эффектов на эффективные физические свойства и родственные параметры различных 2-1-2-композитов исследовано мало. Цель настоящей работы состоит в анализе ориентационных эффектов и факторов, влияющих на большую анизотропию КЭС и ПП в 2-1-2-композитах СЭ-кристалл-СЭ-керамика-полимер.

Предполагается, что параллельно соединенные слои 2-1-2-композита (рис. 1) периодически распределены вдоль оси OX_1 . Первый (главный) СЭ-компонент — полидоменный кристалл (вставка *a* на рис. 1), главные кристаллографические оси *X*, *Y*, *Z* которого удовлетворяют условиям *X* || $[0\bar{1}1] || OX_1, Y || [100] || OX_2, Z || [011] || <math>\mathbf{P}_s^{(1)} || OX_3$. Второй СЭ-компонент представлен системой длинных керамических стержней, параллельных оси OX_3 и обладающих остаточной поляризацией $\mathbf{P}_r^{(2)} || OX_3$. Данные стержни в форме эллиптического цилиндра расположены периодически в полимерной матрице (вставка *b* на рис. 1), формируя

1–3-структуру внутри слоев, соседствующих с кристаллическими слоями. Ось OX_3 является осью поляризации 2–1–2-композита. Поворот на угол α главных кристаллографических осей X, Y вокруг Z || OX_3 (вставка a на рис. 1) и поворот на угол γ эллиптических оснований керамических стержней вокруг OX_3 (вставка b на рис. 1) во всех слоях осуществляются против часовой стрелки при рассмотрении с вершины оси OX_3 .

Эффективные электромеханические свойства (т.е. полный набор диэлектрических, пьезоэлектрических и упругих свойств) 2-1-2-композита определены в четыре этапа. Первый этап предполагает определение свойств кристалла в зависимости от угла поворота а. На втором этапе в рамках метода эффективного поля [6] определяют свойства слоя керамика-полимер (1-3-структура) при $\gamma = 0^{\circ}$ (вставка *b* на рис. 1) в зависимости от объемной концентрации m_c керамических стержней и отношения длин полуосей $\eta_c = a_1/a_2$ основания стержня. На третьем этапе свойства слоя керамика-полимер определяют с учетом поворота оснований стержней на угол у. Четвертый этап связан с определением эффективных свойств 2-1-2-композита с помощью матричного метода [4,7], применяемого к 2-2-структуре в интервале объемных концентраций кристалла 0 < m < 1.

Рассматриваемые нами КЭС

$$k_{3i}^* = d_{3i}^* / (\varepsilon_{33}^{*\sigma} s_{ii}^{*E})^{1/2} \tag{1}$$

и ПП

$$(Q_{3j}^*)^2 = d_{3j}^* g_{3j}^* \tag{2}$$

зависят от *m*, m_c , η_c , α и γ . В формуле (1) d_{3j}^* — пьезомодуль, $\varepsilon_{33}^{*\sigma}$ — диэлектрическая проницаемость

Рис. 1. Схематическое изображение 2-1-2-композита с двумя СЭ-компонентами. $(X_1X_2X_3)$ — прямоугольная система координат, *m* и 1-m — объемные концентрации СЭ-кристалла и слоев СЭ-керамика—полимер соответственно, $\mathbf{P}_s^{(1)}$ — спонтанная поляризация СЭ-кристалла, $\mathbf{P}_{s,i}$ — спонтанная поляризация домена *i*-го типа в СЭ-кристалле.

при механическом напряжении $\sigma = \text{const}, s_{jj}^{*E}$ — упругая податливость при электрическом поле E = const. Пьезокоэффициенты g_{3j}^* из (2) можно определить [7] с помощью формулы $d_{fk}^* = \varepsilon_{fj}^{*\sigma} g_{jk}^*$. ПП $(Q_{3j}^*)^2$ из (2) характеризуют отношение сигнал—шум в приложениях, связанных с продольным (j = 3) или поперечным (j = 1, 2) пьезоэффектом [7].

Эффективные параметры (1), (2) исследованы для 2-1-2-композитов на основе одного из [011]-поляризованных кристаллов релаксоров-сегнетоэлектриков: $0.935Pb(Zn_{1/3}Nb_{2/3})O_3 - 0.065PbTiO_3$ (PZN-0.065PT, значения упругих податливостей s^{E}_{ab} , пьезомодулей d_{ij} и диэлектрических проницаемостей $\varepsilon^{\sigma}_{pp}$ заимствованы из работы [8]) или 0.72Pb(Mg_{1/3}Nb_{2/3})O₃-0.28PbTiO₃ (РМN-0.28РТ, значения s^{E}_{ab} , d_{ij} и $\varepsilon^{\sigma}_{pp}$ заимствованы из работы [9]). Оба композита содержат СЭ-керамику $Li_{0.03}(K_{0.48}Na_{0.52})_{0.97}(Nb_{0.8}Ta_{0.2})O_3$ (KNNLT, значения модулей упругости c^{E}_{ab} , пьезокоэффициентов e_{ij} и диэлектрических проницаемостей ε_{pp}^{ξ} заимствованы из работы [10]) и полиэтилен (РЕ) [7]. С учетом макроскопической симметрии компонентов и композита в целом формулу (2) можно записать в виде $(Q_{3i}^*)^2 = (d_{3i}^*)^2 / \varepsilon_{33}^{*\sigma}.$

Примеры ориентационных зависимостей эффективных пьезоэлектрических свойств, КЭС и ПП представлены на рис. 2. Результаты относятся к композитам с большим отношением длин полуосей эллиптического сечения стержней $\eta_c = 100$. В таком случае при объемных концентрациях СЭ керамики $m_c \ll 1$ слой

Письма в ЖТФ, 2024, том 50, вып. 15

керамика-полимер обладает значительной анизотропией упругих и пьезоэлектрических свойств.

Анализируя рис. 2, a и b, отметим, что по сравнению с поворотом оснований керамических стержней поворот главных кристаллографических осей Х, У кристалла приводит к более заметным изменениям КЭС k_{31}^* и k₃₂ композита. Такое различие обусловлено высокой пьезоактивностью СЭ-кристалла по сравнению с пьезоактивностью слоя СЭ-керамика-полимер, а также изменением знака пьезомодуля d'₃₂ кристалла PZN-0.065PT вблизи $\alpha = 56^{\circ}$. Добавим, что при $\alpha = 56^{\circ}$ пьезомодули $d'_{31} = -1430 \,\mathrm{pC/N}$ и $d'_{33} = 1570 \,\mathrm{pC/N}$ кристалла PZN-0.065PT различаются по абсолютной величине всего на 9.8%. Эти факторы способствуют изменениям знаков КЭС k_{31}^* , k_{32}^* (рис. 2, a, b) и пьезомодудей d_{31}^* , d_{32}^* композитов (кривые 1, 2 на рис. 2, с) при определенных углах α^* , которые изменяются с изменением объемных концентраций т и тс. Монотонное возрастание КЭС k_{31}^* и $|k_{32}^*|$ в интервале $0 \leq \gamma \leq 90^\circ$ (рис. 2, b) тесно связано с монотонными изменениями пьезомодулей d_{3i}^* и упругих податливостей s_{11}^{*E} , s_{22}^{*E} . Постоянство КЭС k_{33}^* при варьировании угла γ в случаях $m = {
m const}$ и $m_c = \text{const}$ (кривые 3 и 6 на рис. 2, b) объясняется отсутствием причин изменения продольного отклика композита (d_{33}^* , $\varepsilon_{33}^{*\sigma}$ и s_{33}^{*E} согласно формуле (1)) для данной моды вращения.

Графики на рис. 2, c-e построены для композитов, в которых слои керамика-полимер вследствие большой объемной концентрации $(1 - m \gg m)$ заметно влияют на углы α^* . Изменения эффективных параметров d_{3f}^* ,

Рис. 2. Ориентационные зависимости КЭС k_{3j}^* (a,b), пьезомодулей d_{3j}^* , пьезокоэффициентов g_{3j}^* и ПП $(Q_{3j}^*)^2$ (c-e)2–1–2-композитов кристалл PZN–0.065PT-керамика KNNLT-полиэтилен (a-c) и кристалл PMN–0.28PT-керамика KNNLT-полиэтилен (d, e). Объемная концентрация керамики KNNLT $m_c = 0.03$ (a-d) или 0.10 (e).

$lpha,^{\circ}$	$\gamma=0^\circ$		$\gamma=30^\circ$		$\gamma=60^\circ$		$\gamma=90^\circ$	
	m_{k-up}	m _{Q-up}						
Композит кристалл PZN-0.065PT-керамика KNNLT-полиэтилен								
51 52 53	0.290 0.253 0.220	0.154 0.133 0.115	0.466 0.423 0.383	0.166 0.134 0.106	0.479 0.538 0.501	0.195 0.157 0.125	0.424 0.563 0.529	0.221 0.193 0.169
Композит кристалл PMN-0.28PT-керамика KNNLT-полиэтилен								
55 56 57	0.515 0.485 0.456	0.121 0.107 0.094	0.653 0.628 0.602	0.112 0.090 0.070	0.735 0.715 0.694	0.125 0.099 0.075	0.752 0.733 0.714	0.165 0.144 0.124

Наибольшие объемные концентрации m_{k-up} и m_{Q-up} кристалла, удовлетворяющие соответственно условиям (3) и (4) в 2-1-2-композитах при $m_c = 0.03$

 g_{3f}^{*} и $(Q_{3f}^{*})^{2}$ (f = 1, 2) обусловлены либо заменой кристаллического компонента (ср. рис. 2, с и d), либо увеличением объемной концентрации mc керамики KNNLT в упомянутых выше слоях (ср. рис. 2, d и e). Для сравнения отметим, что в кристалле PMN-0.28PT условие $d'_{32} = 0$ выполняется вблизи $\alpha = 58^{\circ}$, причем по абсолютной величине пьезомодули $d'_{31} = -702\,\mathrm{pC/N}$ и $d'_{33} = 860 \,\mathrm{pC/N}$ различаются примерно на 23%. Меньшие значения d'_{33} и $|d'_{31}|$ РМN-0.28РТ, чем в случае PZN-0.065PT, обусловливают уменьшение эффективных параметров композита, как следует из сравнения рис. 2, с и d. С увеличением объемной концентрации m_c уменьшаются упругие податливости $|s^E_{ab,c-p}|$ слоя керамика-полимер, что сдерживает возрастание поперечных пьезомодулей $|d_{3f}^*|$, пьезокоэффициентов $|g_{3f}^*|$ и ПП $(Q_{3f}^*)^2$ (ср. данные рис. 2, *d* и *e* при $\alpha = \text{const}$). Поворот оснований керамических стержней на угол $\gamma = 90^{\circ}$ способствует ослаблению пьезоэффекта вдоль осей ОХ1 и OX_2 за счет отдельных упругих податливостей $s^E_{ab\ c-n}$.

Условия большой анизотропии КЭС

$$|k_{33}^*/k_{31}^*| \ge 5, \quad |k_{33}^*/k_{32}^*| \ge 5 \tag{3}$$

и ПП

$$(Q_{33}^*/Q_{31}^*)^2 \ge 10, \quad (Q_{33}^*/Q_{32}^*)^2 \ge 10$$
 (4)

выполняются в интервалах объемных концентраций кристалла $[m_{k-low}; m_{k-up}]$ и $[m_{Q-low}; m_{Q-up}]$ соответственно. Анализ выражений (3) с учетом (1) указывает на важную роль упругих податливостей s_{11}^{*E} , s_{22}^{*E} и s_{33}^{*E} в формировании большой анизотропии КЭС k_{3j}^* . При этом анизотропия пьезомодулей d_{3j}^* влияет на выполнение всех условий (3), (4). Вследствие связанных ориентационных эффектов в 2-1-2-композитах удается обеспечить эффективное преобразование энергии вдоль оси поляризации OX_3 . Слои керамика-полимер существенно влияют на выполнение условий (3) и (4), и для обоих композитов нижняя граница объемных концентраций кристалла $m_{k-low} = m_{Q-low} = 0.001$. Верхние границы объемных концентраций m_{k-up} и m_{Q-up} изменяются в зависимости от кристалла и углов α и γ (см. таблицу), обеспечивая большие значения продольных КЭС k_{33}^* и ПП $(Q_{33}^*)^2$. Например, для композита на основе PZN-0.065PT при $\alpha = 52^\circ$ и m = 0.20 имеем $k_{33}^* = 0.841$ и $(Q_{33}^*)^2 = 110 \cdot 10^{-12} \,\mathrm{Pa}^{-1}$, т.е. 0.934 k_{33} и 2.15 $(Q_{33})^2$ (обозначения без звездочек относятся к кристаллу). Для композита на основе PMN-0.28PT при $\alpha = 56^\circ$ и m = 0.14 определены значения $k_{33}^* = 0.841 = 0.947k_{33}$ и $(Q_{33}^*)^2 = 80.2 \cdot 10^{-12} \,\mathrm{Pa}^{-1} = 3.72(Q_{33})^2$. Приведенные значения ПП $(Q_{33}^*)^2$ обоих композитов больше ПП $(Q_{33})^2 = 59 \cdot 10^{-12} \,\mathrm{Pa}^{-1}$ [11] текстурированной керамики Pb $(\mathrm{Mg}_{1/3}\mathrm{Nb}_{2/3})\mathrm{O}_3$ -PbZrO₃-PbTiO₃.

Проведенные исследования 2-1-2-композитов с двумя СЭ-компонентами иллюстрируют важную роль связанных ориентационных эффектов в формировании пьезоэлектрических свойств, КЭС k_{3i}^* из (1) и ПП $(Q_{3i}^*)^2$ из (2). Углы поворота 50 < α < 60° и γ = 90° способствуют большой анизотропии КЭС и ПП вследствие варьирования анизотропии упругих и пьезоэлектрических свойств слоев композита, а также благодаря изменению знака пьезомодуля d'_{32} кристалла, поляризованного вдоль [011]. Выполнение условий (3) и (4) в достаточно широких интервалах объемных концентраций *т* кристалла при концентрациях керамики $m_c \ll 1$ следует учитывать при разработке новых композитов с элементами связностей 1-3 и 2-2 для пьезоэлектрических преобразователей, сенсоров, а также элементов акустических, энергосберегающих и других устройств.

Финансирование работы

Работа выполнена при поддержке Южного федерального университета (договор 176/22-Д от 11.07.2022 г.).

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

Список литературы

- Z. Ma, N. Jia, C. Li, L. Ning, Y. Dang, H. Du, F. Li, Z. Xu, Mater. Lett., **353**, 135284 (2023). DOI: 10.1016/j.matlet.2023.135284
- [2] H. Qin, H. Lu, X. Shen, Z. Xin, B. Yang, Sensors Actuators A, 366, 115024 (2024). DOI: 10.1016/j.sna.2024.115024
- [3] L. Ning, N. Jia, C. Wang, Z. Ma, Y. Dang, C. Sun, H. Du,
 Z. Xu, F. Li, Sensors Actuators A, 367, 115023 (2024).
 DOI: 10.1016/j.sna.2024.115023
- [4] V.Yu. Topolov, Smart Mater. Struct., 32 (8), 085010 (2023).
 DOI: 10.1088/1361-665X/acdcd4
- [5] J. Zhang, J. Wang, C. Zhong, L. Qin, Compos. Struct., 32, 117406 (2023). DOI: 10.1016/j.compstruct.2023.117406
- [6] J.H. Huang, W.-S. Kuo, J. Appl. Phys., 81 (3), 1378 (1997). DOI: 10.1063/1.363874
- [7] J.I. Roscow, V.Yu. Topolov, C.R. Bowen, H. Khanbareh, Innovative piezo-active composites and their structure-property relationships (World Scientific, Singapore, 2022), p. 9, 76-81. DOI: 10.1142/13003
- [8] S. Zhang, L.C. Lim, AIP Adv. 8 (11), 115010 (2018).
 DOI: 10.1063/1.5064418
- [9] G. Liu, W. Jiang, J. Zhu, W. Cao, Appl. Phys. Lett., 99 (16), 162901 (2011). DOI: 10.1063/1.3652703
- [10] F.-Z. Yao, K. Wang, J.-F. Li, J. Appl. Phys., 113 (17), 174105 (2013). DOI: 10.1063/1.4803711
- [11] Y. Yan, K.-H. Cho, D. Maurya, A. Kumar, S. Kalinin, A. Khachaturyan, S. Priya, Appl. Phys. Lett., **102** (4), 042903 (2013). DOI: 10.1063/1.4789854