05,08

Детектирование спин-волновых возбуждений доменной структуры в пленке железо-иттриевого граната с помощью обратного спинового эффекта Холла

© С.Л. Высоцкий^{1,2}, М.Е. Селезнев¹, Ю.В. Никулин^{1,2}, А.В. Кожевников¹, Г.М. Амаханов^{1,3}, А.Г. Темирязев⁴

¹ Саратовский филиал Института радиотехники и электроники им. В.А. Котельникова РАН, Саратов, Россия

² Саратовский государственный университет им. Н.Г. Чернышевского,

Саратов, Россия ³ Саратовский государственный технический университет им. Ю.А. Гагарина,

Саратов, Россия

⁴ Фрязинский филиал Института радиотехники и электроники им. В.А. Котельникова РАН,

Фрязино, Россия

E-mail: vysotsl@gmail.com

Поступила в Редакцию 18 апреля 2024 г. В окончательной редакции 18 апреля 2024 г. Принята к публикации 8 мая 2024 г.

> С помощью обратного спинового эффекта Холла исследована генерация ЭДС в волноводе из эпитаксиальной пленки железо-иттриевого граната (ЖИГ) кристаллографической ориентации (111) толщиной 15.6 μ m, размерами 10 × 5 mm, на поверхность которой была нанесена полоска платины толщиной 4 nm, шириной 25 μ m и длиной 4 mm, при использовании в качестве накачки спин-волновых возбуждений доменной структуры. Касательное к поверхности структуры поле подмагничивания направлялось параллельно кристаллографической оси $\langle 1\bar{1}0 \rangle$ пленки ЖИГ. Показана возможность регистрации ЭДС как в случае синфазных и противофазных колебаний намагниченности в доменах, так и для волн смещения доменных границ. Исследована зависимость уровня измеряемой ЭДС от типа спин-волнового возбуждения и величины поля подмагничивания. Показано, что вольт-ваттная чувствительность (отношение ЭДС к мощности спинволнового возбуждения) может быть соизмерима с аналогичным параметром для насыщенных пленок ЖИГ.

> Ключевые слова: поверхностные магнитостатические волны, эпитаксиальная пленка железо-иттриевого граната, магнитные домены, платина.

DOI: 10.61011/FTT.2024.07.58373.34HH

1. Введение

Генерация тока носителей заряда в пленке платины, нанесенной на поверхность пленки железо-иттриевого граната (ЖИГ), за счет обратного спинового эффекта Холла [1] представляет интерес для создания энергоэффективной элементной базы на принципах спинтроники [2]. В такой структуре в условиях как резонансной СВЧ накачки [3–5], так и при возбуждении в пленке ЖИГ спиновых волн (СВ) [6–8] в пленке платины генерируется ток носителей заряда

$$\mathbf{I}_{e} \propto |I_{s,n}| \, [\mathbf{n} \times \mathbf{m}], \tag{1}$$

где **n** и **m** — единичные векторы вдоль нормали к поверхности пленки ЖИГ и намагниченности, $I_{s,n}$ — компонента спинового тока вдоль нормали **n**. Измеряемой в эксперименте величиной является $U = I_e R$, где R сопротивление пленки платины. Наиболее часто ОСЭХ исследуется при величинах поля подмагничивания H, достаточных как для намагничивания пленки ЖИГ до насыщения, так и для запрета развития процессов трехмагнонной параметрической неустойчивости [9], ограничивающих величину U [10]. При уменьшении поля H до величин $H < H_s$, где H_s — поле насыщения, в пленке ЖИГ формируются доменные структуры (ДС), способные поддерживать спин-волновые возбуждения, обусловленные синфазными и противофазными колебаниями намагниченности в доменах, а также волнами смещения доменных границ [11–20]. Малые величины H, необходимые для их наблюдения, привлекают перспективой использования ОСЭХ в ДС в устройствах спинтроники. В [21] была показана возможность генерации ЭДС в структурах ЖИГ–Рt при $H < H_s$, однако особенность ОСЭХ и зависимость его эффективности для разных видов спин-волновых возбуждений при перестройке поля подмагничивания не рассматривались.

В настоящей работе исследуется генерация ЭДС в структуре ЖИГ(111)—Рt по механизму обратного спинового эффекта Холла при намагничивании пленки ЖИГ в направлении оси легкого намагничивания $\langle 1\bar{1}0 \rangle$ при величинах поля подмагничивания H, меньших поля насыщения.

2. Исследуемая структура и методика эксперимента

Исследовалась структура, полученная на основе пленки ЖИГ кристаллографической ориентации (111) толщиной 15.6 µm, с намагниченностью насыщения $4\pi M = 1750$ G. Из пленки был вырезан волновод с плоскостными размерами 10 × 5 mm, на поверхности которого с помощью технологий магнетронного напыления, фотолитографии и ионного травления была изготовлена ориентированная вдоль длинной стороны волновода полоска из платины толщиной 4 nm, длиной 4 mm, шириной 25 µm, ее сопротивление равнялось $\sim 12 \, k\Omega$. Структура устанавливалась в макет линии задержки (далее — макет) поверхностных магнитостатических волн (ПМСВ) с проволочными антеннами диаметром 40 µm с расстоянием между ними 7 mm, который размещался между плюсами электромагнита. Поле подмагничивания направлялось перпендикулярно длинной оси волновода, что соответствовало направлению кристаллографической оси (110). Под макетом размещалась светодиодная матрица с поляризатором, свет от которой падал на структуру ЖИГ-Рt через отверстие в основании макета. Прошедший через сткруктуру свет попадал на анализатор поляризационного микроскопа, к окуляру которого прикладывалась цифровая камера для регистрации полученного изображения. Контакты к полоске платины для измерения ЭДС выполнялись с помощью токопроводящего клея. Измерения частотных зависимостей модуля $S_{12}(f)$ и фазы $S_{12}^{\varphi}(f)$ коэффициента передачи макета проводились с помощью векторного анализатора цепей М9374А при величине поступающей на антенну мащности $P_{in} \approx 30 \, \mathrm{dBm}$. Регистрировались также частотные зависимости отраженной от входной антенны мощности $S_{22}(f)$. Измерение частотных зависимостей ЭДС проводилось при $P_{in} \approx 7 \, \mathrm{dBm}$ для увеличения уровня регистируемого сигнала. Модуляция СВЧмощности сигналом в виде меандра с частотой 11.3 kHz позволяла проводить измерение ЭДС с помощью синхронного детектора.

Вид ДС исследовался с помощью поляризационного микроскопа (в процессе проведения измерений одновременно $S_{12}(f)$ и U(f)), при этом использование в оптической схеме микроскопа окуляров с различным увеличением позволяло как рассматривать детали ДС, так и проводить наблюдение большей площади в области расположения полоски платины для контроля за возможным формированием блочной структуры [12]. Проводилось также исследование поверхностной структуры ДС с помощью магнитно-силовой микроскопии.

При проведении измерений исследуемая структура намагничивалась в поле H = 110 Ое, после чего величина H уменьшалась. При выбранных величинах H проводилась регистрация частотных зависимостей параметров спин-волновых возбуждений и изображения ДС аналогично [12–17]. В нашем случае дополнительно

Рис. 1. Частотные зависимости модуля коэффициента передачи $S_{12}(f)$ (кривые *I*) и ЭДС (кривые *2*) для входной мощности ~ 30 и ~ 7 dBm соответственно, при указанных на рисунке величинах *H*.

регистрировалась частотная зависимость генерируемой в полоске платины ЭДС.

3. Результаты измерений

На рис. 1, *а* кривая *1* показывает зависимость $S_{12}(f)$ ПМСВ для H = 110 Ое, когда пленка ЖИГ находится в насыщенном состоянии. Низкочастотная граница полосы частот наблюдения ПМСВ показана на рис. 1, *а* стрелкой и обозначена $f_1 = 1.23$ GHz. Назовем область частот

наблюдения ПМСВ в насыщенной пленке ЖИГ SWE1 (spin-wave excitation 1).

При изменении H до величины $H_s \approx 61$ Ое (рис. 1, b) частота f_1 уменышается до 0.945 GHz. Дальнейшее уменьшение H до $H_1 \approx 60$ Ое приводит к разделению полосы наблюдения SWE1 на две области SWE2 и SWE3 с низкочастотными границами f_2 и f_3 см. кривую I на рис. 1, c для H = 55 Ое. Полоса наблюдения SWE2 наблюдается при уменьшении Hдо $H_2 = 32$ Ое, при этом частота f_2 увеличивается до 1.07 GHz (см. кривые I на рис. 1, c-e). Полоса наблюдения SWE3 перестает регистрироваться при уменьшении H до H = 40 Ое, при этом частота $f_2 = 0.78$ GHz. В интервале $H_3 = 26 < H < H_2 = 32$ Ое на выходной антенне сигналов на уровне наводки не наблюдалось.

При 3 Ое $< H < H_3$ в области частот 0.3–0.35 GHz наблюдается SWE4 (см. рис. 1, *f* для H = 17 Ое). Зависимости частот f_1-f_4 от H иллюстрирует рис. 2, *a*. Видно, что для SWE f_1-f_3 они имеют характер, близкий к монотонному, тогда как частота f_4 , равная при 26 Ое 0.329 GHz, при уменьшении H до 15 Ое увеличивается до 0.35 GHz, а затем уменьшается до 0.3 GHz при H = 3 Ое.

Следует отметить, что наличие гармоник в спектре выходного сигнала использованного анализатора цепей могло влиять на результаты измерений. Так, уровень третьей гармоники был всего на 10 dB ниже уровня сигнала накачки f_{gen} . При сканировании в области частот вблизи $f_{\text{gen}} \approx 0.3$ GHz частоты третьей гармоники ~ 0.9 GHz в интервале 40 < H < 60 Oe попадали в полосы существования SWE2 и SWE3, что приводило к регистрации на частотах ~ 0.3 GHz как сигнала $S_{12}(f)$, так и U(f) (см. выделенные рамкой области на рис. 1, c и d). Далее эти паразитные сигналы не рассматриваются.

Отметим, что для SWE1 при 110 Oe > $H > H_s$ обусловленные третьей гармоникой сигналы не наблюдаются (см. рис. 1, *a*), по-видимому, вследствие ограничения мощности MCB из-за развития трехмагнонных процессов [9]. В случае SWE2 и SWE3 возникновение паразитных сигналов становится возможным, поскольку в доменных структурах пороговые мощности для развития нелинейных процессов выше, чем для насыщенных пленок [12].

Добавим, что уровни второй, четвертой и последующих гармоник были как минимум на 20 dB ниже, чем для f_{gen} . Их наличие в условиях эксперимента не сказывалось на результатах измерений.

На рис. 1, a-f кривые 2 иллюстрируют для указанных величин H частотные зависимости U(f). Видно, что генерация ЭДС наблюдается для всех описанных SWE. Зависимости максимального для каждого вида SWE значения U^* (помечены на рисунках звездочками) от H приведены на рис. 2, b. Можно видеть, что для кривых 2-4, отвечающих ненасыщенному состоянию пленки ЖИГ, регистрируемые величины могут превышать результаты, показанные кривой 1 для насыщенной пленки.

Рис. 2. Зависимости от величины H a) частот $f_1 - f_4$, b) ЭДС, c) мощности, затраченной на возбуждение SWE. Цифры у кривых соответствуют номеру SWE.

На рис. 3 представлены изображения ДС исследуемой структуры для нескольких величин *H*.

Отметим, что возможность наблюдения доменной структуры с помощью эффекта Фарадея связана с различием знаков нормальной компоненты намагниченности в соседних доменах. В то же время, регистрация ЭДС по механизму ОСЭХ предполагает наличие в пленке ЖИГ касательной к поверхности структуры компоненты намагниченности. По нашему мнению, эта компонента имеет в доменах одинаковые знаки, поскольку в противном случае усреднение эффекта по длине полоски должно приводить к занулению ЭДС. В пользу этого предположения говорит также и смена знака генерируемой ЭДС при смене направления *H* [21].

Отметим, что при наблюдении с помощью использованного поляризационного микроскопа ДС при $H < H_s$ становятся различимыми только при уменьшении H до величины ~ 33 Ое (см. рис. 2), при этом период ДС составляет $\Lambda \approx 10 \,\mu$ m, а сама она имеет вид полосовой несимметричной при отношении ширин "светлого"

Рис. 3. Изображения доменных структур, полученные с помощью поляризационного микроскопа при a) 110 Oe, b) 33 Oe, c) 28 Oe, d) 3 Oe; с помощью магнитно-силовой микроскопии при e) 50 Oe и f) 10 Oe. Ширина темной горизонтальной полоски на a-d равна 25 μ m.

и "темного" доменов ~ 2 (рис. 3, b). При H < 31 Ое ДС принимала характер симметричной полосовой с периодом $\Lambda \approx 10\,\mu$ m, которая сохранялась до H = 0(см. рис. 3, c и d). Темная горизонтальная полоска на рис. 3, a-d — полоска платины, ширина которой ($25\,\mu$ m) может использоваться как масштабная метка. (Изображения получены с использованием объективов с разным увеличением). Отметим, что наличие платины на поверхности пленки ЖИГ в исследованных образцах не влияет на вид ДС.

Следует отметить, что в интервале 33 Ое < $H < H_s$ доменную структуру можно было наблюдать с помощью магнитно-силовой микроскопии (МСМ) — см. рис. 3, *е* для $H \approx 50$ Ое. Кроме того, с помощью этой методики можно наблюдать тонкую поверхностную структуру доменов (см. рис. 3, *f* для $H \approx 10$ Ое). Исследование возможности ее влияния на характеристики SWE выходит за рамки настоящей работы.

4. Обсуждение результатов

Прежде всего, отметим, что как описанные изменения вида доменной структуры, интервалы магнитных полей существования характерного вида ДС, так и характер изменения частот спин-волновых возбуждений при изменении величины H хорошо согласуются с известными результатами [14–16]. При этом можно предположить, что наблюдаемые в эксперименте SWE2 и SWE3 обусловлены противофазными и синфазными колебаниями намагниченности в доменах, а SWE4 представляет собой волну смещения доменных границ [17–19].

Из рис. 1 и 2 можно видеть, что все наблюдаемые в исследованной структуре SWE сопровождаются генерацией ЭДС, при этом в интервале величин H наблюдения того или иного SWE построенные зависимости U(H) имеют максимум (см. рис. 2, *b*). Обсудим возможные причины зависимости уровня U для SWE2–SWE4 от H.

Известно, что уровень генерируемой ЭДС пропорционален мощности МСВ Р [10]. Мы оценили величину Р как разницу отраженной от входной антенны мощности при величинах Н, отвечающих условиям эксперимента, и при $H_0 \gg H$ с использованием зависимости $S_{22}(f)$. На рис. 2, с приведены полученные результаты для SWE1-SWE4. Видно, что в интервале величин Н наблюдения SWE2 мощность Р изменяется в 1.5 раза, тогда как ЭДС меняется в 3.5 раза, а для SWE4 величина Р изменяется в 1.1 раза, а ЭДС меняется в 7 раз. Таким образом, описанные изменения величины U не связаны с частотной зависимостью мощности Р. Отметим, для SWE2 вольт-ваттная чувствительность (отношение величины ЭДС к мощности P) достигает $2 \cdot 10^{-4}$ V/W, что соизмеримо с аналогичным параметром для насыщенных пленок ЖИГ [10]. Мы предполагаем, что зависимость U(H) отслеживает разворот направления намагниченности **m** — в доменах при перестройке ДС с изменением Н и, таким образом, может влиять на величину I_e , определяемую в соответствии с (1).

5. Заключение

Исследована генерация ЭДС в пленке платины, нанесенной на поверхность пленки ЖИГ, находящейся в ненасыщенном состоянии. Показано, что генерация возможна для всех рассмотренных видов спин-волновых возбуждений доменных структур. В исследованной структуре наиболее эффективно генерация происходит при величинах поля подмагничивания, на 5–10 Ое меньших поля насыщения, а также в условиях формирования в пленке ЖИГ симметричной полосовой доменной структуры. В первом случае вольт-ваттная чувствительность (отношение ЭДС к мощности спин-волнового возбуждения) может быть соизмерима с аналогичным параметром для насыщенных пленок ЖИГ [10].

Мы предполагаем, что исследование доменных структур с помощью ОСЭХ может быть полезно для диагностики состояния намагниченности доменов наряду с другими методами их исследования.

Финансирование работы

Работа выполнена при поддержке гранта РНФ № 24-29-00640. Исследование поверхностных доменных структур с помощью зондового микроскопа проведено А.Г. Темирязевым в рамках госзадания ИРЭ им. В.А. Котельникова РАН.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] M.I. Dyakonov, V.I. Perel. Phys. Lett. A 35, 6, 459 (1971).
- [2] A. Hirohata, K. Yamada, Y. Nakatani, I.-L. Prejbeanu,
 B. Diény, P. Pirro, B. Hillebrands. JMMM 509, 166711 (2020).
- [3] F. Yang, P.C. Hammel. J. Phys. D 51, 25, 253001 (2018).
- [4] C.W. Sandweg, Y. Kajiwara, K. Ando, E. Saitoh,
 B. Hillebrands. Appl. Phys. Lett. 97, 25, 252504 (2010).
- [5] К.И. Константинян, Г.А. Овсянников, К.Л. Станкевич, Т.А. Шайхулов, В.А. Шмаков, А.А. Климов. ФТТ 63, 9, 1312 (2021). [К.Ү. Constantinian, G.A. Ovsyannikov, K.L. Stankevich, T.A. Shaikhulov, V.A. Shmakov, A.A. Klimov. Phys. Solid State 63, 9, 1432 (2021)].
- [6] S.A. Manuilov, C.H. Du, R. Adur, H.L. Wang, V.P. Bhallamuid, F.Y. Yang, P.C. Hammel. Appl. Phys. Lett. **107**, *4*, 042405 (2015).
- [7] A.V. Chumak, A.A. Serga, M.B. Jungfleisch, R. Neb, D.A. Bozhko, V.S. Tiberkevich, B. Hillebrands. Appl. Phys. Lett. 100, 8, 082405 (2012).
- [8] M.B. Jungfleisch, A.V. Chumak, A. Kehlberger, V. Lauer, D.H. Kim, M.C. Onbasli, C.A. Ross, M. Klaui, B. Hillebrands. Phys. Rev. B **91**, *13*, 134407 (2015).
- [9] А.Г. Гуревич, Г.А. Мелков. Магнитные колебания и волны. Физматлит, М. (1994). 464 с.
- [10] М.Е. Селезнев, Ю.В. Никулин, Ю.В. Хивинцев, С.Л. Высоцкий, А.В. Кожевников, В.К. Сахаров, Г.М. Дудко, Ю.А. Филимонов. Изв. вузов. ПНД **31**, *2*, 225 (2023).
- [11] Ю.В. Гуляев, П.Е. Зильберман, Г.Т. Казаков, В.В. Тихонов. Письма в ЖТФ 11, 1, 97 (1985).
- [12] П.Е. Зильберман, В.М. Куликов, В.В. Тихонов, И.В. Шеин. ЖЭТФ 99, 5, 1566 (1991). [P.E. Zil'berman, V.M. Kulikov, V.V. Tikhonov, I.V. Shein. JETP 72, 5, 874 (1991)].
- [13] А.В. Вашковский, Э.Г. Локк, В.И. Щеглов. ФТТ 41, 11, 2034 (1999). [A.V. Vashkovskii, É.G. Lokk, V.I. Shcheglov. Phys. Solid State 41, 11, 1868 (1999)].

- [14] А.В. Вашковский, Э.Г. Локк, В.И. Щеглов. Письма в ЖЭТФ 63, 7, 544 (1996). [А.V. Vashkovskii, É.G. Lokk, V.I. Shcheglov. JETP Lett. 63, 7, 572 (1996)].
- [15] А.В. Вашковский, Э.Г. Локк, В.И. Щеглов. ЖЭТФ 111, 3, 1016 (1997). [A.V. Vashkovskii, É.G. Lokk, V.I. Shcheglov. JETP 84, 3, 560 (1997)].
- [16] А.В. Вашковский, Э.Г. Локк, В.И. Щеглов. ЖЭТФ 114, 4(10), 1430 (1998). [А.V. Vashkovskii, É.G. Lokk, V.I. Shcheglov. JETP 87, 4, 776 (1998)].
- [17] С.А. Вызулин, С.А. Киров, Н.Е. Сырьев. Радиотехника и электроника **30**, *1*, 179 (1985).
- [18] D.D. Stancil. J. Appl. Phys. 56, 6, 1775 (1984).
- [19] M. Ramesh, E. Jedryka, P.E. Wigen, M. Shone. J. Appl. Phys. 57, 8, 3701 (1985).
- [20] С.А. Киров, А.И. Пильщиков, Н.Е. Сырьев. ФТТ 16, 10, 3051 (1974).
- [21] Ю.В. Никулин, А.В. Кожевников, С.Л. Высоцкий, А.Г. Темирязев, М.Е. Селезнев, Ю.В. Хивинцев, Ю.А. Филимонов. ФТТ 65, 7, 1180 (2023). [Y.V. Nikulin, A.V. Kozhevnikov, S.L. Vysotskii, A.G. Temiryazev, M.E. Seleznev, Y.V. Khivintsev, Y.A. Filimonov. Phys. Solid State 65, 7, 1129 (2023)].

Редактор Е.В. Толстякова