08

Исследование емкостных и индуктивных элементов с помощью высокодобротных сверхпроводниковых резонаторов

© Р.А. Юсупов, Л.В. Филиппенко, М.Ю. Фоминский, В.П. Кошелец

Институт радиотехники и электроники им. В.А. Котельникова РАН, 125009 Москва, Россия e-mail: yusupovrenat@hitech.cplire.ru

Поступило в Редакцию 16 мая 2024 г. В окончательной редакции 16 мая 2024 г. Принято к публикации 16 мая 2024 г.

> Предложен и реализован метод измерения электрических параметров элементов интегральных схем с помощью высокодобротных сверхпроводниковых резонаторов. Изготовлены структуры, состоящие из копланарной волноводной линии с подключенными к ней емкостным способом резонаторами. Измерены спектры прохождения сверхвысокочастотного сигнала по такой линии. Проведено сравнение численного расчета тестовых структур со спектрами прохождения, измеренными в эксперименте. Определены значения емкостей связи линии передачи с резонаторами и значения нагрузок резонаторов, представляющих собой емкостные и индуктивные элементы. Проведен анализ полученных значений, получена оценка достоверности используемой методики.

> Ключевые слова: сверхпроводниковые интегральные схемы, копланарная волноводная линия, сверхпроводниковый копланарный резонатор, сверхпроводящий квантовый интерферометр, сверхвысокочастотные измерения, спектр прохождения сигнала, векторный анализатор цепей, криогенные измерения.

DOI: 10.61011/JTF.2024.07.58345.175-24

Введение

В настоящее время актуальным направлением исследований является создание квантовых сверхпроводниковых устройств [1]. Одним из основных вариантов реализации таких устройств являются интегральные схемы на основе джозефсоновских туннельных переходов [2]. Кроме джозефсоновских переходов (ДП), в таких схемах часто используются резистивные шунты, а также емкостные и индуктивные элементы. Изготовление таких элементов с расчетными значениями электрических параметров представляет собой достаточно сложную задачу. Несмотря на то что электродинамика таких элементов хорошо рассчитывается аналитически, реальные параметры изготовленных элементов могут заметно отличаться от расчетных и поэтому требуют уточнения в эксперименте. Например, в схеме джозефсоновского параметрического усилителя бегущей волны (ДПУБВ), основанного на цепочке одноконтактных (ВЧ) сверхпроводящих квантовых интерферометров (СКВИДов) [3-7], важны реальные значения индуктивности и емкости в каждой ячейке, которые определяют такие важные параметры устройства, как импеданс линии. В индуктивность ВЧ СКВИДа входит как геометрическая индуктивность петли СКВИДа, так и джозефсоновская индуктивность, которая зависит от критического тока туннельного перехода, образующего СКВИД. При этом прямые измерения критического тока в подобных структурах невозможны и обычно проводятся в отдельных тестовых структурах с переходами, идентичными переходам СКВИДа. Но измерения небольших критических токов порядка нескольких µА подвержены сильному влиянию внешних магнитных полей и электрических наводок, поэтому измеряемые значения сильно зависят от параметров системы измерений.

Ранее проводились исследования [8] по определению индуктивных параметров идентичного по размерам СКВИДа постоянного тока (ПТ). Исследовалась зависимость критического тока такой структуры от внешнего приложенного магнитного поля. Из значений максимального и минимального тока на ток-потоковой характеристики определялся параметр β_L , который зависит от отношения геометрической и джозефсоновской частей индуктивности СКВИДа. Рассчитанное таким образом значение геометрической индуктивности сильно зависит от точности измерения критических токов, которые в рабочих структурах сравнительно невелики. Таким образом, использование результатов измерения параметров на постоянном токе не является достаточно надежным и точным методом для структур с критическими токами порядка нескольких микроампер. В настоящей работе апробирована методика определения параметров сверхпроводниковых элементов в гигагерцовом диапазоне, который соответствует рабочей частоте разрабатываемых устройств.

Традиционно для измерения значений индуктивных и емкостных элементов на высокой частоте их включают в колебательный контур с известными параметрами цепи. В настоящей работе обсуждается и используется схема сверхвысокочастотных (СВЧ) измерений параметров с использованием высокодобротных сверхпроводниковых резонаторов, нагруженных исследуемыми элементами.

Рис. 1. Схема подключения четвертьволновых копланарных резонаторов с разной нагрузкой к копланарной линии.

Этот метод позволяет, во-первых, определить параметры элементов, для которых невозможны прямые измерения на постоянном токе, во-вторых, при выборе резонаторов с необходимой резонансной частотой определить необходимые электрические параметры на рабочих частотах проектируемой схемы.

1. Метод определения параметров с использованием сверхпроводниковых резонаторов

Для определения параметров исследуемых элементов предложено использовать копланарные волноводные СВЧ резонаторы, подключенные к копланарной волноводной линии, по которой осуществляется считывание сигнала. Тонкопленочные сверхпроводниковые копланарные резонаторы широко используются в сверхпроводниковых кубитных схемах [9], в матрицах болометрических приемников [10], в системах анализа материалов [11,12]. Существует два основных способа связи копланарного резонатора и копланарной линии: емкостной [13] и индуктивный [14]. Более компактным с точки зрения дизайна схемы является вариант с емкостным подключением, что наиболее актуально при подключении к одной линии нескольких резонаторов. Традиционно при емкостной связи подразумевается использование щелевых или встречно-штыревых конденсаторов. В схемах с двумя и более металлическими слоями возможно также использование плоскопараллельных конденсаторов, обеспечивающих существенно большие емкости, а следовательно, и лучшую связь с линией.

Схема измерения индуктивных и емкостных элементов представлена на рис. 1. Частота ω_0 ненагруженного короткозамкнутого резонатора с высокой точностью рассчитывается аналитически или с помощью численного моделирования СВЧ устройств, например, с применением AWR Microwave Office. Подключение к концу резонатора нагрузки в виде емкости или индуктивности приводит к сдвигу частоты резонатора соответственно вверх ($\omega_1 > \omega_0$) или вниз ($\omega_2 < \omega_0$). Данный сдвиг

частоты также рассчитывается аналитически, что позволяет определить импеданс нагрузки резонатора.

На чипе размером 3 × 4.2 mm размещалась копланарная волноводная линия с контактами для бондирования, к которой емкостным способом подключались 4 копланарных резонатора. Центральная копланарная линия имеет длину $2500 \,\mu$ m, ширину $20 \,\mu$ m и зазор $10 \,\mu$ m. Расчетный импеданс линии передачи равен 48 Ω. В рамках этих исследований было разработано несколько типов дизайна чипов как с одинаковыми по длине резонаторами, так и резонаторами разной длины, изначально настроенными на разные частоты. Существует проблема взаимодействия резонаторов, рассчитанных на близкие частоты, при подключении их к одной линии. Поэтому один из дизайнов изначально предполагал подключение к линии 4 резонаторов разной длинны, рассчитанных на разные частоты с шагом около 500 MHz. Также был спроектирован дизайн с одинаковыми закороченными резонаторами, но с различными емкостями связи для определения оптимальной емкости связи. Основной дизайн выполнен в виде копланарной волноводной линии, к которой через равные промежутки посредством одинаковых емкостей подключено четыре резонатора одинаковой длины (4500 µm). Конец одного из резонаторов закорочен на землю, в то время как концы остальных резонаторов подключены к земле через исследуемые элементы. Параметры схемы были выбраны с расчетом получить спектр с высокодобротными резонансами в полосе частот от 4 до 8 GHz. Предварительный расчет схемы с элементами, расположенными на кремневой подложке ($\varepsilon = 11.9$) с толщиной 500 μ m и с металлическим слоем с обратной стороны, проведен в AWR Microwave Office.

2. Технология изготовления экспериментальных образцов

В ИРЭ им. В.А. Котельникова РАН успешно функционирует технологический комплекс по изготовлению сверхпроводниковых структур на основе высококачественных туннельных переходов Nb-AlO_x-Nb (с плотностью туннельного тока 0.1-10 kA/cm²) микронных и субмикронных размеров. Ключевой особенностью данной технологии является возможность изготовления сложных многослойных сверхпроводниковых структур с заданными параметрами, с высокой повторяемостью и большим числом элементов (более 100). Данная технология была адаптирована для изготовления образцов с двумя сверхпроводящими слоями, анодизацией и слоем изоляции для надежного предотвращения закороток.

По разработанному дизайну были изготовлены тестовые схемы с туннельными переходами Nb-AlO_x-Nb (рис. 2). Все напыление пленок проводилось магнетронным распылением, структура слоев была создана с помощью метода "взрывной" литографии. Сначала наносится тонкий (100 nm) буферный слой Al₂O₃,

Рис. 2. Фотография изготовленного чипа с 4 четвертьволновыми резонаторами, подключенными емкостным образом к копланарной линии.

данный подслой является стоп-слоем для травления трехслойной структуры. Нижний слой металла, в котором выполнены копланарные линии, представляет собой трехслойную структуру Nb/Al-AlO_x/Nb с толщинами 200/8/80 nm. В этом слое формировались туннельные сверхпроводник-изолятор-сверхпроводник (СИС) переходы в СКВИДах. Переходы формируются технологией SNEAP (Selective Niobium Etching and Anodization Process) [15]. Сначала формируется область туннельных переходов травлением из трехслойной структуры по фоторезистивной маске. По этой же маске резиста проходит анодирование, в первую очередь — стенок переходов. Затем в области, не закрытые фоторезистом, проводится напыление изолятора SiO₂ толщиной 250 nm, что обеспечивает изоляцию нижнего электрода для предотвращения электрического контакта двух сверхпроводниковых слоев. Верхний слой металла Nb толщиной 350 nm использовался как замыкатель в СКВИДах, а также для подсоединения резонаторов к линии и создания "воздушных" мостов. Эти мосты соединяют два земляных электрода копланарной линии и служат для выравнивая потенциалов земляной шины в местах ее изгиба и разрыва (рис. 3).

Параметры формирования трехслойной структуры подобраны таким образом, чтобы получить удельное нормальное сопротивление (RnS) $\approx 2000~\Omega\cdot\mu\text{m}^2$. В исследуемых СКВИД-структурах использованы одинаковые джозефсоновских переходы круглой формы диаметром $d_j = 3 \,\mu \text{m}$ (площадью $S_j = 7.06 \,\mu \text{m}^2$). Расчетный скачок туннельного тока I_g на щелевом напряжении перехода диаметром $3 \,\mu \text{m}$ составляет $7.7 \,\mu \text{A}$; это соответствует плотности туннельного тока $1.25 \,\mu \text{A}/\mu \text{m}^2$ ($125 \,\text{A/cm}^2$). Для джозефсоновских переходов Nb/Al-AlO_x/Nb критический ток I_c рассчитывается по формуле Амбегаокара-Баратова [16] с коэффициентом 0.55 (для учета эффекта сильной связи в Nb-электродах) и составляет $4.2 \,\mu \text{A}$.

В настоящей работе использована оригинальная технология изготовления емкостей, используемых для подключения резонаторов к линии. Ранее использовались плоскопараллельные конденсаторы со слоем изолятора SiO₂ [17], разделяющим верхний и нижний слои металла. Удельная емкость такого конденсатора с прослойкой изолятора SiO₂ толщиной 250 nm составляла 0.17 fF/µm². В данных образцах диэлектрическая прослойка была получена методом анодирования слоев Al и Nb [18]. При анодировании до 17 V получаются слои Al_2O_3 толщиной около $12\,nm$ и Nb_2O_5 — $18\,nm$. Оценочная удельная емкость конденсатора с такой диэлектрической прослойкой почти в 30 раз превышает емкость "стандартного" конденсатора с изолятором из SiO₂ и составляет 5.6 fF/µm². Данное значение может быть увеличено при уменьшении напряжения анодирования или при анодировании структур с более тонким слоем алюминия. Ранее было предложено использовать такой способ для емкостного шунтирования джозефсоновских переходов [19]. По предложенной технологии можно создавать конденсаторы с высокой удельной емкостью, что важно для увеличения плотности элементов в сверхпроводниковых схемах и создания компактных многоэлементных схем [20]. Уменьшение размеров конденсаторов в таких схемах позволяет дополнительно уменьшить

Рис. 3. Вид одного из четырех четвертьволновых резонаторов, подключенных емкостным образом к копланарной линии. Данный резонатор нагружен одиночным ВЧ СКВИДом (правый конец резонатора). Контрольная линия, задающая магнитный поток в петле СКВИДа посредством протекающего постоянного тока, расположена слева от петли.

паразитные размерные эффекты, что необходимо для работы таких схем на СВЧ.

3. Схема измерений

Измерения изготовленных структур проводились при криогенной температуре 4.2 К в специальной зондвставке, погружаемой в транспортный 40-литровый гелиевый сосуд Дьюара. Для оперативного тестирования образцов на СВЧ был разработан и изготовлен СВЧ держатель образца, который совместим с уже имеющимися зондами-вставками и магнитными экранами. В данном СВЧ держателе образец приклеивается к медному основанию, а электрический контакт осуществляется с помощью ультразвукового бондирования. Конструкция предусматривает две СВЧ линии, подсоединенные через SMP-разъемы, и 12 контактов для соединений по постоянному току. СВЧ линии представляют собой отрезки микрополосковой линии с экраном с обратной стороны, с рассчитанным волновым сопротивлением $\approx 50 \,\Omega$. Дополнительно была реализована возможность использовать схему "bias-tee", позволяющая задавать в СВЧ линию и постоянный ток. Для этого в разрыв СВЧ линии встраиваются емкости в виде SMD-элементов, а постоянный ток задается через индуктивность. При этом емкость по СВЧ должна обеспечивать нормальное прохождение высокочастотного сигнала, не иметь собственных резонансных частот, в том числе и при охлаждении до криогенных температур. Для этого перед монтированием емкостей непосредственно на плату СВЧ держателя образов было проведено дополнительное исследование SMD-емкостей в специальном держателе с использованием векторного анализатора цепей на частотах до 15 GHz. Показано, что емкости порядка 100 pF достаточно для работы на частотах от 1 GHz. Дополнительные фильтры и аттенюаторы в СВЧ тракте не использовались. Измерения параметров прохождения сигнала через схему проводились с помощью векторного анализатора цепей Rohde&Schwarz ZNB20 на частотах до 20 GHz.

Прежде чем переходить к измерениям резонаторов, мы провели ряд тестовых СВЧ измерений на частотах до 20 GHz. Целью данных измерений было определение влияния на прохождение сигнала СВЧ подводящих кабелей, СВЧ криогенной вставки и самой СВЧ головки. Для корректных измерений параметров требуется равномерное прохождение сигнала в исследуемом диапазоне частот 4–8 GHz (без собственных резонансов). Следует отметить, что измеренные спектры прохождения сигнала при комнатных температурах и при охлаждении до рабочих температур 4.2 К могут существенно меняться; на них могут возникать дополнительные особенности.

Рис. 4. Экспериментально измеренная линия одного из резонаторов на частоте 4434 MHz. Ширина по уровню 3 dB составила 1 MHz.

4. Результаты СВЧ измерений

Предварительно было проведено измерение коэффишиента прохожления сигнала (S21) через аналогичный отрезок копланарной линии без подключенных резонаторов, которое показало, что существенных затуханий и отражений в данном тракте нет. Были измерены спектры прохождение сигнала (S21) через разработанные схемы при температуре 4.2 К. Мощность сигнала выставлялась минимальной для используемого векторного анализатора и составляла -30 dBm во всех измерениях, дополнительные аттенюаторы не использовались. Были получены спектры с четырьмя хорошо различимыми резонансами, соответствующими отдельным резонаторам. Добротность отдельных резонансов составила более 1000, при измерении в интересующей полосе частот частотах 4-6 GHz с уровнем резонансов до -50 dB. На рис. 4 приведены один из измеренных резонансов и аппроксимация его пика функцией Лоренца. Форма всей резонансной кривой при этом заметно отличается от лоренцевской. При сканировании во всем доступном диапазоне векторного анализатора цепей в широкой полосе частот 100 kHz - 20 GHz измеряемая добротность составила более 100 с уровнем резонансов до -30 dB. Добротность при таких измерениях зависит от ширины полосы разрешения (Resolution Band Width), определяемой шириной полосы разрешающего фильтра анализатора, по умолчанию равной 10 kHz. Полученные значения согласуются с предварительными оценками и достаточны для точного определения положений резонансов, и обеспечивает их надежную различимость при близких частотах.

Для сравнения на экспериментально измеренный спектр накладывался спектр, полученный численным расчетом измеренной структуры с помощью AWR Microwave Office (рис. 5). При расчете закладывались

Рис. 5. Экспериментально измеренный коэффициент S21 прохождения сигнала по копланарной волноводной линии одного из образцов и результат его численного расчета с учетом емкости мостов и подобранным значением $C_c = 287$ fF

все проектируемые параметры линии, резонаторов и подложки. Для учета сверхпроводимости и потерь в диэлектрике и на излучение задавалось удельное сопротивление металла, нормализованное по золоту, равное 0.00001, и тангенс угла диэлектрических потерь 0.001. Уход размеров линий и резонаторов от проектируемых размеров при их изготовлении был пренебрежимо мал. В первую очередь, по положению резонанса закороченного резонатора определялось значение емкости, через которую был связан резонатор и линия передачи. Значение этой емкости состоит их двух компонент: собственно емкости плоскопараллельного конденсатора с изолятором, изготовленным методом анодирования, и дополнительной параллельной емкости, образованной перекрытием нижнего и верхнего слоев металлизации, разделенных слоем изолятора. Для серии #32 образцов это значение составило 325 fF, а для серии #43-287 fF. Данные отличия могут быть объяснены неодинаковыми условиями анодирования, что существенно влияет на толщину диэлектрической прослойки в конденсаторах, через которые подключаются резонаторы. В расчете также учитывалась и паразитная емкость воздушных мостов, каждый из которых имеет оценочную емкость 20 fF.

Далее в предположении того, что емкости связи для всех резонаторов на одном чипе идентичны, были подобраны значения импедансов нагрузки в расчете, обеспечивающие совпадение экспериментальных и расчетных пиков по частоте. Таким образом, можно с достаточной точностью определить параметры реальных структур в эксперименте. Емкость нагрузки представляет собой плоскопараллельный конденсатор размером $19 \times 19 \,\mu m^2$, выполненный по той же технологии, что и емкость связи. Для серии #32 удельное значение емкости составило $8 \pm 0.3 \, {\rm fF}/\mu m^2$, для серии

1099

Структура	ВЧ СКВИД 24μm
Геометрическая индуктивность, рассчитанная по формуле 1.25 · µ ₀ ·d	34.4 pH
сеометрическая индуктивность InductEx	64 pH
ПТ СКВИД аналогичного размера	$7-17\mathrm{pH}$
ВЧ измерения одиночный элемент	65 pH-серия #32 55 pH-серия #43
ВЧ измерения три элемента	160 pH-серия #32 150 pH-серия #43

Т

Значения геометрической индуктивности

#43-6.1 \pm 0.3 fF/ μ m². Подробно расчет и измерение емкостей по данной методике описаны в работе [13].

Индуктивные элементы представляли собой одиночный ВЧ СКВИД, а также схему с тремя последовательно соединенными ВЧ СКВИДами. В отсутствие магнитного поля эффективная индуктивность каждого ВЧ СКВИДа определяется параллельным соединением индуктивности петли СКВИДа и джозефсоновской индуктивности перехода. Мы предполагаем, что в наших измерениях критические токи были подавлены, и индуктивность такого элемента определялась только геометрической индуктивностью. В таблице представлены результаты расчетов и измерения образцов из разных серий (подложек). Для номинально идентичных СКВИДов в разных сериях их индуктивности должны быть равны. Полученные значения индуктивностей для трех индуктивных элементов оказываются не ровно в 3 раза больше, чем для одиночного элемента, что может быть объяснено вкладом в индуктивность, вносимым соединениями и подводкой. Этот вклад в пересчете на один элемент для группы из трех получается меньше, чем для одиночного элемента. Сравнение в первую очередь производилось с результатами предварительно численного расчета одиночного СКВИДа в программе InductEx. Как уже упоминалось выше, результаты измерения аналогичных по размеру СКВИДов постоянного тока не являются достоверными, так как существуют сложности точного измерения маленьких критических токов (I_c) и неопределенности при пересчете глубины модуляции в величину геометрической индуктивности (L_g) [3].

Эффективную суммарную индуктивность ВЧ СКВИДа можно изменять, задавая различный магнитный поток через петлю ВЧ СКВИДа, и тем самым изменяя джозефсоновскую составляющую индуктивности. Для этого в конструкции была предусмотрена контрольная линия, по которой может быть задан постоянный ток (рис. 3). Магнитное поле также можно задавать и внешней катушкой. Такие измерения требуют применения более сложной схемы измерений с холодными аттенюаторами и усилителями для защиты схемы от электрических шумов по СВЧ линиям, которые могут подавлять критический ток в ВЧ СКВИДах.

Заключение

Проведенные исследования показали, что разработанные и изготовленные схемы с резонаторами, нагруженными на индуктивные и емкостные элементы, пригодны для достаточно простого экспериментального определения их электрических параметров. Показано, что емкости, через которые было произведено подключение резонаторов, обеспечили в нашем эксперименте хорошую связь резонаторов с копланарной линией, сохраняя достаточно малую ширину линии (высокую добротность) таких резонансов. Это позволило отличать резонансы на относительно близких частотах.

Посредством проведенных CBЧ измерений были найдены значения индуктивных и емкостных элементов. Полученное достаточно высокое значение удельной емкости (до 8 fF/ μ m²) конденсатора с диэлектрической прослойкой, изготовленной методом анодирования, позволяет создавать в интегральных сверхпроводниковых схемах компактные конденсаторы, что является полезным для работы устройств на высоких частотах. Определенные значения индуктивных элементов оказались близки к результатам численного расчета, что подтверждает пригодность метода для экспериментального определения параметров элементов интегральных сверхпроводниковых схем.

Благодарности

Авторы благодарны А.Б. Зорину за его участие в постановке данного эксперимента, обсуждение полученных результатов и подготовке публикации.

Финансирование работы

Разработка и экспериментальные исследования тестовых образцов выполнены при поддержке гранта РНФ №23-79-10262 (https://rscf.ru/project/23-79-10262/). Численные расчеты выполнены при поддержке проекта Министерства науки и высшего образования РФ (соглашение № 075-15-2024-538). Образцы изготовлены с использованием УНУ "Криоинтеграл", поддерживаемой за счет государственного задания ИРЭ им. В.А. Котельникова РАН.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

 G. Wendin, Rep. Progr. Phys., 80 (10), 106001 (2017). DOI: 10.1088/1361-6633/aa7e1a

- [2] R. Kleiner, D. Koelle, F. Ludwig, J. Clarke. Proceed. IEEE, 92 (10), 1534 (2004). DOI: 10.1109/JPROC.2004.833655
- [3] M.T. Bell., A. Samolov. Phys. Rev. Appl., 4 (2), 024014 (2015). DOI: 10.1103/PhysRevApplied.4.024014
- [4] C. Macklin, K. O'brien, D. Hover, M.E. Schwartz, V. Bolkhovsky, X. Zhang, W.D. Oliver, I. Siddiqi. Science, 350 (6258), 307 (2015). DOI: 10.1126/science.aaa8525
- [5] A.B. Zorin. Phys. Rev. Appl., 6 (3), 034006 (2016).DOI: 10.1103/PhysRevApplied.6.034006
- [6] A.B. Zorin. Phys. Rev. Appl., 12 (4), 044051 (2019).
 DOI: 10.1103/PhysRevApplied.12.044051
- [7] C. Bartram, T. Braine, R. Cervantes, N. Crisosto, N. Du,
 G. Leum, P. Mohapatra, T. Nitta, L.J. Rosenberg,
 G. Rybka, J. Yang, J. Clarke, I. Siddiqi, A. Agrawal,
 A.V. Dixit, M.H. Awida, A.S. Chou, M. Hollister, S. Knirck,
 A. Sonnenschein, W. Wester, J.R. Gleason, A.T. Hipp, S. Jois,
 P. Sikivie, N.S. Sullivan, D.B. Tanner, E. Lentz, R. Khatiwada,
 G. Carosi, C. Cisneros, N. Robertson, N. Woollett,
 D. Duffy, C. Boutan, M. Jones, B.H. LaRoque, N.S. Oblath,
 M.S. Taubman, E.J. Daw, M.G. Perry, J.H. Buckley,
 C. Gaikwad, J. Hoffman, K. Murch, M. Goryachev,
 B.T. McAllister, A. Quiskamp, C. Thomson, M.E. Tobar,
 V. Bolkhovsky, G. Calusine, W. Oliver, K. Serniak. Rev. Sci.
 Instrum., 94 (4), 044703 (2023) DOI: 10.1063/5.0122907
- [8] Р.А. Юсупов, Л.В. Филиппенко, М.Ю. Фоминский, В.П. Кошелец. ФТТ, 64 (9), 1189 (2022). DOI: 10.21883/FTT.2022.09.52804.13HH [R.A. Yusupov, L.V. Filippenko, M.Y. Fominskiy, V.P. Koshelets. Phys. Solid State, 64 (8), 467 (2022). DOI: 10.1134/S1063783422090086]
- [9] A. Blais, R.S. Huang, A. Wallraff, S.M. Girvin, R.J. Schoelkopf. Phys. Rev. A, 69 (6), 062320 (2004).
 DOI: 10.1103/PhysRevA.69.062320
- [10] P.K. Day, H.G. LeDuc, B.A. Mazin, A. Vayonakis, J. Zmuidzinas. Nature, 425, 817 (2003).
 DOI: 10.1038/nature02037
- [11] R. Barends, H.L. Hortensius, T. Zijlstra, J.J.A. Baselmans, S.J.C. Yates, J.R. Gao, T.M. Klapwijk. Appl. Phys. Lett., 92, 223502 (2008). DOI: 10.1063/1.2937837
- [12] W. Rauch, E. Gornik, G. Sölkner, A.A. Valenzuela, F. Fox, H. Behner, J. Appl. Phys., 73, 1866 (1993).
 DOI: 10.1063/1.353173
- [13] M. Göppl, A. Fragner, M. Baur, R. Bianchetti, S. Filipp, J.M. Fink, P.J. Leek, G. Puebla, L. Steffen, A. Wallraff, J. Appl. Phys., **104**, 113904 (2008). DOI: 10.1063/1.3010859
- [14] D. Bothner, M. Knufinke, H. Hattermann, R. Wölbing,
 B. Ferdinand, P. Weiss, S. Bernon, J. Fortágh, D. Koelle,
 R. Kleiner. New J. Phys., 15, 093024 (2013).
 DOI: 10.1088/1367-2630/15/9/093024
- [15] H. Kroger, L.N. Smith, D.W. Jillie. Appl. Phys. Lett., 39 (3), 280 (1981). DOI: 10.1063/1.92672
- [16] V. Ambegaokar, A. Baratoff. Phys. Rev. Lett., 10 (11), 486 (1963). DOI: 10.1103/PhysRevLett.10.486
- [17] R.A. Yusupov, L.V. Filippenko, D.E. Bazulin, N.V. Kolotinskiy, M.A. Tarasov, E. Goldobin. IEEE Transactions Appl. Superconduct., 32 (4), 1700105 (2022).
 DOI: 10.1109/TASC.2021.3131134

1101

- [18] R.A. Yusupov, L.V. Filippenko, V.P. Koshelets. Conf. Proceed. 2023 Radiation and Scattering of Electromagnetic Waves (RSEMW), **124** (2023).
 DOI: 10.1109/RSEMW58451.2023.10202097
- [19] S. Butz, P. Jung, L.V. Filippenko, V.P. Koshelets, A.V. Ustinov, Supercond. Sci. Technol., 26, 094003 (2013).
 DOI: 10.1088/0953-2048/26/9/094003
- [20] J. Zotova, R. Wang, A. Semenov, Y. Zhou, I. Khrapach, A. Tomonaga, O. Astafiev, J.S. Tsai. Phys. Rev. Appl., 19 (4), 044067 (2023). DOI: 10.1103/PhysRevApplied.19.044067