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Aperiodic diffraction grating based on the relationship between primes

and zeros of the Riemann zeta function
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The Riemann hypothesis is one of the most famous unsolved problems of modern science. One approach

to proving the Riemann hypothesis is based on the assumption that the nontrivial zeros of the Riemann zeta

function represent the spectrum of some self-adjoint operator. In this paper, we show that the duality with

respect to the Fourier transform between the distribution of nontrivial zeros of the Riemann zeta function

along the critical line, on the one hand, and the distribution of logarithms of prime numbers and powers of

primes, on the other hand, can be used as a theoretical basis for creating new diffractive optical elements. In

particular, we manufactured an aperiodic diffraction grating, the slits of which are ordered in accordance with

the distribution of nontrivial zeros of the Riemann zeta function. Atomic force microscopy lithography was

used for nanopatterning. The resulting diffraction pattern shows the presence of discrete diffraction maxima at

the logarithms of primes and prime powers, which is the direct experimental visualization of the Hilbert−Polya

conjecture.
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Introduction

The Riemann hypothesis is one of the most complex

unsolved problems of modern science [1–6]. One possible

approach to proving the Riemann hypothesis relies on

the Hilbert−Pólya conjecture that the non-trivial zeros

of the Riemann zeta function may be interpreted by

means of spectral theory [7,8]. Having analyzed the

results of calculations performed by Odlyzko [9], Dyson

noted that the distribution of zeros of the Riemann ζ -

function may be regarded as a one-dimensional quasicrys-

tal [10]. Specifically, he pointed out that
”
they constitute

a distribution of point masses on a straight line, and

their Fourier transform is likewise a distribution of point

masses, one at each of the logarithms of ordinary prime

numbers and prime-power numbers.“ More precisely, the

resulting Fourier transform also contains, in addition to

a discrete component, a continuous background compo-

nent [11]. However, we may still regard both distributions

as dual with respect to the Fourier cosine transform.

The first distribution is an aperiodic sequence of Dirac

δ-functions that reproduces, with a certain scale factor,

the distribution of zeros of the Riemann ζ -function along

the critical line. The second distribution is an aperiodic

sequence of δ-functions that reproduces the sequence of

prime numbers and powers of primes in a logarithmic

scale.

If the first set of δ-functions corresponds to the positions

of harmonic oscillators, its Fourier transform specifies the

conditions of constructive interference of waves. The

mathematical relations between such mutually dual discrete

distributions may serve as a basis for construction of

future diffractive optical elements. Specifically, a hypo-

thetical Riemann interferometer consisting of an array of

semitransparent mirrors placed at positions related to the

logarithms of square-free integers was discussed in [8].
It was assumed that such a system of mirrors would

provide an opportunity to visualize zeros of the Riemann

ζ -function. However, we found no literature data on

the construction of actual working instruments of this

kind.

In the present study, we report on the fabrication of an

aperiodic diffraction grating with alternating transparent and

non-transparent sections. The fabricated structure differs

from a common periodic grating in that its slits are ordered

in accordance with the values of imaginary parts of non-

trivial zeros of the Riemann zeta function (with a certain

predetermined scale factor). Atomic force lithography

was used for nanoprofiling. The obtained experimental

diffraction patterns provided evidence of intense coherent

scattering with a large number of well-resolved maxima
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(even at large angles close to 90◦). As expected, the

measured diffraction angles corresponded to logarithms

of prime numbers and powers of primes. However,

since the overall number of slits in fabricated gratings

was relatively low, an exact correspondence was found

only for the first maxima at the center of the diffraction

pattern.

The conditions of constructive interference are normally

formulated in the following way: the amplitudes of waves

are summed if these waves arrive in phase relative to

each other or, equivalently, if the difference in optical

path for interfering beams from two neighboring slits to

a point of interest on the screen is equal to an integer

number of wavelengths [12–14]. In the present case, this

universally accepted formulation is inapplicable. Our results

demonstrate clearly that constructive interference from an

aperiodic system of slits may be observed even if waves

from any pair of neighboring slits arrive out of phase. The

key requirement is the presence of a considerable discrete

component in the Fourier transform of the corresponding

aperiodic sequence of δ-functions.

The successful fabrication of an aperiodic diffraction

grating based on the
”
hidden“ order in the distribution

of zeros of the Riemann ζ -function may stimulate further

research into the construction of new optical instruments

based on aperiodic deterministic structures [15–18], since

these structures may exhibit features unattainable in pe-

riodic and stochastic systems. Experimental observations

of the
”
spectrum“ of non-trivial zeros of the zeta function

may breathe a new life into systematic application of

the spectral approach to various problems related to the

Riemann hypothesis.

1. Theoretical relations

The Riemann hypothesis postulates that all non-trivial

zeros of the Riemann ζ -function lie on the critical line

(i.e., the real part of all non-trivial zeros is 1/2). At least

at the present level of knowledge, the imaginary parts are

distributed along the critical line in a fairly unpredictable

way.

Let us imagine a system of narrow parallel slits with

their positions reproducing accurately the positions of non-

trivial zeros of the ζ -function on the critical line. If

these slits are sufficiently narrow, the formed aperiodic

diffraction grating may be regarded as a sequence of

Dirac δ-functions. The corresponding diffraction pattern

is characterized, in a first approximation, by a sum

of complex exponentials over zeros of the Riemann ζ -

function.

We have analyzed theoretically the series of this kind

in [11] and found that partial sums of cosine series over

zeros of the Riemann ζ -function are approximated fairly

accurately by the following expression:

SN(t) =

n
∑

k=−N

cos(γkt) = 2

n
∑

k=1

cos(γk t)

≈
(

2π
N
γN

+ 1

)

sin(γNt)
πt

−
Si(γNt)
πt

−
∞
∑

n=2

3(n)√
n

·
sin(γN(t ± ln n))

π(t ± ln n)
+ exp(t/2) + exp(−t/2).

Here, γk is the imaginary part of the kth zero. The first

terms in this formula correspond to the central maximum,

the last ones characterize the background, and the terms

proportional to von Mangoldt function 3(n) correspond to

diffracted beams.

Thus, the results reported in [11] allow us to formulate

the following condition of coherent summing of waves (for
a transmissive grating under normal beam incidence):

2π

λ
a sinϕ = m ln p.

Here, ϕ is the scattering angle, λ is the wavelength of

incident radiation, a is the scale factor measured in µm

(this implies that if γk is the imaginary part of the kth
zero, the coordinate of position of the kth slit should be

aγk), and p and pm are prime numbers and powers of

primes, respectively. In other words, we expect to see bright

reflections on the screen at the positions of prime numbers

and powers of primes in a logarithmic scale that is distorted

slightly by the tangent of arcsine function. The relative

brightness of reflections may be estimated by squaring the

amplitudes of peaks in the Fourier spectrum (I p,m ∝ A2
p,m),

which are, in turn, specified by the corresponding values of

von Mangoldt function 3(n):

Ap,m =
3(n)√

n
= p−m/2 ln p.

2. Fabrication of an aperiodic grating
and visualization of prime numbers

Atomic force lithography (AFM lithography) was used to

form the needed pattern on the substrate surface. Different

methods for nanoprofiling of the surface of samples via

atomic force microscopy have been reviewed in [19–24].
Two major AFM lithography techniques are known:

static lithography (engraving, scratching) and dynamic

lithography (tapping). In the static case, the probe tip is

in the contact mode. Lateral forces induced at the probe tip

in the process of scratching bend and twist the cantilever,

thus making the edges irregular and making it hard to

reproduce accurately the shape and depth of scratches.

A poorly controlled wrinkle relief may form when one

tries to produce closely spaced parallel grooves. Another

disadvantage of the static method consists in the fact that
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Figure 1. Aperiodic diffraction grating with its slits positioned in accordance with the distribution of zeros of the Riemann ζ -function:

a — AFM image of a mini grating fabricated with a scale factor of 1.0 µm; b — experimental setup and diffraction pattern from the mini

grating 100× 100 µm in size that was fabricated with a scale factor of 1.0 µm and features 29 slits. Its optical microphotographic image

is shown in the inset in the upper left corner.

a probe wears out fast if large areas are to be scratched.

Generally speaking, static AFM lithography is the easiest

method, but also the least reproducible one.

In the case of dynamic nanolithography, the surface is

modified by fast nanoindentation (point by point) by an

oscillating probe in the tapping mode. This method provides

fine reproducibility of patterning, and the obtained grooves

are fairly uniform in shape and depth.

Note that the routine depth of a profile produced by

dynamic lithography is on the order of several nanometers.

Diffraction gratings designed for the visible spectral range

normally require a much deeper surface relief. Structural

elements with a characteristic size on the order of at least

a hundred nanometers are needed. This is the primary

reason why we chose the static method: as deep a relief

as possible was preferable for our experiments. In addition,

we performed multi-pass scratching with the probe shifted

several times back and forth along the same line to deepen

the grooves.

Thus, the problem consisted in forming the needed

geometric pattern and transferring it to the substrate surface.

We have written a program that performed the following

functions: loading an array of zeros of the Riemann ζ -

function from a resource file prepared in advance; calcu-

lation of slit positions for a given scale factor; determination

of the boundaries of regions to be scratched; determination

of the required probe motion trajectory; export of the

obtained template as a vector image file. To scratch

large areas between transparent
”
slits,“ we specified a

complex meander-shaped trajectory with several closely

spaced parallel lines and multiple passes along them.

An NTEGRA (LLC
”
NT-MDT“) atomic force micro-

scope with an enlarged scanning area (150 × 150µm)
was used for surface modification. Several samples were

prepared in order to test different materials, template

parameter (area of the active region, scale factor, slit

width, and pitch and number of passes) variations, and

engraving parameter variations [25]. The best results were

obtained in experiments with polyethylene terephthalate

(SIQINZONGWA PET) substrates and a DRPS-In probe

with single crystal diamond tip for deep scratching. The

results for two samples reported below appear to be fairly

reliable and informative.

The first sample was fabricated with scale factor

a = 1.0µm. The diffraction region was 100× 100µm in

size and contained just 29 slits. The AFM image of

the obtained mini grating is shown in Fig. 1, a. The

average groove depth was measured to be approximately

250−300 nm. It can be seen that wrinkle nanostructures of

an irregular shape are present at the bottom of scratched

regions. Unscratched regions remained transparent and

served as slits.

This mini grating was secured to a holder and exam-

ined at a specially constructed measurement stand. The

experimental setup and the obtained diffraction pattern are

presented in Fig. 1, b. The optical micrograph of the grating

is shown in the small inset in the upper left corner. A

diode laser operating at a wavelength of 633 nm was used

as a radiation source. The laser beam was directed to a

mirror via a fiber. The sample was mounted on an optical

table with a micropositioning system in such a way that

the mirror reflected the beam to the active region. The

diffraction pattern was observed on a screen located at a

distance of 30 cm from the grating.

Although the area of the active region is relatively small,

it generates a sufficiently intense field around itself (even
at large scattering angles close to 90◦). Despite the fact

that the grating is asymmetric, the diffraction pattern is
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Figure 2. Interpretation of the diffraction pattern from the aperiodic grating with its slits positioned in accordance with the distribution

of zeros of the Riemann ζ -function (the grating is 150× 150 µm in size, the scale factor is 0.8 µm, and 73 zeros are taken into account).
Experimentally observed diffraction pattern (top); positions of prime numbers and powers of primes in a distorted logarithmic scale and

the corresponding diffraction angles (bottom). Scale divisions correspond to natural numbers. Large scale marks denote prime numbers

(strong reflections), medium-sized marks denote powers of primes (medium-intensity reflections), and the remaining natural numbers are

designated with small marks (reflections are not observed).

symmetric. The central region of the diffraction pattern

agrees closely with the theoretical prediction. Specifically,

the first diffraction maxima emerge at angles of ±4◦,

which correspond to ln 2 in the formula for constructive

interference conditions.

A series of experiments with a Glan−Taylor prism

introduced into the optical path were carried out in order

to determine the influence of polarization of the incident

beam on the overall shape of the diffraction pattern.

Adjustment was performed in a standard way (with respect

to the intensity maximum). No significant variations of

the diffraction pattern were found in experiments with the

incident beam polarized parallel and perpendicular to the

slits.

The second sample was fabricated with scale factor

a = 0.8µm within an area of 150× 150µm. A total of 73

zeros of the Riemann ζ -function were taken into account

in preparation of the template for fabrication. The number

of slits was somewhat lower, since a single wide slit was

formed instead of two overlapping ones if neighboring zeros

of the Riemann ζ -function turned out to be positioned

too close to each other. It was also taken into account

that deep scratching could destroy fine protruding surface

relief elements when the scale was decreased proportionally.

In order to avoid this, we scaled down the corresponding

technological process parameters of AFM lithography; as a

result, the average surface relief modulation depth decreased

to 80−100 nm.

The diffraction pattern from the aperiodic grating fab-

ricated with scale factor a = 0.8µm is shown in Fig. 2.

Vertical marks on the (slightly distorted) logarithmic scale

correspond to calculated positions of diffraction maxima.

Large marks denote prime numbers (strong reflections),
while medium-sized marks denote powers of primes

(medium-intensity reflections). The other natural numbers

are denoted with small marks. No coherent summing of

waves is observed for these numbers. Compression of a

scattering object in the direct space leads to an inversely

proportional stretching of the Fourier transform in the

reciprocal space. In view of this, the first diffraction maxima

for the grating fabricated with scale factor 0.8µm emerge

at angles of ±5◦ (corresponding to ln 2). Note also that

the greater the number of zeros of the Riemann ζ -function

taken into account in the process of fabrication of a grating

is, the greater is the number of slits illuminated by a laser

beam, and thus the greater is the nubmer of primes that

may be resolved in the diffraction pattern.

Conclusion

The feasibility of fabrication of diffractive optical elements

of a novel type (aperiodic diffraction gratings with slits

ordered in accordance with the distribution of nontrivial

zeros of the Riemann zeta function) was demonstrated.

Atomic force nanolithography was used to prepare a series

of samples differing in the substrate material, the active

region size, the number of slits, the scale factor, the

surface relief depth, and certain other minor parameters.

Experimentally observed diffraction patterns produced by

these aperiodic gratings visualize the duality between zeros

of the Riemann zeta function and prime numbers.

It is too early to discuss the probable practical applica-

tions of these structures. However, their most noteworthy

features are already evident: the number of reflections

increases rapidly with scattering angle, and the scattering

radiation intensity reaches significant levels at large angles

(close to 90◦).
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It is commonly assumed that a diffraction grating is a

periodic structure that splits an input beam into several

diffracted beams propagating in different directions. In the

present case, the periodicity requirement is not necessary.

The examined samples are examples of deterministic aperi-

odic structures.

Note also that mutual amplification of waves is assumed

to occur when waves from neighboring sources arrive in

phase relative to each other. The Bragg diffraction is an

example of this. In the case of diffraction by deterministic

aperiodic structures, the key requirement is the presence of

a considerable discrete component in the Fourier transform

of the corresponding aperiodic sequence of δ-functions.
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