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The research is devoted to the development of methods of the determination of the local structure of copper

centers in Cu-MOR using a combination of machine learning and X-ray absorption spectroscopy techniques. Cu-

zeolites are promising catalysts for processes of environmentally friendly production of methanol from natural

methane gas, the catalytic activity of which is mostly determined by the local environment of copper atoms in

the zeolite. The irregular distribution of copper centers in the zeolite framework increases the complexity of the

problem, since it makes difficult to interpret the experimental Cu K-XANES spectra. Machine learning algorithms

trained on the synthetic data obtained in the FDMNES software package allowed us to determine the location of

copper centers in a particular zeolite ring with an accuracy of 0.97 according to the F1 metric.
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Introduction

Zeolites are microporous aluminosilicate compounds that

are used commercially as catalysts. For example, ze-

olites are being examined and optimized in C1 chem-

istry for application in the process of conversion of

methane into methanol. The presence of active centers

containing atoms of transition metals [1–5] is the cause

of a high catalytic activity of zeolites. It is difficult

to examine the structure of catalytically active centers

in detail, since the distribution of such centers in the

zeolite framework is nonuniform and is affected by a

variety of interrelated factors (e.g., the molar ratio of

reagents in the process of synthesis, reaction time and

temperature, etc.) [6–9]. Thus, the production of ef-

ficient catalysts involves the study of specific structural

parameters of metallic centers and their effect on catalytic

properties. Systematic studies of this kind have not been

performed yet [10] and require refinement of the existing

approaches.

Machine learning (ML) techniques are a promising

tool for determination of the structure of various mate-

rials [11–13] (zeolites included), since they allow one to

perform calculations for nonlinear or massively combina-

torial processes that cannot be probed by conventional

approaches [14]. Considering the vast number of factors

shaping the structure in synthesis of zeolites and the

variety of types of copper centers affecting their catalytic

properties, the use of ML is especially timely for improving

zeolite synthesis. The application of ML in this field

should provide an opportunity to automate and simplify

the process of determination of structural characteristics

of zeolites based on experimental data for the purpose of

identifying the laws of influence of structural features of

zeolites on their catalytic properties [15]. The study where

the elastic response of pure silica zeolites was predicted

by ML [16] is a well-documented example of this. The

authors used a gradient boosting regressor (GBR) [17,18]
and a training set of elastic properties calculated by density

functional theory (DFT). It turned out that the applied

ML approach allows one to predict bulk and shear moduli

of zeolites much faster and with an accuracy exceeding

the one achieved with the use of classical interatomic

pair potentials. ML was also used to predict possible

intermediates of the reaction of conversion of carbon dioxide

into methanol involving zeolites modified by metals [19].
XGBoost and ExtraTrees algorithms were applied in this

research.

The present study is focused on the development of a

method for determination of the local atomic structure of

copper centers (specifically, a ring in the framework of

copper-containing zeolite mordenite (Cu-MOR) in which

copper atoms are located) that combines ML and XANES

(X-ray absorption near edge structure) spectroscopy tech-

niques.

1. Methods and approaches

An approach combining ML and XANES spec-

troscopy [20,21] with the use of synthetic data allows one

not only to examine a large number of models of copper
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Figure 1. Theoretical Cu K-XANES spectra of the local environment of copper in the zeolite framework calculated for clusters of

different sizes (a) and with different grid spacings near the absorption edge for a 6 Å cluster (b).

centers, but also to accelerate significantly the process of

determination of structural parameters.

Classification, which is performed to divide data into

classes and provides an opportunity to predict the result

based on input data, is one of the objectives of machine

learning. In the present case, zeolite framework rings

containing copper atoms are the classes, and Cu K-XANES

spectra of various Cu-MOR structures are the input data

used for predictions. The procedure involves supervised

training: a classifier is trained by providing it with structural

models with already known rings containing copper centers

and Cu K-XANES spectra values. This classifier may

then be applied to experimental Cu K-XANES spectra and

identify rings containing copper centers.

Structures were modeled with the use of the ASE

(atomic simulation environment) library [22]. ASE is a

software package written in Python with the aim of setting

up, steering, and analyzing atomistic simulations. ASE

provides modules for many standard simulation tasks, such

as structure optimization and molecular dynamics. In the

present study, models of copper centers are objects of the

Atoms type (sets of atoms with given Cartesian positions).
Geometric optimization was performed with the LAMMPS

calculator from the ASE library with the use of the potential

presented in [23].

Cu K-XANES spectra for various structural models of

copper centers in Cu-MOR were calculated by the finite

difference method implemented in FDMNES [24]. The

finite difference method is a numerical technique for solving

differential equations on a point grid. In the present case, the

Schrödinger equation is solved for a spherical region around

an absorbing atom that incorporates a cluster containing

the needed number of atoms. Calculations for a cluster

with a radius of 6 Å with a grid spacing of 0.5 Å near the

absorption edge are sufficient to reproduce all key features

of Cu K-XANES spectra of models of copper centers in Cu-

MOR. The indicated cluster parameters were chosen after

examining the influence of the corresponding parameters on

the shape of theoretical Cu K-XANES spectra.

With the size of pores in the zeolite framework taken

into account, calculations were performed for local copper

environment clusters with a size of 4, 5, 6, and 7 Å. It

was found that saturation of the theoretical Cu KXANES

spectrum needed for classification of a copper center in

the zeolite ring is observed when a cluster 6 Å in size is

used: all key spectral features (A, B, C) for local copper

environment in the Cu-MOR framework are reproduced

in this case (Fig. 1, a). In addition, test calculations of

Cu K-XANES spectra with different grid spacings (0.5,
0.2, and 0.05 Å) near the absorption edge were carried

out. No significant changes in the shape of the theoretical

spectrum were observed (Fig. 1, b). These calculations were
performed in the excited state with the use of the Hedin–
Lundqvist potential.

The UMAP (uniform manifold approximation and projec-

tion) method, which is one of the most advanced techniques

for nonlinear dimension reduction and data visualization,

was chosen to provide graphical representation of the set.

This method relies on the concept of constructing a low-

dimensional manifold that retains the topological structure

of high-dimensional data; in other words, it conserves both

the local nature of the distribution and the global structure

of initial data [25].

2. Results and discussion

A training set containing Cu K-XANES spectra calculated

in FDMNES for a set of models of copper centers

positioned in different rings inside channels of the mordenite

framework was formed in order to apply ML techniques to

the problem of determination of the local atomic structure

of Cu-MOR. Since zeolites have a complex aluminosilicate

structure, we devised a naming convention for rings of the
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Figure 2. Schematic diagrams of certain models of copper centers in the Cu-MOR framework. The number of copper atoms is given

before the designation of the primary class (e.g., 1Cu 12.6).
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Figure 3. Schematic diagrams of certain rings in the Cu-MOR framework that allow for the formation of copper centers containing 1, 2,

and 3 copper atoms, respectively.

Cu-MOR framework for convenience of interpretation of

the obtained calculated data (Fig. 2).
A list of models was compiled based on the currently

available literature data [26–28], where the most probable

positioning of copper in the considered zeolite rings was

taken into account. Figures 2 and 3 present the schematic

models of copper centers located in different zeolite rings

and containing 1, 2, or 3 copper atoms. Major classes of

models were designated in accordance with the number of

silicon atoms in a ring or channel in which copper atoms

are located:
”
12“ — copper atoms are located in a 12-

fold channel;
”
8“ — copper atoms are located in an 8-fold

channel;
”
8.12“ and

”
8.8“ — copper atoms are located in

an 8-fold ring that is an element of a 12- or 8-fold channel,

respectively; and
”
5.12“ and

”
6.12“ — copper atoms are

located in a 5- or 6-fold ring of a 12-fold channel.

These major classes were then divided into subclasses

corresponding to different copper positions within a given

principal class. Three subclasses (
”
12.5,“

”
12.6,“ and

”
12.8“) were chosen in class

”
12“ with one copper atom

considered. The second index denotes the proximity to a

certain ring in a 12-fold channel. Another three subclasses

Technical Physics, 2024, Vol. 69, No. 4
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Table 1. Designations of models in the training set for the neural network

Class List of objects in this class

12 12.5 1Cu, 12.6 1Cu, 12.8 1Cu 12.5.5 2Cu, 12.5.6 2Cu, 12.5.8 2Cu 12.1 3Cu, 12.2 3Cu, 12.3 3Cu

8 8 1Cu 8.2Si 2Cu, 8.3Si 2Cu 8.1 3Cu, 8.2 3Cu

8.12 8.12 1Cu 8.12.2Si 2Cu, 8.12.3Si 2Cu 8.12.1 3Cu, 8.12.2 3Cu,

8.12.3 3Cu, 8.12.4 3Cu,

8.12.5 3Cu, 8.12.6 3Cu

8.8 8.8 1Cu 8.8.2Si 2Cu, 8.8.3Si 2Cu 8.8.1 3Cu, 8.8.2 3Cu

8.8.3 3Cu, 8.8.4 3Cu,

8.8.5 3Cu, 8.8.6 3Cu

6.12 6.12 1Cu 6.12 2Cu

5.12 5.12 1Cu
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Figure 4. Calculated Cu K-XANES spectra for: the model of a copper center in ring 5.12 containing 5 oxygen atoms, 4 silicon atoms,

and 1 aluminum atom (a); the model of a copper center in ring 8.8.2Si containing 8 oxygen atoms, 6 silicon atoms, and 2 aluminum

atoms (b); the model of copper center 8.12.3Si in ring 8.12, where Cu-O-Cu chain rotation angle ϕ of 16◦ was varied with a pitch of

4◦ (c); and the model of copper center 8.3Si in ring 8 (d).

(
”
12.5.5,“

”
12.5.6,“ and

”
12.5.8“) were identified in the

same class with two copper atoms considered. Figure 2

presents an example for model
”
12.5.6.“ Copper atoms in

this model are bound to each other via an oxygen atom and

to the framework via aluminum atoms found in 5- and 6-

fold rings in a 12-fold channel. In a similar fashion, models

Technical Physics, 2024, Vol. 69, No. 4
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Table 2. Variation of structural parameters in the process of

compilation of the database; RCu-Al is the distance between copper

and aluminum atoms and ϕ is the rotation angle

Cu Model
Structural Parameter variation, RCu-Al,

parameter angstroms, and ϕ, degrees

12 RCu-Al 2.12−3.32

12.6 RCu-Al 2.35−3.37

RCu-Al 1.99−3.41

RCu-Al 3.17−3.89

RCu-Al 2.40−4.05

1 RCu-Al 2.36−4.03

6.12 R1 Cu-Al 2.51−3.15

R2 Cu-Al 2.53−3.42

RCu-Al1 2.64−3.19

5.12 RCu-Al2 2.91−3.59

RCu-Al3 3.31−3.70

12.5.5 RCu-Al 2.12−3.32

12.5.6 RCu-Al 1.92−3.12

12.5.8 RCu-Al 2.29−3.49

6.12 RCu-Al 1.82−2.82

8.12.2Si RCu-Al 2.48−2.66

ϕ −16− +16

2 8.12.3Si RCu-Al 2.51−2.67

ϕ −16− +16

8.2Si RCu-Al 2.33−2.76

ϕ −16− +16

8.3Si RCu-Al 2.33−2.73

ϕ −16− +16

8.8.2Si RCu-Al 2.5−2.75

ϕ −16− +16

8.8.3Si RCu-Al 2.53−2.76

ϕ −16− +16

for two copper atoms in rings
”
8,“

”
8.12,“ and

”
8.8“ were

divided into two subclasses:
”
8.2Si,“

”
8.3Si“;

”
8.12.2Si,“

”
8.12.3Si“; and

”
8.8.2Si,“

”
8.8.3Si“, where the number of

silicon atoms in a ring between aluminum atoms is indicated

(Fig. 3).

Three types of models differing in the positions of copper

atoms in a ring and bonds via oxygen with each other

and with the zeolite framework were considered for three

copper atoms in channel
”
12“

”
12.1,“

”
12.2,“and

”
12.3“.

Similar designations were introduced for all the other

models: models
”
8.1“ and

”
8.2“;

”
8.12.1,“

”
8.12.2,“

”
8.12.3,“

”
8.12.4,“

”
8.12.5,“ and

”
8.12.6“; and

”
8.8.1,“

”
8.8.2,“

”
8.8.3,“

Table 2 (continued).

Cu Model
Structural Parameter variation, RCu-Al,

parameter angstroms, and ϕ, degrees

12.1 RCu-Al 3.73−4.04

12.2 RCu-Al 3.73−4.04

12.3 RCu-Al 3.34−3.69

8.1 RCu-Al 3.37−3.91

8.12.1 RCu-Al 2.03−2.55

8.12.2 RCu-Al 2.25−2.73

8.12.3 RCu-Al 2.03−2.55

8.12.4 RCu-Al 2.03−2.55

3 8.12.5 RCu-Al 2.03−2.55

8.12.6 RCu-Al 2.03−2.55

8.2 RCu-Al 3.62−4.12

8.8.1 RCu-Al 1.81−1.92

8.8.2 RCu-Al 2.36−2.53

8.8.3 RCu-Al 1.81−1.92

8.8.4 RCu-Al 1.81−1.92

8.8.5 RCu-Al 1.81−1.92

8.8.6 RCu-Al 2.47−2.56

”
8.8.4,“

”
8.8.5,“ and

”
8.8.6“ were considered for three

copper atoms in channel
”
8“ and rings

”
8.12“ and

”
8.8,“

respectively.

Thus, the first and second numbers in designations for

channels
”
12“ and

”
8“ (e.g., model

”
12.5“) denote the

channel and the ring, respectively. These designations

are necessary, since the position of a copper atom in the

considered copper center varies along the channel. A

different type of consecutive numbering, where the first and

second numbers denote the ring and the channel to which

this ring belongs, is used for other classes. In this case,

the ring, which is the thought-for class, is the element of

relevance. The designations of all classes in the set are

listed in Table 1.

A data set including Cu K-XANES spectra for each

model from the examined set with different varying

structural parameters of the local environment of copper

(interatomic distances RCu-Al with account for different

directions of displacement of a copper atom and rotation

angle ϕ) was compiled for classifier training and testing

(Fig. 4, c). The ranges of variation of structural parameters

are listed in Table 2. The resulting data set consisted

of 2100 calculated Cu K-XANES spectra for different

models of copper centers. All non-equivalent positions of

copper atoms were taken into account when introducing

the resulting spectrum into the set.

Technical Physics, 2024, Vol. 69, No. 4
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In addition, augmentation of theoretical data was per-

formed with an allowance made for the influence of copper

oxides (CuO and Cu2O). With this aim in view, Cu K-

XANES spectra formed as linear combinations of the

considered models of copper centers and CuO and Cu2O

copper oxides with different contributions (25, 50, and 75%

for each individual oxide) were added to the theoretical data

set. Thus, the set consisted of 14700 theoretical Cu K-

XANES spectra. Elements of the set for rings designated,

in accordance with the above naming convention, as
”
5.12“

(Fig. 4, a), 8.8.2Si (Fig. 4, b), 8.12.3Si (Fig. 4, c), and 8.3Si

(Fig. 4, d) are shown as examples in Fig. 4.

A neural network (MLP, multilayer perceptron) was

chosen as a classifier, since it was found to be more accurate

than such classical machine learning methods as Extra Trees

Classifier, KNeighbors, and Random Forest, which had an

accuracy of 0.80, 0.65, and 0.79, respectively, according to

the F1 metric. Prior to training of the neural network, data

were analyzed for the possibility of their clusterization by

the UMAP nonlinear dimension reduction method. The

reduction to two parameters made it possible to present the

set in a graphic form (Fig. 5). With 100 neighbors and a

minimum distance of 1, the data clearly group into clusters.

A fully connected neural network constructed based

on pytorch modules [29] was used to identify the ring

containing a copper center. The neural network consisted

of an input linear layer, a dropout layer, a ReLU activation

layer, a hidden linear layer, and a softmax layer. The dropout

method nullifies certain elements of the input tensor with

a probability of 0.25 with the use of samples from the

Bernoulli distribution. The softmax function alters the input

tensor in such a way so that its elements lie within the

[0, 1] interval and add up to unity. The obtained output

values may be regarded as approximate probabilities that an

active copper center is positioned in given rings. Multiclass

cross-entropy was used as a loss function. The test set was

33% of the entire data set. The Adam optimizer with a

learning rate of 0.01 was used to perform training. The

accuracy according to the F1 metric ceases to grow after

1000 epochs (training cycles) and stops at 96.6% for the

test set and 97.4% for the training set (see Figs. 6, 7). It

should be stressed that a model trained on non-augmented

data, which is needed to exclude the possibility of finding

similar spectra in training and test sets, was obtained at the

first stage. The accuracy of the model was estimated by

cross-validation with 10 subsets and was found to be 89%

according to the average F1 metric. Thus, the model is

statistically stable, and its accuracy is comparable to that of

the model trained on augmented data.

The error matrix (Fig. 7) suggests that the neural network

distinguishes fairly accurately (according to the F1 metric)

between different structural zeolite rings. Diagonal elements

represent the number of correctly classified rings of each

class, while non-diagonal elements correspond to incorrectly

classified rings.
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Conclusion

An approach combining XANES spectroscopy, computer

modeling, and ML was proposed to be used for determining

the local atomic structure of copper centers formed in

the Cu-MOR zeolite framework. Cu K-XANES spectra

were calculated using the FDMNES software package for

the obtained set of models of different types of copper

centers. A proprietary naming convention for models of

copper centers located in different rings of zeolite mordenite

was proposed, and a training data set containing 14700

theoretical Cu K-XANES spectra (with the influence of

CuO and Cu2O oxides factored in) was compiled. The

application of clusterization methods to the obtained model

data revealed that Cu K-XANES spectra corresponding to

the models of copper centers located in the same structural

fragment are localized in the same region of the attribute

space.

The feasibility of grouping attributes into clusters opens

up opportunities for determination of the type of atomic

structure (in particular, specific zeolite rings containing

copper atoms) based on Cu K-XANES spectra. This

potential was illustrated by training the neural network

on theoretical spectra. The accuracy of the obtained

characterization was rather high: 0.97 according to the F1

metric. In future studies, the constructed ML model will

be applied in the analysis of experimental Cu K-XANES

spectra.
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