## 05,11

# Магнитокалорические особенности системы NiMn<sub>1-x</sub>Cr<sub>x</sub>Ge, обусловленные размытым характером структурных переходов 1-го рода $P6_3/mmc \leftrightarrow Pnma$

© В.И. Вальков<sup>1</sup>, А.В. Головчан<sup>1</sup>, И.Ф. Грибанов<sup>1</sup>, О.Е. Ковалев<sup>1</sup>, В.И. Митюк<sup>2</sup>

<sup>1</sup> Донецкий физико-технический институт им. А.А. Галкина, Донецк, Россия <sup>2</sup> Научно-производственный центр НАН Беларуси по материаловедению, Минск, Беларусь

E-mail: valkov09@gmail.com

Поступила в Редакцию 18 марта 2024 г. В окончательной редакции 13 мая 2024 г. Приинята к публикации 21 мая 2024 г.

Предложен подход для описания магнитоструктурных особенностей системы  $Mn_{1-x}Cr_xNiGe$  в рамках концепции размытых фазовых переходов 1-го рода. В основе подхода лежит объединение двух моделей описания структурных переходов 1-го рода  $hex(P6_3/mmc) \leftrightarrow orth(Pnma)$ . Микроскопическая модель точечных переходов 1-го рода используется для описания фазового состояния гомогенной среды зародыша ромбической фазы. Термодинамическая модель перераспределения зародышей обеих фаз гетерогенной среды образца под действием энтропии смешения используется для описания макроскопического фазового состояния. В рамках используемой модели дано объяснение трех типов фазовых переходов, наблюдаемых в системах со структурной неустойчивостью. Показано, что реверсивные и магнитоструктурные переходы 1-го рода, наблюдаемые в образцах x = 0.18, x = 0.25 соответственно могут реализоваться в образце x = 0.11 с изоструктурным магнитным переходом 2-го рода при воздействии на образец гидростатического давления.

Ключевые слова: размытые структурные фазовые переходы, размытые магнитоструктурные переходы 1-го рода, гетерогенная среда, гелимагнетизм.

DOI: 10.61011/FTT.2024.06.58256.68

#### 1. Введение

Структурные переходы ИЗ гексагонального  $hex(P6_3/mmc)$  в ромбическое orth(Pnma) состояние парамагнитной  $(\mathbf{PM})$ области температур в  $PMhex(P6_3/mmc) \leftrightarrow PMorth(Pnma)$ системы  $Mn_{1-x}Cr_xNiGe$ обладают рядом характеристик, которые позволяют отнести их к структурным фазовым переходам 1-го рода. К таким характеристикам относятся значительное изменение удельного объема, спонтанное выделение (поглощение) тепла и большой температурный гистерезис [1]. Однако поскольку эти характеристики реализуются не скачкообразно (что, согласно Эренфесту является необходимым условием [2]), то эти переходы можно отнести к категории размытых фазовых переходов 1-го рода [3-6]. Одним из показателей размытости структурного перехода  $PMhex(P6_3/mmc) \leftrightarrow PMorth(Pnma)$  является плавное изменение содержания ромбической фазы Рпта в образце X-Int  $_{orth}(T)$  в пределах конечного интервала характерных температур перехода. Температурная зависимость X-Int  $_{orth}(T)$ , рис. 1, *b*, определялась методом рентгенофазового анализа по изменению интенсивностей дифракционных максимумов сменяющихся фаз. При нагреве или охлаждении образца в определенных температурных интервалах наблюдается монотонное изменение X-Int <sub>orth</sub>(T). Предполагается, что эти температурные интервалы определяют степень размытости структурного перехода 1-го рода PMhex( $P6_3/mmc$ )  $\leftrightarrow$  PMorth(Pnma).

На рис. 1 экспериментальная зависимость X-Int  $_{orth}(T)$ для образца с x = 0.11 показывает размытие перехода в пределах  $\Delta_h = 56 \, \text{K}$  при нагреве и порядка  $\Delta_c = 65 \,\mathrm{K}$  при охлаждении. Для модели точечных переходов 1-го рода эти величины должны приближаться к нулю и зависимости X-Int  $_{orth}(T)$  будут описываться ступенчатыми функциями  $L_{1c}(T) = \Phi(T_{t1}-T)$ ,  $L_{1h}(T) = \Phi(T_{t2}-T)$ , рис. 2, *b*. Модельные зависимости  $\chi^{-1}(T)$  и параметра структурного порядка также демонстрируют ступенчатые характеристики вблизи температур лабильности (абсолютной неустойчивости) однородных парамагнитных структурных состояний: гексагонального  $PMhex(P6_3/mmc) - T_{t1}$  и ромбического  $PMhex(P6_3/mmc) - T_{t2}$ . Применительно к образцам системы NiMn<sub>1-x</sub>Cr<sub>x</sub>Ge модель точечных переходов в однородной среде [7] (обменно-структурная модель) приведена в Приложении. В настоящей работе теоретический анализ размытых структурных переходов опирается на термодинамическую модель перераспределения однородных частиц — зародышей структурных фаз. При этом состояние зародышей описываются в рамках микроскопической модели точечных переходов для однородной среды [7]. Экспериментальные данные, используемые в работе, получены ранее в предыдущих работах авторов.

# 2. Основные положения модели размытых магнитоструктурных переходов для твердых растворов системы Mn<sub>1-x</sub>Cr<sub>x</sub>NiGe

Исходим ИЗ предположения [8-9],что твердые  $Mn_{1-r}Cr_rNiGe$ растворы в области температур структурного парамагнитного перехода  $PMhex(P6_3/mmc) \leftrightarrow PMorth(Pnma)$ представляют собой гетерогенную систему, состоящую из двух хаотически распределенных областей, каждая ИЗ которых является одной из двух гомогенных фаз. Каждая гомогенная область рассматривается как зародыш соответствующей фазы: ромбической фазы 1 с группой симметрии *Pnma* (далее — orth(*Pnma*)) или гексагональной фазы 2 с группой симметрии  $P6_3/mmc$  (далее — hex( $P6_3/mmc$ )). Термодинамический потенциал такой гетерогенной системы, состоящей из



**Рис. 1.** Экспериментальные температурные зависимости обратной РМ восприимчивости  $\chi^{-1}(T)$  и рентгеновской интенсивности X-Int<sub>orth</sub>(T), измеренные в соответствующих полях [1].



**Рис. 2.** Теоретические температурные зависимости обратной РМ восприимчивостии  $\chi^{-1}(T)$  функции фазового состояния L(T) в модели точечных структурных переходов 1-го рода.  $Q_0(T)$  — температурная зависимость параметра структурного порядка, описывающего точечный структурный переход hex $(P6_3/mmc) \leftrightarrow \operatorname{orth}(Pnma)$  в однородной среде [7-8].

смеси фаз 1 и 2, можно представить в виде [3-4]:

$$\Omega = L_1 U_1 + L_2 U_2 + U_{12} L_1 L_2 - TS(L_1, L_2), \qquad (1a)$$

$$S(L_1, L_2) = -k_{\rm B}[L_1 \ln L_1 + L_2 \ln L_2], \qquad (1b)$$

где переменные величины  $L_1, L_2$  — относительное число частиц;  $U_1 \equiv U_1(T), U_2 \equiv U_2(T)$  — их термодинамические потенциалы соответственно в фазах 1 и 2,  $S(L_1, L_2)$  — энтропия смешения [4],  $k_{\rm B}$  — постоянная Больцмана.  $\tilde{U}_{12}$  — потенциал взаимодействия между частицами.

В предельном случае невзаимодействующих фаз  $(\tilde{U}_{12}L_1L_2 \ll 1)$ , основной движущей силой изменения соотношения между  $L_1, L_2$  остается энтропия смешения, которую при условии  $L_1 + L_2 = 1$  можно привести к виду

$$S = -k_{\rm B}[L_1 \ln L_1 + L_2 \ln L_2]$$
  
=  $-k_{\rm B}[L_1 \ln L_1 + (1 - L_1) \ln(1 - L_1)].$ 

Тогда выражение (1а) приобретает вид

$$\Omega = \Delta U_{12}L_1 + U_2 + k_{\rm B}T[L_1\ln L_1 + (1 - L_1)\ln(1 - L_1)],$$
(2)

где  $\Delta U_{12} = U_1 - U_2$ .

Для определения функции фазового состояния гетерогенной системы минимизируем термодинамический потенциал по  $L_1$  ( $\partial \Omega / \partial L_1 = 0$ ) и находим равновесное значение

$$L_1 = \left(1 + e^{\frac{\Delta U_{12}}{k_{\mathrm{B}}T}}\right)^{-1}.$$
(3)

Полагаем, что зависимость X-Int  $_{orth}(T)$ , описывающая относительное изменение содержания ромбической фазы, может ассоциироваться с температурной зависимостью относительного количества частиц  $L_1(T)$  мартенситной фазы с ромбической структурой в аустенитной среде, образованной частицами  $L_2(T) = 1 - L_1(T)$  с гексагональной структурой. В исходной монографии [3] частицы одной фазы определяются как зародыши этой фазы.

Изменение термодинамического потенциала частицы  $\Delta U_{12} \equiv U_2 - U_2$  можно представить в виде суперпозиции двух компонент: объемной  $(\tilde{\Omega}_1 - \tilde{\Omega}_2)g$ , описывающей энергетическое состояние в объеме зародыша и поверхностной  $(\tilde{\alpha}_1 - \tilde{\alpha}_2)g^{2/3}$ , характеризующей энергетические особенности формы зародышей [3,9]:

$$\Delta U_{12} \equiv U_1 - U_2 = (\tilde{\Omega}_1 - \tilde{\Omega}_2)g_1 + (\tilde{\alpha}_1 - \tilde{\alpha}_2)g_1^{2/3}.$$
 (4)

Здесь  $g_1 \approx 50-1000$  — среднее число структурных единиц в частице [4] (в рассматриваемом случае подразумевается число исходных элементарных ячеек в объеме частицы ромбической фазы);  $\tilde{\Omega}_1$ ,  $\tilde{\Omega}_2$  — термодинамические потенциалы объемной части зародыша соответствующих фаз;  $\tilde{\alpha}_1$ ,  $\tilde{\alpha}_2$  — термодинамические потенциалы, связанные с образованием формы поверхности зародыша. Тут и далее считаем термодинамические потенциалы в расчете на объем элементарной ячейки исходной гексагональной структуры.

Выражение (4) по структуре не нарушает исходного условия сохранения относительного числа частиц  $L_2 = 1-L_1$ , если  $g_1$  является одинаковым для зародышей обеих фаз:  $g_1 = g_2 = g$ . Действительно, левая часть по определению должна иметь вид

где

$$\Delta U_{21} \equiv U_2 - U_1 = (\tilde{\Omega}_2 - \tilde{\Omega}_1)g_2 + (\tilde{\alpha}_2 - \tilde{\alpha}_1)g_2^{2/3}.$$

 $L_2=\left(1+e^{rac{\Delta U_{21}}{k_{\mathrm{B}}T}}
ight)^{-1},$ 

Легко показать, что правая часть равенства  $L_2 = 1 - L_1$ при  $g_1 = g_2 = g$  имеет вид

$$\begin{split} 1 - L_1 &= 1 - \left(1 + e^{\frac{\Delta U_{12}}{k_{\rm B}T}}\right)^{-1} = \left(1 + e^{\frac{-(\tilde{\Omega}_1 - \tilde{\Omega}_2)g_1 - (\tilde{\alpha}_1 - \tilde{\alpha}_2)g_1^{2/3}}{k_{\rm B}T}}\right)^{-1} \\ &\equiv \left(1 + e^{\frac{\Delta U_{21}}{k_{\rm B}T}}\right)^{-1}. \end{split}$$

В основополагающих работах по размытым переходам 1-го рода в сплавах с памятью формы и сегнетоэлектриках [3,5,6,9,10] микроскопический механизм формирования мартенситной структуры в зародыше не рассматривается. Например, в [4], где основное внимание уделяется описанию механизма гигантской макроскопической деформации рабочих тел, испытывающих мартенситный переход, величина  $\Delta U_{12}$  в (3) аппроксимировалась выражением  $\Delta U_{12} = B(T-T_C)k_B$ . Тогда

$$L_1(T) = \left(1 + e^{\frac{B(T - T_C)k_{\rm B}}{T}}\right)^{-1},\tag{5}$$

где согласно [4] B — параметр, определяющий размытие перехода по температуре,  $T_C$  — температура перехода в мартенситное состояние.

При таком подходе известные феноменологические модели точечных мартенситных переходов в сплавах Гейслера (см., напр., [10–14]) остаются вне поля зрения. При этом понятия параметра порядка и температуры переходов  $T_C$  не совпадают в смысловом значении. Так, при описании размытых переходов [4] в качестве параметра порядка  $\eta$  рассматривается величина  $\eta = L_1 - L_2 = 2L - 1$ , которая изменяется от -1 до 1. При этом  $T_C$  определяется условием  $L(T_C) = 1/2$ .

С другой стороны, при рассмотрении мартенситных переходов часто ограничиваются рассмотрением точечных переходов 1-го рода, которые характерны для гомогенных систем и протекают одновременно во всем объеме образца. Для их описания используется неравновесный термодинамический потенциал в виде разложения по комбинациям упругих деформаций [10-14]. Две комбинации из данных деформаций е2, е3 при переходе 1-го рода из тетрагональной структуры (аустенит,  $e_2 \neq 0$ ,  $e_1 \neq 0$ ) в кубическую (мартенсит,  $e_2 = e_3 = 0$ ) исчезают, поэтому применяются как вторичный параметр порядка. Температура перехода Т<sub>С</sub> в таком случае соответствует температуре размягчения упругого модуля  $a = c_{11} - c_{12} = a_0(T - T_C)$ , который определяет 1-й член разложения неравновесного термодинамического потенциала по параметрам порядка:  $\frac{1}{2}a_0(T-T_C)(e_2^2+e_3^2)$  [10–14]. В этом случае зародыши подразумеваются, но рассматриваются отдельно при учете уже модельной гетерогенности системы.

В настоящей работе, следуя [8], учитываются оба подхода к описанию мартенситных превращений в системе  $Mn_{1-x}Cr_xNiGe$ . Предполагается, что появление зародыша мартенсита (ортофазы) с пока не известной формой в кристаллической решетке, происходит при стабилизации соответствующего перехода. Точечного структурного PMhex( $P6_3/mmc$ )  $\leftrightarrow$  PMorth(Pnma) или точечного магнитоструктурного PMhex( $P6_3/mmc$ )  $\leftrightarrow$  HMorth(Pnma) перехода с гелимагнтной (HM) орторомбической фазой HMorth(Pnma) в качестве фазы 1. Поэтому в (4) в качестве  $\tilde{\Omega}_1, \tilde{\Omega}_2$  используются равновесные выражения термодинамических потенциалов, вычисленные в той или иной модели точечных структурных переходов. В частности, при использовании обменно-структурной модели взаимодействующих параметров магнитного и структурного порядков [7–8], описывающей точечные переходы 1-го рода  $PMhex(P6_3/mmc) \leftrightarrow HM,PMorth(Pnma)$  в идеальной однородной системе из  $N_0 \gg g$  элементарных

$$\tilde{\Omega}_1 = \Omega(\text{orth})/N_0 \equiv \Omega(Q_0, y, e_1, T, P, H)/N_0,$$
 (6a)

$$\tilde{\Omega}_2 = \Omega(\text{hex})/N_0 \equiv \Omega(Q_0 = 0, y, e_1, T, P, H)/N_0, \quad (6b)$$

где  $Q_0, y$  — значения равновесных параметров соответственно структурного и магнитного порядков;  $e_1 \equiv e_1(Q_0, y, P, T)$  — объемная деформация;  $\Omega(Q_0, y, e_1, T, P, H) \equiv \Omega_1$  — равновесный термодинамический потенциал, вычисленный для ромбического магнитоупорядоченного  $y \neq 0$  (парамагнитного y = 0) состояния; аналогично  $\Omega(Q_0 = 0, y, e_1, T, P, H) \equiv \Omega_2$  — равновесный термодинамический потенциал, вычисленный для равновесный термодинамический потенциал, вычисленный для ромбического магнитоупорядоченного  $y \neq 0$  (парамагнитного  $y \neq 0$  (парамагнитного y = 0) состояния (П4).

Величина  $(\tilde{\alpha}_1 - \tilde{\alpha}_2)g^{2/3}$ , описывающая влияние формы поверхности зародышей — пока не известная функция температуры и давления. Предполагаем, что это слагаемое в (4) позволяет определять начальные условия зависимости  $L_1(T)$  при охлаждении и нагреве гетерогенной системы. Разумно также предположить, что, как и 1-е слагаемое в (4), величина  $(\tilde{\alpha}_1 - \tilde{\alpha}_2)g^{2/3}$  должна "отрабатывать" изменение внешних условий: давления, температуры, магнитного поля. В простейшем варианте  $(\tilde{\alpha}_1 - \tilde{\alpha}_2)g^{2/3}$  аппроксимируется выражениями

$$(\tilde{\alpha}_1 - \tilde{\alpha}_2)g^{2/3} = g^{2/3}\Delta\alpha_{12}(\Omega_1, \Omega_2) \equiv g^{2/3}(n_1^{c,h}\Omega_1 - n_2^{c,h}\Omega_2),$$
(7)

где числа  $|n_{1,2}^{c,h}| \ll 1$  — параметры модели, определяющие подстройку зависимости  $L_1(T) \equiv L_{1_c}(T)$  при охлаждении  $(n_{1,2}^c)$  и  $L_1(T) \equiv L_{1_h}(T)$  при нагреве  $(n_{1,2}^h)$  гетерогенной системы. При этом значения однажды выбранных чисел  $n_{1,2}^{c,h}$  и *g* полагаем не зависящими от давления и магнитного поля.

Конечные выражения для температурных зависимостей  $L_{1c,h}(T)$  при фиксированных давлении P и магнитного поля H, согласно (6) имеют вид

$$L_{1c}(T) = \left(1 + e^{\frac{|\Omega_1 - \Omega_2|_g + |n_1^{c}\Omega_1 - n_2^{c}\Omega_2|_g^{2/3}}{a_2 T}}\right)^{-1} \equiv L_{1c}(T, P, H),$$
(8a)
$$L_{1h}(T) = \left(1 + e^{\frac{|\Omega_1 - \Omega_2|_g + |n_1^{h}\Omega_1 - n_2^{h}\Omega_2|_g^{2/3}}{a_2 T}}\right)^{-1} \equiv L_{1h}(T, P, H),$$
(8b)

где  $a_2 = k_{\rm B}N_0$ ,  $N_0$  — число элементарных ячеек на единицу объема (cm<sup>3</sup>) (см. Приложение).

Магнитный

$$y = \langle \mathbf{U}_n^k \, \hat{\mathbf{s}}_n^k \rangle / s \equiv \langle \hat{m} \rangle / s = Sp\hat{m} \, e^{\beta h \hat{m}} / s Sp e^{\beta h \hat{m}}$$

$$Q_0 = \langle Q_n 
angle_
ho \equiv \int\limits_{-\infty}^{\infty} 
ho_{dso} Q_n dQ_n$$

параметры порядка для описания точечных переходов определяются в приближении среднего поля  $h\mathbf{U}_n^k$  для спиновой подсистемы и приближении смещенного гармонического осциллятора для структурной подсистемы

$$\rho_{dso} \equiv \rho_{dso}(Q_n) = \frac{1}{\sqrt{2\pi\tilde{\sigma}}} \exp\left[-\frac{(Q_n - Q_0)^2}{2\tilde{\sigma}}\right]$$

(см. Приложение). В модели размытых переходов их равновесные значения, вычисленные из уравнений состояния (П2) преобразуются к  $y^*$ ,  $Q_0^*$  (9)

$$y_{c,h}^*(T) = y(T)L_{1c,h}(T),$$
 (9a)

$$Q_{0c,h}^*(T) = Q_0(T)L_{1c,h}(T).$$
(9b)

Соответственно термодинамические функции от переменных у и  $Q_0$  переходят в функции от  $y^*$ Например, температурная  $Q_0^*$ . зависимость  $S(T, H, P) \equiv S[Q_0(T), y(T, H), T, H, P]$ энтропии в точечном описании (П2) переходит в зависимость  $S[Q_0^*(T), y^*(T, H), T, H, P]$ . Температурные зависимости обратной РМ-восприимчивости в области температур парамагнитного структурного перехода  $PMhex(P6_3/mmc) \leftrightarrow PMorth(Pnma)$  [7] трансформируется по схеме

$$\chi_{c,h}^{-1}(T) \equiv \chi_{c,h}^{-1}[Q_{0c,h}(T),T] \to (\chi_{c,h}^*)^{-1}[Q_{0c,h}^*(T),T]$$

при H = y = 0и

$$\chi_{c,h}^{-1}(T) \equiv \chi_{c,h}^{-1}[y_{c,h}(T,H)] = \frac{H_0}{M[y_{c,h}(T,H)]} \to \frac{H_0}{M[y_{c,h}^*(T,H)]}$$

при  $H = H_0$ . Здесь и далее нижние индексы c и h — соответствуют охлаждению и нагреву,  $M[y_{c,h}(T,H)]$  соответствуют теоретическим значениям удельной намагниченности при охлаждении, нагреве образца.

# Интерпретация особенностей магнитоструктурных и магнитокалорических свойств образцов системы Mn<sub>1-x</sub>Cr<sub>x</sub>NiGe с 0.11 ≤ x ≤ 0.25 в модели размытых переходов

В системе  $Mn_{1-x}Cr_xNiGe$  можно выделить три типа характерных особенностей магнитоструктурных свойств. Свойства образца с x = 0.11 (рис. 3, *a*, *b*, *c*) типичны для твердых растворов с концентрацией Cr в пределах  $0 \le x < 0.18$ . Аномальное поведение



**Рис. 3.** Совмещенные экспериментальные (символы) и теоретические (линии) температурные зависимости магнитоструктурных характероистик ряда сплавов системы  $Mn_{1-x}Cr_xNiGe$  при атмосферном давлении. *g*-число структурных единиц в ромбическом зародыше; экспериментальные зависимости взяты из [1].

обратной парамагнитной восприимчивости и изменение фазового состояния заканчивающееся ниже парамагнитной температуры Кюри  $\theta_{\text{orth}}$  (рис. 3, *a*, *b*) характерно для размытого структурного перехода 1-го рода  $hex(P6_3/mmc) \leftrightarrow orth(Pnma)$ , предшествующего магнитному упорядочению, рис. 3, *с*. Последнее реализуется как изоструктурный переход 2-рода, PMorth(*Pnma*)—HMorth(*Pnma*) и стабилизирует про-



**Рис. 4.** Сопоставление температурных зависимостей магнитных M(T) и магнитокалорических  $\Delta S(T)$  характеристик.для ряда образцов системы системы  $Mn_{1-x}Cr_xNiGe$ . Символы — экспериментальные данные из [19,16,19] соответственно; линии — модель.

стую гелимагнитную фазу (HM) с волновым вектором  $\mathbf{q} = [0, 0, q_a]$  [15]. Этот переход не является размытым, так как происходит в температурной области стабильности ромбической фазы для всего кристалла  $(L_{1c,h}(T) \equiv 1)$ . Свойства образца с x = 0.18 определя-

ют, так называемые, реверсивные переходы [16], которые сопровождаются температурным гистерезисом и обладают различной крутизной намагниченности при первоначальном понижении и последующем повышении температуры (рис. 4, *c*). Здесь резкий спад обратной восприимчивости  $\chi_c^{-1}$  (рис. 3, c) и намагниченности (рис. 4, с) совпадает с возрастанием содержания ромбической фазы  $L_{1c}(T)$ , X-Int(T) (рис. 3, d). Подобное поведение, согласно [16], можно истолковать как возникновение при первоначальном понижении температуры магнитоструктурного перехода 1-го рода  $PMhex(P6_3/mmc) \leftrightarrow FMorth(Pnma)$ . Этот переход будет размытым, так как находится в области наибольшего изменения  $L_{1c}(T)$ , X-Int<sub>orth</sub>(T) (рис. 3, d). При обратном повышении температуры в пределах ромбической фазы наблюдается не размытый изоструктурный переход 2-го рода FMorth(Pnma)-PMorth(Pnma) (его начало и конец по температуре ниже основного изменения функции  $L_{1h}(T)$ , X-Int<sub>oth</sub>(T) рис. 3, d). Здесь и ниже верхний индекс "\*" использованный в (9) для обозначения параметров размытых переходов не употребляется. Поэтому характеристики точечных переходов выделяются текстом. В образце с x = 0.25 ферромагнитное упорядочение (разупорядочение) реализуется как переход 1-го рода как при повышении, так и при понижении температуры [18–19]. Этот переход сопровождается температурным гистерезисом и относительно резким изменением намагниченности, с последующим практически безгистерезисным и плавным ее нарастанием при низких температурах (рис. 4, e).

Экспериментальные изотермические зависимости энтропии  $\Delta S(T)$ , рассчитанные на основе соотношения Максвелла в диапазоне изменения магнитного поля  $\Delta H = 9.7$  kOe дополняют магнитоструктурные особенности исследуемых образцов. На рис. 4 сопоставляются экспериментальные и теоретические зависимости удельных M(T), и  $\Delta S(T)$ , которые дают представление о взаимосвязи магнитных и магнитокалорических особенностей системы  $Mn_{1-x}Cr_x$ NiGe при атмосферном давлении. Теоретические зависимости  $\Delta S(T)$  рассчитывались по схеме

$$\Delta S(T) = S[Q_0(T), y(T, H), T, H, P]$$
  
- S[Q\_0(T), y(T, 0), T, 0, P]. (10)

Как видно из рис. 4, *a*, *b*, для сплавов с разнесенными структурным и магнитным переходами характерна четырехпиковая структура зависимости  $\Delta S(T)$  (2 пика при охдаждении: структурный  $\Delta S_c^s(T)$  и магнитный  $\Delta S_c^m(T)$ ; 2 пика при нагреве:  $\Delta S_c^s(T)$  и  $\Delta S_h^m(T)$  структурный и магнитный соответственно). Согласно модели первые два совмещенных низкотемпературных пика  $\Delta S_h^m(T)$ и  $\Delta S_c^m(T)$  соответствуют магнитокалорическому вкладу от изоструктурного магнитного фазового перехода PMorth(*Pnma*)–HMorth(*Pnma*) в пределах ромбической фазы. Возникновение (исчезновение) этой фазы в результате размытого структурного перехода 1-го рода PMhex(*P*6<sub>3</sub>/*mmc*)  $\leftrightarrow$  PMorth(*Pnma*) может быть причиной двух высокотемпературных пиков  $\Delta S(T)$ , соответствующих охлаждению  $\Delta S_c^s(T)$  и нагреву  $\Delta S_h^s(T)$ . Эти "Структурные" пики значительно меньше по абсолютной величине изоструктурных "магнитных" пиков  $\Delta S_h^m(T)$ ,  $\Delta S_c^m(T)$ . Экспериментальные точки для зависимостей  $\Delta S_h^s(T)$ ,  $\Delta S_c^s(T)$  на рис. 4, *b* отсутствуют. Однако их существование косвенно подтверждается ДТА анализом в работе [17].

Несколько другая особенность наблюдается для центрального образца x = 0.18. Здесь трехпиковая совмещение структура отражает несимметричное структурных и магнитных переходов. Резкий низкотемпературный пик большого размера является суперпозицией магнитного и структурного вкладов. Этот пик  $\Delta S_{c}^{ms}(T)$  характеризует размытый магнитоструктурный переход 1-го рода  $PMhex(P6_3/mmc) \leftrightarrow FMorth(Pnma)$ , реализующийся при охлаждении образца. При нагреве образца реализуется последовательность двух фазовых переходов. Первому изоструктурному переходу 2-го рода FMorth(Pnma)  $\rightarrow$  PMorth(Pnma) соответствует магнитный пик  $\Delta S_h^m(T)$ . Второму размытому структурному переходу 1-го рода. PMorth(*Pnma*)  $\rightarrow$  PMhex(*P6*<sub>3</sub>/*mmc*) соответствует структурный пик  $\Delta S_{h}^{s}(T)$ . Для x = 0.25как при охлаждении, так и при нагреве структурный и магнитный переходы совмещаются. Реализуется двухпиковая структура  $\Delta S(T)$ . Каждый пик которой к охлаждению  $\Delta S_{c}^{ms}(T)$ относится И нагреву  $\Delta S_h^{ms}(T)$  образца, испытывающего при охлаждении, нагревании размытые магнитоструктурные (ms)переходы 1-го рода  $PMhex(P6_3/mmc) \rightarrow FMorth(Pnma)$ ,  $FMorth(Pnma) \rightarrow PMhex(P6_3/mmc)$ соответственно. Т.е. каждый пик соответствует суперпозиции размытых магнитного и структурного переходов 1-го рода. Эти выводы подтверждаются совмещением теоретических магнитных, калорических и структурных характеристик, приведенных на рис. 5.

На рис. 5 к структурным характеристикам относятся безразмерные параметры локального структурного порядка Q<sub>0</sub>, (см. Приложение). Как видно из рис. 5, a, b температурная область изменения параметра магнитного порядка  $y_{c,h}^0 \equiv y_{\text{cooling,heating}}^{H=0}$  находится в области стабильности ромбической фазы, которая лежит за пределами высокотемпературного изменения параметра структурного порядка Q<sub>0</sub>. Поэтому низкотемпературные пики  $\Delta S_{h}^{m}(T), \Delta S_{c}^{m}(T)$  соответствуют только магнитному вкладу усиленному изоструктурным переходом 2-го рода  $PMorth(Pnma) \leftrightarrow HMorth(Pnma)$  в уже устойчивой ромбической фазе  $(Q_0/Q_{0 \max} \approx 1)$ . Высокотемпературные пики находятся именно в области температурных изменений параметра структурного порядка выше температуры Нееля T<sub>N</sub> т.е. за пределами основного изменения и параметра магнитного порядка y(H = 0) и намагниченности  $M(H) = M_0 y(H)$ . Для случая x = 0.18 (рис. 5, *c*, *d*) совмещение структурного и магнитного переходов происходит при понижении температуры (кривые  $Q_{0c}$ и  $M_c^H$  возрастают в одном интервале температур). Это приводит к реализации магнитоструктурного перехода



**Рис. 5.** Взаимосвязь пиковой структуры  $\Delta S(T)$  с магнитокалорическими и магнитоструктурными характеристиками (теория). Расчетные зависимости проведены при использовании максимального магнитного поля H = 9.7 kOe. Температуры  $T_N$  — температура Нееля;  $T_{1s}$ ,  $T_{2s}$  — температуры, ассоциируемые с температурами возникновения, исчезновения параметра структурного порядка  $Q_0$  как результата размытого парамагнитного структурного перехода 1-го рода PMhex( $P6_3/mmc$ )  $\leftrightarrow$  PMorth(Pnma).

РМhex( $P6_3/mmc$ ) ↔ FMorth(Pnma) и появлению единого максимального по величине пика в результате позитивного совмещения в  $\Delta S(T)$  структурного и магнитного вкладов. Размытость структурного перехода накладывает свои особенности на магнитокалорические и магнитоструктурные свойства, но не изменяет основной причи-



**Рис. 6.** Особенности барической трансформации магнитоструктурных состояний в модели размытых и точечных переходов 1-го рода для образца с *x* = 0.11. Символы — эксперимент, линии — теория.

ны позитивности структурного и магнитного вкладов — понижения структурной и магнитной симметрий при сильной взаимосвязи параметров магнитного и структурного порядков (см. Приложение). При повышении температуры температурные интервалы изменения параметров структурного и магнитного порядков в магнитном поле (кривые  $Q_{0h}$  и  $M_h^H$ ) не совпадают. Поэтому, как и в случае x = 0.11, наблюдается последовательность двух переходов изоструктурного магнитного фазового перехода 2-го рода FMorth(*Pnma*) – PMorth(*Pnma*) и размытого парамагнитного структурного перехода 1-го рода PMorth(*Pnma*) — PMhex(*P*6<sub>3</sub>/*mmc*). Магнитный и структурный пики разнесены и значительно уступают по абсолютной величине единому магнитострурурному пику.

Для x = 0.25 исходные параметры полумикроскопических гамильтонианов (см. Приложение) подбираются таким образом, чтобы в используемой модели размытых переходов при понижении и повышении температуры реализовался магнитоструктурный переход 1-го рода PMhex( $P6_3/mmc$ )  $\leftrightarrow$  FMorth(Pnma). Следует отметить, что при этом результаты точечной модели и модели размытых переходов могут иметь в этом случае существенные качественные различия и не только в отсутствии ступенчатых магнитоструктурных характеристик.

Как видно из рис. 5, *e*, *f*, двухпиковую структуру  $\Delta S(T)$ здесь вполне обосновано можно связать с совпадением температурных интервалов изменений магнитных и структурных параметров порядка. Отметим, что в отличие от предыдущих случаев линии в парах  $M_c^H, M_c^0$ и  $M_h^H, M_h^0$  показывают смещение всего перехода. Это означает, что размытые магнитоструктурные переходы 1-го рода как и точечные могут описывать индуцированные магнитным полем переходы 1-го рода.

Еще одной особенностью свойств системы является барическая трансформация магнитоструктурных свойств. На примере образца с x = 0.11 в рамках модели размытых переходов рассмотрим ряд этапов повышения давления до 8 kbar. Из рис. 6 видно, что при p = 4 kbar возникает состояние с реверсивным переходом 1-го рода и трехпиковой структурой  $\Delta S(T)$ . Это магнитокалорическое состояние гелимагнитной фазы аналогично магнитокалорическому ферромагнитному состоянию в образце с x = 0.18 при атмосферном давлении.

При p = 8 kbar воспроизводится магнитоструктурное состояние характерное для образца с x = 0.25 при p = 0: при понижении (повышении) температуры реализуется размытый магнитоструктурный переход 1-го рода PMhex( $P6_3/mmc$ )  $\leftrightarrow$  FMorth(Pnma), двухпиковой структурой  $\Delta S(T)$ . При этом относительно резкие (но не скачкообразные) изменения намагниченностив  $\delta M_{c,h}^{ms}$  области температур размытого магнитоструктурного переход 1-го рода PMhex( $P6_3/mmc$ )  $\leftrightarrow$  FMorth(Pnma) одного порядка с ее максимальным значением  $M_{max}$ .

Следует отметить, что для образца с x = 0.11 гелимагнитная фаза HMorth(*Pnma*) является слабоустойчивой к воздействию внешнего магнитного поля. В магнитном поле зависимость обладает максимумом и признаки гелимагнитного состояния начинают появляться только ниже температуры максимума намагниченности. Поэтому в магнитном поле порядка 1Т для ряда гелимагнитных образцов можно говорить о магнитоструктурных PMhex( $P6_3/mmc$ )  $\leftrightarrow$  FMorth(Pnma), или изоструктурных PMotth(Pnma)—FMorth(Pnma) переходах из подмагниченного парамагнитного в ферромагнитное состояние. Эти теоретические результаты подтверждаются барическими экспериментальными исследованиями в [7,16–18].

Представляет интерес сравнение результатов модели размытых и точечных переходов (рис. 6). Как видно из рис. 6, d, h, l, наряду с количественным расхождением величин  $|\Delta S(T)|$ возникает И качественное несоответствие в типе переходов. В точечной модели при p = 4 kbar сохраняется как и при p = 0 четырехпиковая структура  $\Delta S(T)$ , характерная для разделенных по температуре структурных переходов рода  $PMhex(P6_3/mmc) \leftrightarrow PMorth(Pnma)$ 1-го И магнитных изоструктурных переходов 2-го рола PMorth(Pnma)-HMorth(Pnma) (рис. 6, h). В модели размытых переходов при этом давлении (рис. 6, f) при понижении температуры реализуется магнитоструктурный переход 1-го рода  $PMhex(P6_3/mmc) \leftrightarrow HMorth(Pnma)$ с которым сопряжен один магнитоструктурный  $\Delta S_c^{ms}$ . При последующем нагревании пик реализуется цепочка переходов 2-го и 1-го родов  $\text{HMorth}(Pnma) \rightarrow \text{PMorth}(Pnma) \rightarrow \text{PMhex}(P6_3/mmc).$ Эти переходы сопряжены с 2-мя пиками  $\Delta S_h^m$  $\Delta S_h^s$ . В совокупности возникает трехпиковая И структура (рис. 6, f), характерная для реверсивных магнитоструктурных переходов 1-го рода.

#### 4. Заключение

Анализ полученных результатов позволяет констатировать следующее.

1. В предлагаемом подходе переход от точечных структурных переходов 1-го рода к размытым осуществляется трансформацией от ступенчатой функции фазового состояния к размытой функции L(T) относительного числа зародышей ромбической фазы и последующим преобразованием параметров порядка по очевидной схеме.

2. Температурный интервал размытости термодинамических функций определяется числом структурных единиц g в зародыше ромбической фазы 1 и соотношением между температурами лабильности параметров порядка и температурой равенства термодинамических потенциалов ромбической (Ω<sub>1</sub>) и гексагональной (Ω<sub>2</sub>) фаз в точечном приближении.

3. Гистерезисные явления при охлаждении (c) и нагреве (h) определяются соотношением между энергиями объемной части зародыша  $(\Omega_1 - \Omega_2)g$ , пропорциональной величине g, и поверхностной части зародыша пропорциональной  $(\Omega_1 n_2^{c,h} - \Omega_2 n_2^{c,h}) g^{2/3}$  при  $|n_{1,2}^{c,h}| \ll 1$ .

4. Увеличение степени размытости (уменьшение параметра g) приводит к снижению максимального значения показателей магнитокалорического эффекта (величин  $|\Delta S(T)|$ ).

5. Размытие функций фазового состояния L(T) приводит к перекрытию разделенных при точечном описании P-T областей магнитоструктурной устойчивости и возможности появления под действием давления и магнитного поля качественно новых состояний и размытых магнитоструктурных переходов.

#### Финансирование работы

Работа выполнена при поддержке Минобрнауки РФ, бюджетная тема "Фундаментальные и прикладные аспекты развития физики магнитных явлений в коррелированных системах, FREZ-2023-0002" (В.И.В., А.В.Г., И.Ф.Г., О.Е.К.). Задание 1.2.1 "Синтез новых магнитных материалов, перспективных для разработки технических устройств нового поколения" подпрограммы "Физика конденсированного состояния и создание новых функциональных материалов и технологий их получения" (В.И.М.).

#### Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

### Приложение

Последующее изложение опирается на работы [7,8] в которых спиновая (s) и структурная (Q) и упругая (e)подсистемы описываются соответствующими микроскопическими гамильтонианами. Гамильтонианом Гейзенберга для спиновой подсистемы, состоящей из N(1-x)магнитоактивных атомов Mn, и гамильтонианом независимых ангармонических мягких мод для структурной подсистемы из  $N_0 = N/2$  элементарных гексагональных ячеек. Общий термодинамический потенциал такой системы Ω в присутствии внешнего магнитного поля  $\mathbf{H} = [0, 0, H]$  рассчитывается в приближении пространственно-периодического среднего поля  $\mathbf{h} = h \mathbf{U}_n^k$  $(U_k^n - единичный вектор)$  для спиновой подсистемы и в приближении смещенного гармонического осциллятора (dso) для структурноупругой подсистемы. Независимыми варьируемыми переменными в этом случае являются параметры магнитного

$$ys = \langle \mathbf{U}_n^k \hat{\mathbf{s}}_n^k \rangle \equiv \langle \hat{m} \rangle = Sp\hat{m}e^{\beta h\hat{m}}/Spe^{\beta h\hat{m}}$$

и структурного

$$Q_0 \equiv \langle Q_n \rangle \equiv \int_{-\infty}^{\infty} \rho_{dso} Q_n dQ$$
$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{(Q_n - Q_0)^2}{2\sigma}\right] Q_n dQ$$

порядков, дисперсия

$$\sigma = \langle [Q_n - Q_0]^2 
angle \equiv \int\limits_{-\infty}^{\infty} 
ho_{dso} [Q_n - Q_0]^2 dQ_n$$

объемная  $e_1$  и ромбическая  $e_2$  деформации.

Равновесные значения этих независимых переменных как функции температуры находятся из системы уравнений состояния

$$(\partial \Omega / \partial Q_0) = 0, \quad (\partial \Omega / \partial y) = 0, \quad (\partial \Omega / \partial \sigma) = 0,$$
  
 $(\partial \Omega / \partial e_1) = 0, \quad (\partial \Omega / \partial e_{21}) = 0.$  (II1)

Последние три уравнения имеют решения в аналитическом виде. Первые два приводятся к виду (П2) и решаются численно.

$$(\partial \Omega / \partial Q_0) = 0, \tag{\Pi2a}$$

$$y = B_x(X), \tag{\Pi2b}$$

где

$$B_s(X) = \left[ \left( \frac{1}{2s+1} \right) \coth \frac{1}{2s+1} X - \left( \frac{1}{2s} \right) \coth \frac{1}{2s} X \right]$$

— функция Бриллюэна

$$z(X) = Spe^{\beta h\hat{m}} \equiv \sum_{m_s=-s}^{s} e^{\beta hm_s}, X = hs/k_{\rm B}T, \ \hat{m}_n^k = \mathbf{U}_n^k \, \hat{\mathbf{s}}_n^k = \hat{m},$$

 $m_s$  — собственное значение оператора проекции спинового оператора  $\hat{s}_n^k$  на направление среднего пространственно-неоднородного поля  $\mathbf{h} = h \mathbf{U}_n^k$  *k*-го атома в *n*-той элементарной ячейке (структурной единице) исходной гексагональной решетки. Зависимость модуля пространственно-неоднородного поля *h* от параметров структурного порядка приводит к взаимосвязи между спиновой и структурной подсистемами. Поэтому

$$X = \equiv X[T, H, P, Q_0(T), y(T)], \ h \equiv h[T, H, P, Q_0(T), y(T)],$$

а их явные выражения приводятся в [7]. Выражение для равновесной энтропии  $S = -(\partial \Omega / \partial T)$  и термодинамического потенциала  $\Omega$  как функции температуры T, давления P, магнитного поля H системы из  $N_0$  структурных единиц в единице объема имеют вид

$$S(T, P, H) = Nk_{\rm B}[\ln z(X) - yX] + \frac{\alpha}{\kappa}e_1 + \frac{N_0k_{\rm B}}{2}\ln(\sigma),$$
(II3)

$$\Omega(T, P, H) = N(h - 2\mu_0 \mathbf{H} \mathbf{U}_n^k) ys/2 - k_{\rm B} NT \ln z(X)$$

+ 
$$U(Q_0, \sigma) - T \frac{k_{\rm B}}{2} N_0 \ln \sigma + \Omega_e(e_1, e_2, T, P)$$
 (II4)

 $\mathbf{U}_n^k \equiv \mathbf{U}_n^k(\mathbf{q}) = \left[\cos(\mathbf{q}\mathbf{R}_n^k)\sin(\vartheta), \sin(\mathbf{q}\mathbf{R}_n^k)\sin(\vartheta), \cos(\vartheta)\right]$  — единичный вектор, определяющий направление среднего поля для атомного спина в позиции  $\mathbf{R}_n^k$  в присутствии магнитного поля  $\mathbf{H} = [0, 0, H]$ 

$$U(Q_0, \sigma) = \frac{\omega^2}{2} (Q_0^2 + \sigma) + \frac{\gamma}{4} (Q_0^4 + 6Q_0^2\sigma + 3\sigma^2) + \frac{\Gamma}{6} (Q_0^6 + 15Q_0^4\sigma + 45Q_0^2\sigma^2 + 15\sigma^3) - \frac{1}{2} \nu_0 (1 + L_2e_1 + L_3e_2)Q_0^2, \qquad (\Pi 5)$$

где равновесные переменные

$$y \equiv y(T), \quad Q_0 \equiv Q_0(T),$$

$$e_1 \equiv e_1[T, P, Q_0(T), y(T)], \quad e_2 \equiv e_2[Q_0(T)]$$

$$\sigma \equiv \sigma[T, Q_0(T)]$$

являются решениями уравнений состояния (П1) при заданных значениях давления и магнитного поля.

Где  $\omega^2 = N_0 \tilde{\omega}^2$ ,  $\gamma = N_0 \tilde{\gamma}$ ,  $\Gamma = N_0 \tilde{\Gamma}$ ,

$$N_0V_0 = N_0\sum_{n'}V_{nn'} \equiv N_0V_0(e_1, e_2) = v_0(1 + L_2e_1 + L_3e_2).$$

Выражение термодинамических потенциалов в ромбической  $\Omega_1$  и гексагональной  $\Omega_2$  фазах определяются из (П4) как

И

$$\Omega_2 \equiv \Omega(0, y(T), T, H, P).$$

 $\Omega_1 \equiv \Omega(Q_0(T), y(T), T, H, P)$ 

#### Список литературы

- [1] В.И. Вальков, В.И. Каменев, В.И. Митюк, И.Ф. Грибанов, А.В. Головчан, Т.Ю. Деликатная. ФТТ **59**, 266 (2017).
- [2] С.В. Вонсовский. Магнетизм. Наука, М. (1971). 1032 с.
- [3] Б.Н. Ролов, В.Э. Юркевич. Физика размытых фазовых переходов. Изд-во Ростовск. ун-та, Р/на-Дону. (1983). 320 с.
- [4] А. Малыгин. УФН 71, *1*, 187 (2001).
- [5] A.A. Bokov. Ferroelectrics 183, 65 (1996).
- [6] А.А. Боков. ЖЭТФ 111, 5, 1817 (1997).
- [7] В.И. Вальков, И.Ф. Грибанов, Е.П. Андрейченко, О.Е. Ковалев, В.И. Митюк. ФТТ 65, 10, 1758 (2023).
- [8] В.И. Вальков, А.В. Головчан, О.Е. Ковалев, Н.Ю. Нырков. ФТВД 33, 4, 36 (2023).
- [9] Я.И. Френкель. Статистическая физика. Изд-во АН СССР, М.-Л. (1948). 760 с.
- [10] Л.С. Метлов, В.В. Коледов, В.Г. Шавров. ФТВД **28**, *1*, 46 (2018).
- [11] Л.С. Метлов, В.Д. Пойманов. ФТВД **28**, *1*, 62 (2018).

- [12] Л.С. Метлов. ФТВД 29, 1, 28 (2019).
- [13] Л.С. Метлов, А.Г. Петренко. ФТВД 28, 3, 46 (2018).
- [14] Л.С. Метлов, В.В. Коледов, В.Г. Шавров, Ю.Д. Заворотнев, Ю.В. Техтелев. ФТВД 30, 2, 56 (2020).
- [15] B. Penca, A. Hoserb, S. Barana, A. Szytutaa. Phase Transit. 91, 2, 118 (2018).
- [16] В.И. Вальков, В.И. Каменев, А.В. Головчан, И.Ф. Грибанов, В.В. Коледов, В.Г. Шавров, В.И. Митюк, П. Дуда. ФТТ 63, 5, 628 (2021).
- [17] A. Szytuta, S. Baran, T. Jaworska-Gota, M. Marzec, A. Deptuch, Yu. Tyvanchuk, B. Penc, A. Hoser, A. Sivachenko, V. Val'kov, V. Dyakonov, H. Szymczak. J. Alloys Comp. **726**, 978 (2017).
- [18] В.И. Вальков, А.В. Головчан, И.Ф. Грибанов, Е.П. Андрейченко, О.Е. Ковалев, В.И. Митюк, А.В. Маширов. ФММ 124, 11, 1044 (2023).
- [19] И.Ф. Грибанов, В.В. Бурховецкий, В.И. Вальков, А.В. Головчан, В.Д. Запорожец, В.И. Каменев, Т.С. Сиваченко. ФТВД **30**, *1*, 83 (2020).

Редактор Т.Н. Василевская