05,07

Слабые ферримагнетики типа YFe_{1-x}Cr_xO₃: отрицательная намагниченность и спиновая переориентация

© Е.В. Васинович¹, А.С. Москвин^{1,2}

¹ Уральский федеральный университет, Екатеринбург, Россия ² Институт физики металлов им. М.Н. Михеева УрО РАН, Екатеринбург, Россия E-mail: evgeny.vasinovich@urfu.ru

Поступила в Редакцию 18 апреля 2024 г. В окончательной редакции 18 апреля 2024 г. Принята к публикации 8 мая 2024 г.

Представлен анализ магнитных свойств слабых ферримагнетиков типа $YFe_{1-x}Cr_xO_3$. Учитывая основные спиновые взаимодействия — изотропного сверхобмена Гейзенберга, антисимметричного обмена Дзялошинского-Мория, одноионной спиновой анизотропии — в рамках модели молекулярного поля проведены расчеты свободной энергии, концентрационной и температурной зависимостей намагниченности. В частности, модель демонстрирует явления температурной компенсации и отрицательной намагниченности, а также спиновой переориентации. Температура компенсации достигает комнатной T = 300 K в составе с $x \approx 0.45$. Предсказано существование магнитных структур типа G_{xyz} с пространственной ориентацией вектора Нееля.

Ключевые слова: слабый ферримагнетизм, отрицательная намагниченность, спиновая переориентация, взаимодействие Дзялошинского-Мория, ортоферриты, ортохромиты

DOI: 10.61011/FTT.2024.06.58243.17HH

1. Введение

Редкоземельные ортоферриты-ортохромиты типа $RFe_{1-x}Cr_xO_3$ (R = Nd, Gd, Dy, Y, Lu) были предметом интенсивных фундаментальных теоретических и экспериментальных исследований во второй половине 20 в. благодаря сочетанию своих уникальных магнитных, магнитооптических, магнитоупругих и магниторезонансных свойств, прежде всего, слабого ферро- и антиферромагнетизма, спин-переориентационных переходов (СП), явления компенсации магнитного момента и отрицательного намагничивания [1]. Более того, исследования смешанного ортоферрита-ортохромита $YFe_{1-r}Cr_rO_3$, проведенные более 50 лет назад, привели к теоретическому предсказанию и экспериментальному обнаружению нового явления — слабого ферримагнетизма, возникающего вследствие конкуренции знаков вектора Дзялошинского [2].

Новый всплеск интереса к этим системам уже в 21 веке (см., например, [3-12]) связан с открывшимися перспективами практического использования явления температурной компенсации магнитного момента и связанных с ней эффектов "отрицательного" намагничивания и обменного смещения для создания различных мультифункциональных устройств спинтроники. Однако в большинстве "новых" работ, посвященных исследованию слабых ферримагнетиков типа YFe_{1-x}Cr_xO₃, мы сталкиваемся как с неоднозначностью эксперименталь-

ных данных, так и с неоднозначностью в их интерпретации.

В частности, относительно температуры Нееля T_N известно только то, что она монотонно уменьшается при изменении состава от YFeO₃ до YCrO₃ [2,10], но относительно точного значения Т_N консенсуса нет и, например, для состава YFe_{0.5}Cr_{0.5}O₃ сообщают о значениях T_N от 210–250 К [2–7] и до $T_N = 340-360$ К [2], что, по-видимому, связано с особенностями поликристаллических образцов и малыми величинами намагниченности. Данных по температуре компенсации Т_{сотр} ещё меньше и они также противоречивы, например, для системы YFe_{0.5}Cr_{0.5}O₃ сообщают как о температуре $T_{comp} = 175 \,\mathrm{K}$ [11] так и о $T_{comp} = 248 \,\mathrm{K}$ [3]. Также есть проблемы выбора расчетной схемы приближения молекулярного поля и неправильной трактовки природы явления компенсации магнитного момента, например, как результата конкуренции одноионной спиновой анизотропии и взаимодействия Дзялошинского-Мория. В отличие от спиновой переориентации в слабых ферромагнетиках с магнитным редкоземельным ионом (см., например, [1,13,14]), СП-переход в слабых ферримагнетиках $RFe_{1-x}Cr_xO_3$ с немагнитным R-ионом (La, Y, Lu) также пока не получил адекватного описания.

В настоящей работе, развивая модельные представления, заложенные А.М. Кадомцевой с сотрудниками [2], мы представляем последовательный молекулярно-полевой анализ магнитных свойств слабых ферримагнетиков типа $YFe_{1-x}Cr_xO_3$.

Рис. 1. Структура сверхобменных связей; большие шары — ионы Fe^{3+} , Cr^{3+} , малые — O^{2-} ; 1, 2, 3, 4 — магнитные ионы в четырех неэквивалентных позициях

2. Модель

Смешанные системы $YFe_{1-x}Cr_xO_3$, как и "родительские" ортоферриты и ортохромиты, являются орторомбическими перовскитами с пространственной группой *Pbnm*. На элементарную ячейку (см. рис. 1) приходится 4 магнитных 3*d*-иона, для которых можно ввести следующие классические базисные векторы:

$$4SF = S^{(1)} + S^{(2)} + S^{(3)} + S^{(4)},$$

$$4SG = S^{(1)} - S^{(2)} + S^{(3)} - S^{(4)},$$

$$4SC = S^{(1)} + S^{(2)} - S^{(3)} - S^{(4)},$$

$$4SA = S^{(1)} - S^{(2)} - S^{(3)} + S^{(4)}.$$
 (1)

Здесь вектор **G** описывает основную антиферромагнитную компоненту магнитной структуры (вектор Нееля), **F** — вектор слабого ферромагнетизма (явный скос подрешеток), слабые антиферромагнитные компоненты **C** и **A** описывают скос магнитных подрешеток без образования суммарного магнитного момента (скрытый скос подрешеток). "Разрешенные" спиновые конфигурации для 3*d*-подрешетки, совместимые с антиферромагнитным знаком основного изотропного сверхобмена, обозначаются как $\Gamma_1(A_x, G_y, C_z)$, $\Gamma_2(F_x, C_y, G_z)$, $\Gamma_4(G_x, A_y, F_z)$, где в скобках фигурируют единственные отличные от нуля компоненты базисных векторов. В процессе спиновой переориентации возможен переход из одной конфигурации в другую.

Представим спин-гамильтониан слабого ферримагнетика в наиболее простом виде, учитывая только

	X	у	Z
$[\mathbf{r}_2 \times \mathbf{r}_1]$	0.216	0.562	0
$[\mathbf{r}_4 imes \mathbf{r}_1]$	± 0.303	0.287	0.397

вклады изотропного обменного взаимодействия, антисимметричного обмена Дзялошинского-Мория (DM) и упрощенного вида одноионной спиновой анизотропии 2-го порядка

$$\hat{H} = \hat{H}_{ex} + \hat{H}_{DM} + \hat{H}_{SIA}^{(2)},$$
$$\hat{H}_{ex} = \frac{1}{2} \Sigma_{\langle mn \rangle} I_{mn} (\hat{\mathbf{S}}_m \cdot \hat{\mathbf{S}}_n),$$
$$\hat{H}_{DM} = \frac{1}{2} \Sigma_{\langle mn \rangle} \mathbf{d}_{mn} \cdot [\hat{\mathbf{S}}_m \times \hat{\mathbf{S}}_n],$$
$$\hat{H}_{SIA}^{(2)} = D(\hat{S}_z^2 - \frac{1}{3}S(S+1)), \qquad (2)$$

где суммирование происходит по ближайшим соседям, I_{mn} — обменный интеграл, \mathbf{d}_{mn} — вектор Дзялошинского, D — константа анизотропии, которая, вообще говоря, отличается для ионов Fe³⁺ и Cr³⁺ (для простоты записи в $\hat{H}_{SIA}^{(2)}$ опущено суммирование по узлам решетки).

На рис. 1 изображена структура сверхобменных связей в модели. Ионы в позиции 1 взаимодействуют с четырьмя ближайшими соседями в *а*-плоскости и двумя вдоль *с*-оси. Расстояния катион-анион и углы сверхобменной связи для ближайших соседей отличаются незначительно, так что ниже полагаем равенство сверхобменных интегралов $I_{ab} = I_c = I$ и модулей векторов Дзялошинского $d_{ab} = d_c = d$, хотя сами векторы направлены в разные стороны.

Еще в 1970 г. А.С. Москвиным было получено микроскопическое выражение связи вектора Дзялошинского с геометрией сверхобменной связи катион-анионкатион [15] (см. также работы [16,17] и более поздние обзорные статьи [18–22]):

$$\mathbf{d}_{mn} = d_{mn}(\theta) [\mathbf{r}_m \times \mathbf{r}_n], \qquad (3)$$

где $\mathbf{r}_{m,n}$ — единичные векторы вдоль связей O^{2-} — Fe³⁺, или O^{2-} — Cr³⁺, θ — угол сверхобменной связи. Структурные факторы, определяющие ориентацию векторов Дзялошинского в ортоферритах-ортохромитах типа YFe_{1-x}Cr_xO₃ приведены в табл. 1.

Простая формула (3) позволяет установить прямую связь магнитной неколлинеарности (явный и скрытый скос подрешеток) в слабых ферромагнетиках с

Таблица 2. Связь компонент спина на разных подрешетках в фазах Г₁, Г₂ и Г₄

$\Gamma_1(A_x, G_y, C_z)$	$\Gamma_2(F_x, C_y, G_z)$	$\Gamma_4 \; (G_x, A_y, F_z)$
$S_x^{(1)} = -S_x^{(2)} = -S_x^{(3)} = S_x^{(4)}$	$S_x^{(1)} = S_x^{(2)} = S_x^{(3)} = S_x^{(4)}$	$S_x^{(1)} = -S_x^{(2)} = S_x^{(3)} = -S_x^{(4)}$
$S_y^{(1)} = -S_y^{(2)} = S_y^{(3)} = -S_y^{(4)}$	$S_y^{(1)} = S_y^{(2)} = -S_y^{(3)} = -S_y^{(4)}$	$S_y^{(1)} = -S_y^{(2)} = -S_y^{(3)} = S_y^{(4)}$
$S_z^{(1)} = S_z^{(2)} = -S_z^{(3)} = -S_z^{(4)}$	$S_z^{(1)} = -S_z^{(2)} = S_z^{(3)} = -S_z^{(4)}$	$S_z^{(1)} = S_z^{(2)} = S_z^{(3)} = S_z^{(4)}$

кристаллической структурой [16–22]. Важнейшим результатом микроскопической теории антисимметричного обмена [17–22] явилось не столько оценка численной величины, сколько предсказание знака вектора Дзялошинского, в частности, разного знака в парах $Fe^{3+}-Fe^{3+}$, $Cr^{3+}-Cr^{3+}$ с одной стороны и парах $Fe^{3+}-Cr^{3+}$, $Cr^{3+}-Fe^{3+}$ с другой стороны, что сыграло принципиальную роль в предсказании и экспериментальном открытии нового типа магнитного упорядочения — слабого ферримагнетизма [2,17–22].

3. Приближение среднего поля

В простейшей модели слабых ферримагнетиков типа $RFe_{1-x}Cr_xO_3$ (R = La, Y, Lu), предполагающей единое магнитное упорядочение в Fe-Cr-подсистеме с общими для всех ионов $Fe^{3+}(Cr^{3+})$ молекулярными полями, билинейная часть оператора Гамильтона (2) представляется в виде

$$\hat{H}_{ex} + \hat{H}_{DM} = \Sigma_n(\mathbf{h}_n \cdot \hat{\mathbf{S}}_n) - \frac{1}{2} \Sigma_n(\mathbf{h}_n \cdot \langle \mathbf{S}_n \rangle), \qquad (4)$$

где для молекулярного поля \mathbf{h}_n на узле n с учетом ведущих вкладов изотропного обмена и взаимодействия Дзялошинского–Мория имеем

$$\mathbf{h}_n = \Sigma_m (I_{mn} \langle \mathbf{S}_m \rangle + [\mathbf{d}_{mn} \times \langle \mathbf{S}_m \rangle]), \qquad (5)$$

здесь $\langle \mathbf{S}_m \rangle$ — термодинамическое среднее спина произвольного иона (Fe³⁺ или Cr³⁺)

$$\langle \mathbf{S}_m \rangle = -\frac{\mathbf{h}_m}{h_m} SB_S\left(\frac{Sh_m}{k_{\rm B}T}\right),\tag{6}$$

 B_S — функция Бриллюэна, $h_m = |\mathbf{h}_m|$.

Очевидно, что в отличие от однородных родительских систем YFeO₃ и YCrO₃ для слабых ферримагнетиков типа YFe_{1-x}Cr_xO₃ мы вынуждены ввести ряд дополнительных предположений и приближений для решения уравнений молекулярного поля (6):

1) ионы Fe^{3+} и Cr^{3+} с равной вероятностью заполняют узлы решетки;

2) параметры спин-гамильтониана не зависят ни от локальной конфигурации, ни от концентрации ионов Fe^{3+} и Cr^{3+} ;

3) дальний кристаллический и магнитный (спиновый) порядки сохраняются, то есть сохраняется и классификация возможных магнитных структур ($\Gamma_{1,2,4}$) и соответствующие соотношения между средними значениями спиновых моментов в позициях 1, 2, 3 и 4 (см. табл. 2), что позволяет рассматривать уравнения молекулярного поля только для одной позиции 3*d*-ионов.

Так, для молекулярного поля **h**_{Fe} в позиции 1 получим

$$\begin{aligned} \mathbf{h}_{\text{Fe}} &= P_{\text{Fe}}(x) \langle 4I_{\text{FeFe}} \hat{\mathbf{S}}_{\text{Fe}}^{(4)} + 2I_{\text{FeFe}} \hat{\mathbf{S}}_{\text{Fe}}^{(2)} \\ &+ 4 [\mathbf{d}_{\text{FeFe}}^{(41)} \times \hat{\mathbf{S}}_{\text{Fe}}^{(4)}] + 2 [\mathbf{d}_{\text{FeFe}}^{(21)} \times \hat{\mathbf{S}}_{\text{Fe}}^{(2)}] \rangle \\ &+ P_{\text{Cr}}(x) \langle 4I_{\text{FeCr}} \hat{\mathbf{S}}_{\text{Cr}}^{(4)} + 2I_{\text{FeCr}} \hat{\mathbf{S}}_{\text{Cr}}^{(2)} \\ &+ 4 [\mathbf{d}_{\text{FeCr}}^{(41)} \times \hat{\mathbf{S}}_{\text{Cr}}^{(4)}] + 2 [\mathbf{d}_{\text{FeCr}}^{(21)} \times \hat{\mathbf{S}}_{\text{Cr}}^{(2)}] \rangle, \end{aligned}$$
(7)

где $P_{\rm Fe}(x) = 1 - x$, $P_{\rm Cr}(x) = x$ — концентрации ионов Fe³⁺ и Cr³⁺ соответственно, скобки $\langle \ldots \rangle$ означают термодинамическое среднее, компоненты векторов S⁽²⁾ и S⁽⁴⁾ выражены через S⁽¹⁾ в соответствии с табл. 2. Поле h_{Cr} имеет ту же форму, но с заменой Fe \leftrightarrow Cr в правой части. Обратим внимание, что в (7) выделены неэквивалентные вклады связей 1–2 и 1–4, что особенно важно с учетом различной ориентации векторов Дзялошинского для этих связей. Таким образом, система (6), по сути, состоит из двух (для иона Fe³⁺ и иона Cr³⁺) векторных самосогласованных уравнений.

4. Результаты

Система (6) была решена численно при следующих обменных параметрах: $I_{FeFe} = 36.6 \,\mathrm{K}$ и $I_{CrCr} = 18.7 \,\mathrm{K}$, рассчитанных по температурам Нееля ортоферрита YFeO₃, $T_N(0) = 640$ К [23], и ортохромита YCrO₃, $T_N(1) = 140 \, \text{K}$ [24]. Обменные интегралы между ионами Fe-Cr и Cr-Fe предполагались одинаковыми: $I_{FeCr} = I_{CrFe} = 13.4 \pm 0.4 \, \mathrm{K}$ согласно данным работы [25]. Скалярные параметры антисимметричного обмена Дзялошинского-Мория $d_{FeFe} = 2.0 \,\mathrm{K}$ и $d_{\mathrm{CrCr}} = 1.7 \,\mathrm{K}$ выбирались по данным о намагниченности насыщения $M = 1.5 \,\mathrm{emu/g}$ в "родительских" YFeO₃ и YCrO₃ [2]. В соответствии с предсказаниями микроскопической теории [17–22] параметр $d_{\text{FeCr}} = d_{\text{CrFe}}$ должен иметь знак, противоположный знаку параметров d_{FeFe} и d_{CrCr}, его величина $d_{\rm FeCr} = d_{\rm CrFe} = -2.5\,{\rm K}$ была выбрана для соответствия расчетной температуры компенсации с наблюдаемой температурой $T_{comp} \approx 225 \, \mathrm{K}$ для монокристаллических образцов $YFe_{1-x}Cr_xO_3$ при x = 0.38 [26].

Рис. 2. Температурная зависимость намагниченности $YFe_{1-x}Cr_xO_3$ при различных концентрациях хрома *x*

На рис. 2 представлены результаты расчета температурных зависимостей намагниченности слабого ферримагнетика $YFe_{1-x}Cr_xO_3$ при некоторых значениях концентрации от x = 0 до x = 1 в предположении о сохранении магнитной конфигурации Γ_4 . Область, где M < 0, соответствует отрицательной намагниченности.

Отметим, что условие постоянства магнитной конфигурации, является критическим ограничением модели: несмотря на хорошее качественное согласие с экспериментом, намагниченность насыщения монокристаллических образцов с x = 0.38, 0.5, 0.65 существенно, в два-три раза, меньше предсказаний теории, что в свете экспериментально обнаруженных для этих составов переходов с изменением ориентации слабоферримагнитного момента в *а*-плоскости [2] свидетельствует о возможной реализации пространственной ориентации вектора антиферромагнетизма, то есть конфигурации G_{xyz} .

Анализ модели показал, что когда вектор Дзялошинского $d_{\rm FeCr}$ для пары ионов Fe-Cr направлен противоположно векторам $d_{\rm FeFe}$ и $d_{\rm CrCr}$ (для пар Fe-Fe и Cr-Cr, соответственно) намагниченность резко падает с отклонением от родительских составов, но при $|d_{\rm FeCr}| \ge |d_{\rm FeCr}^{(cr)}|$, где $d_{\rm FeCr}^{(cr)} \approx -1.55$ K, на T-x фазовой диаграмме появляется и растет с ростом $|d_{\rm FeCr}|$ область отрицательной намагниченности, ограниченная двумя линиями точек компенсации.

На рис. З представлена фазовая T - x диаграмма слабого ферримагнетика $YFe_{1-x}Cr_xO_3$, где кривая $T_N(x)$ ограничивает область магнитного упорядочения, а кривые, расположенные ниже, обозначают линии точек компенсации, то есть смены знака намагниченности при различных величинах параметра d_{FeCr} . Область между линиями точек компенсации при определенном значении параметра d_{FeCr} представляет собой область отрицательной намагниченности. Рассматриваемой нами системе $YFe_{1-x}Cr_xO_3$ соответствуют две линии, или две обла-

сти, точек компенсации с $|d_{\rm FeCr}| = 2.5$, где "широкая" область это $0.25 \le x \le 0.5$ и "узкая" область вблизи $x \approx 0.83$.

Отметим существование довольно большой области значений параметров $d_{\rm FeCr}$, при которых температура компенсации в слабом ферримагнетике ${\rm YFe}_{1-x}{\rm Cr}_x{\rm O}_3$ попадает в практически наиболее важный диапазон комнатных температур порядка T = 300 K, в частности, при выбранном нами параметре $d_{\rm FeCr} = d_{CrFe} = -2.5$ K температура компенсации достигает комнатной T = 300 K в составе с $x \approx 0.45$.

В отличие от YFeO₃ и YCrO₃, которые являются слабыми ферромагнетиками с основной магнитной структурой типа Γ_4 ниже температуры Нееля, слабые ферримагнетики ортоферриты-ортохромиты YFe_{1-x}Cr_xO₃ обнару-

Рис. 3. Фазовая T - x диаграмма областей компенсации намагниченности при различных значениях $d_{\text{FeCr}} < 0$. Знак "+" указывает на область "положительной" намагниченности. Пунктирная линия — комнатная температура T = 300 K

Рис. 4. Пример температурной зависимости первой константы анизотропии k_1 для *a*-плоскости при одноионной анизотропии D = -0.018 K и при различных концентрациях хрома *x*; на вставке показана зависимость k_1 (*x*, T = 0)

живают полную или частичную спин-переориентацию типа $\Gamma_4 - \Gamma_2$ в широком диапазоне замещения [27]. Такое неожиданное поведение, обычно типичное для ортоферритов с магнитными редкоземельными ионами (Er, Tm, Dy, ...), объясняется, главным образом, сильным уменьшением вклада DM-взаимодействия в магнитную анизотропию. Это видно при сравнении свободной энергии Φ_{Γ_4} в фазе Γ_4 с энергией Φ_{Γ_2} в фазе Γ_2 . Расчеты показывают (см. рис. 4), что первая константа анизотропии $k_1 = \frac{1}{2} (\Phi_{\Gamma_2} - \Phi_{\Gamma_4})$ испытывает минимум вблизи концентрации $x \approx 0.65$, т.е. здесь фаза Γ_4 менее выгодна, в сравнении с родительскими составами. При учете одноионной анизотропии $\hat{H}_{SIA}^{(2)}$ константа k_1 может становиться отрицательной, что объясняет переход в фазу Γ_2 .

5. Заключение

Нами рассмотрен спин-гамильтониан системы $YFe_{1-x}Cr_{x}O_{3}$ с учетом основных изотропных и анизотропных взаимодействий. В рамках приближения молекулярного поля проведены расчеты средней величины магнитных моментов 3*d*-ионов и эффективной константы анизотропии. Показано существование в модельной системе YFe_{1-r}Cr_rO₃ двух областей точек компенсации, ,
широкой" $0.25 \leq x \leq 0.5$ и "узкой" вблизи $x \approx 0.83,$ ограничивающих область отрицательной намагниченности. Для рассматриваемой системы температура компенсации достигает комнатной температуры при $x \approx 0.45$. Явление спиновой переориентации, наблюдаемое для монокристаллических образцов в широком диапазоне концентраций, объясняется резким уменьшением вклада антисимметричного обмена в магнитную анизотропию с ростом отклонения от родительских составов и конкуренцией с вкладом одноионной анизотропии ионов Fe и Cr. Высказано предположение о пространственной ориентации вектора антиферромагнетизма (вектора Нееля) и конфигурации G_{xyz} как причине малой величины намагниченности насыщения, наблюдаемой экспериментально для составов внутри или вблизи области отрицательной намагниченности.

Финансирование работы

Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации, проект FEUZ-2023-0017.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

 К.П. Белов, А.К. Звездин, А.М. Кадомцева, Р.З. Левитин. Ориентационные переходы в редкоземельных магнетиках. Наука, М. (1979). 317 с.

- [2] А.М. Кадомцева, А.С. Москвин, И.Г. Бострем, Б.М. Ванклин, Н.А. Хафизова. ЖЭТФ 72, 2286 (1977).
- [3] M. Jinhua, Y. Sui, X. Zhang, Y. Su, X. BaH, Z. Liu, P. BaH, Y. Zhu, W. Wang. App. Phys. Lett. 98, 192510 (2011).
- [4] N. Dasari, P. Mandal, A. Sundaresan, N.S. Vidhyadhiraja. Europhys. Lett. 99, 17008 (2012).
- [5] T. Bora, S. Ravi. J. Appl. Phys. 114, 033906 (2013).
- [6] V. Nair, V. Subramanian, P. Santhosh. J. Appl. Phys. 113, 21 (2013).
- [7] F. Pomiro, R.D. Sánchez, G. Cuello, A. Maignan, C. Martin, R.E. Carbonio. Phys. Rev. B 94, 134402 (2016).
- [8] O.V. Billoni, F. Pomiro, S.A. Cannas, C. Martin, A. Maignan, R.E. Carbonio, J. Phys.: Condens. Matter 28, 476003 (2016).
- [9] A.P.G. Rodrigues, M.A. Morales, R.B. Silva, D.R.A.B. Lima, R.L.B.A. Medeiros, J.H. Ara'ujo, D.M.A. Melo. J. Phys. Chem. Solids 141, 109334 (2020).
- [10] R. Salazar-Rodriguez, D. Aliaga Guerra, J.-M. Greneche, K.M. Taddei, N.-R. Checca-Huaman, E.C. Passamani, J.A. Ramos-Guivar. Nanomaterials 12, 19, 3516 (2022).
- [11] J. Yang, H. Cao, Z. Lu, J. Mo, Y. Zhou, K. Gao, Y. Xia, M. Liu. Phys. Status Solidi B 260, 7, 2300145 (2023).
- [12] W. Liu, X. Kan, S. Feng et all. J. Mater Sci: Mater Electron. 34, 793 (2023).
- [13] A. Moskvin, E. Vasinovich, A. Shadrin. Magnetochemistry 8, 4, 45 (2022).
- [14] Е.В. Васинович, А.С. Москвин. ФТТ 65, 6, 928 (2023).
- [15] А.С. Москвин. ФТТ 12, 3208 (1970).
- [16] А.С. Москвин. Е.В. Синицын. ФТТ 17, 2495 (1975).
- [17] А.С. Москвин. И.Г. Бострем, ФТТ 19, 1616 (1977).
- [18] A.S. Moskvin. JMMM 400, 117 (2016).
- [19] A.S. Moskvin. JMMM 463, 50 (2018).
- [20] A. Moskvin. Condens. Matter 4, 4, 84 (2019).
- [21] A. Moskvin. Magnetochemistry 7, 8, 111 (2021).
- [22] А.С. Москвин. ЖЭТФ 159, 607 (2021).
- [23] Mingyu Shang, Chenyang Zhang, Tingsong Zhang, Lin Yuan, Lei Ge, Hongming Yuan, Shouhua Feng. Appl. Phys. Lett. 102, 6, 062903 (2013).
- [24] R. Salazar-Rodriguez, D. Aliaga Guerra, J.-M. Greneche, K.M. Taddei, N.-R. Checca-Huaman, E.C. Passamani, J.A. Ramos-Guivar. Nanomaterials 12, 19, 3516 (2022).
- [25] A.S. Moskvin, N.S. Ovanesyan, V.A. Trukhtanov. Hyperfine Interactions 1, 265 (1975).
- [26] А.М. Кадомцева, В.Н. Милов, А.С. Москвин, М. Пардави-Хорват. ФТТ 20, 817 (1978).
- [27] A. Dahmani, M. Taibi, M. Nogues, J. Aride, E. Loudghiri, A. Belayachi. Mater. Chem. Phys. 77, 912 (2003).

Редактор Т.Н. Василевская