05

Конкуренция орбитальных, зарядовых и спиновых степеней свободы в ян-теллеровских магнетиках

© А.С. Москвин

Уральский федеральный университет, Екатеринбург, Россия Институт физики металлов УрО РАН, Екатеринбург, Россия

E-mail: alexander.moskvin@urfu.ru

Поступила в Редакцию 18 апреля 2024 г. В окончательной редакции 18 апреля 2024 г. Принята к публикации 8 мая 2024 г.

Ян-теллеровские (ЯТ) магнетики — соединения на основе ян-теллеровских 3d- и 4d-ионов с конфигурациями типа $t_{2g}^{n_1}e_g^{n_2}$ в высокосимметричном окружении и с основным орбитальным E-дублетом — характеризуются конкуренцией различных электронных степеней свободы при сильном электрон-решеточном взаимодействии. В настоящей работе мы представляем обобщенную модель эффективных зарядовых триплетов, позволяющую в рамках единого подхода и в наиболее общем виде учитывать зарядовые, спиновые, орбитальные и решеточные степени свободы для так называемых однозонных ЯТ-магнетиков типа редкоземельных никелатов RNiO₃.

Ключевые слова: ян-теллеровские магнетики, модель зарядовых триплетов, эффективный спин-псевдоспинорбитальный гамильтониан, электронно-колебательное взаимодействие.

DOI: 10.61011/FTT.2024.06.58242.15HH

1. Введение

К ян-теллеровским (ЯТ) магнетикам мы относим соединения на основе ян-теллеровских 3d- и 4d-ионов с конфигурациями типа $t_{2g}^{n_1}e_g^{n_2}$ в высокосимметричном октаэдрическом, кубическом или тетраэдрическом окружении и с основным орбитальным E-дублетом [1–5]. Это соединения на основе тетра-комплексов с конфигурацией d^1 (Ti^{3+} , V^{4+} , Cr^{5+}), низкоспиновой (LS) конфигурацией d^3 (V^{2+} , Cr^{3+} , Mn^{4+}), высокоспиновой (HS) конфигурацией d^6 (Fe^{2+} , Co^{3+}), окта-комплексы с HS-конфигурацией d^6 (Cr^{2+} , Mn^{3+} , Fe^{4+} , Ru^{4+}), LS-конфигурацией d^7 (Co^{2+} , Ni^{3+} , Pd^{3+}), а также окта-комплексы с конфигурацией d^9 (Cu^{2+} , Ni^{1+} , Pd^{1+} , Ag^{2+}) [2–5] (см. табл. 1).

Все ЯТ-конфигурации d-ионов включают один e_g -электрон или одну e_{g} -дырку сверх устойчивых, полностью или наполовину заполненных, оболочек. В этом смысле они похожи на конфигурации многочисленного семейства ионов с одним ns-электроном сверх заполненных оболочек, например 6s-электроном в Hg^+ , Tl^{2+} , Pb^{3+} , Ві⁴⁺. Эти ионные конфигурации являются неустойчивыми относительно реакции диспропорционирования, или даже несуществующими (missing oxidation states [6]). Так, в ВаВіО₃ вместо номинальной валентности 4+ висмут предпочитает устойчивые валентные состояния Ві³⁺ и Bi⁵⁺ с полностью заполненными оболочками. Однако, в отличии от ионов с ns-электронами для ЯТионов мы имеем дело с орбитальным вырождением для e_g -электронов/дырок, а значит, возможностью конкуренции между эффектом Яна-Теллера, приводящим к орбитальному упорядочению [1], и эффектом анти-ЯТдиспропорционирования, приводящим к формированию системы электронных и дырочных центров *S*-типа с орбитально невырожденным основным состоянием [2–5], эквивалентной системе эффективных композитных спинсинглетных или спин-триплетных бозонов в немагнитной, или магнитной решетке (см. табл. 1).

В класс ЯТ-магнетиков попадает большое число перспективных материалов с конкуренцией орбитальных, спиновых и зарядовых степеней свободы, находящихся в центре внимания современной физики конденсированного состояния, таких как манганиты RMnO₃, ферраты (Ca,Sr)FeO₃, рутенаты RuO₂, (Ca,Sr)RuO₃, (Ca,Sr)₂RuO₄, широкий ряд ферропниктидов (FePn) и феррохалькогенидов (FeCh), 3D-никелаты RNiO₃, 3Dкупрат КСuF₃, 2D-купраты (La₂CuO₄,...) и никелаты $RNiO_2$, соединения на основе серебра (AgO, AgF₂), рутено-купраты $RuSr_2GdCu_2O_8...$ [1–5] (см. табл. 1). Эти материалы обладают богатым спектром уникальных свойств от различных типов орбитального [1], спинового, зарядового, а также спин-зарядового упорядочения, необычного металлического поведения ("strange, bad metal"), до переходов металл-изолятор и "экзотической" спин-триплетной сверхпроводимости [2-5]. Ряд ЯТ-магнетиков либо являются мультиферроиками (RMnO₃, CuO [7,8]), либо рассматриваются как перспективные мультиферроики ($RNiO_3$ [9]).

Модель анти-ЯТ диспропорционирования предсказывает спин-триплетную сверхпроводимость в рутенатах Sr_2RuO_4 и RuO_2 , ферропниктидах/халькогенидах FePn/FeCh, манганите $LaMnO_3$, хотя в большинстве

Таблица 1. Примеры ян-теллеровских $3d^n$ - и $4d^n$ -конфигураций и ионов с указанием локальной симметрии, структуры эффективного композитного бозона и соответствующей решетки, формируемых в результате реакции анти-ян-теллеровского диспропорционирования. В последнем столбце представлены примеры реальных ЯТ-магнетиков

ЯТ-конфигурация ЯТ-ионы	Симм.	LS/HS	Композитный бозон	Решетка	Примеры соединений	
$3d^{1}(e_{g}^{1})$: ${}^{2}E$ Ti ³⁺ , V ⁴⁺ , Cr ⁵⁺	Тетра	-	$e_g^2: {}^3A_{2g}$ $s = 1$	S = 0	β-Sr ₂ VO ₄ (Sr,Ba) ₃ Cr ₂ O ₈	
$3d^{3}(e_{g}^{3})$: ${}^{2}E$ V ²⁺ , Cr ³⁺ , Mn ⁴⁺	Тетра	LS	$\frac{e_g^2}{s} \cdot {}^3A_{2g}$ $s = 1$	S = 0	Ba ₂ VGe ₂ O ₇ (?)	
$3d^4(t_{2g}^3e_g^1)$: 5E Cr ²⁺ , Mn ³⁺ , Fe ⁴⁺	Окта	HS	$e_g^2: {}^3A_{2g}$ $s = 1$	A_{2g} $S = 3/2$	CrO, CrF_2 Sr_2FeO_4 $(Ca,Sr,Ba)FeO_3$ $(Ca,Sr,Ba)_3Fe_2O_7$ $RMnO_3, LaMn_7O_{12}$	
$4d^4(t_{2g}^3e_g^1)$: 5E Ru ⁴⁺	Окта	HS	$e_g^2: {}^3A_{2g}$ $s = 1$	A_{2g} $S = 3/2$	(Ca,Sr) ₂ RuO ₄ (Ca,Sr)RuO ₃ , RuO ₂ (Ca,Sr) ₃ Ru ₂ O ₇	
$3d^{6}(e_{g}^{3}t_{2g}^{3})$: ${}^{5}E$ Fe ²⁺ , Co ³⁺	Тетра	HS	$\frac{e_g^2}{s} \cdot {}^3A_{2g}$ $s = 1$	A_{1g} $S = 3/2$	FePn, FeCh, Na ₅ CoO ₄	
$3d^{7}(t_{2g}^{6}e_{g}^{1})$: ${}^{2}E$ Co^{2+} , Ni^{3+}	Окта	LS	$e_g^2: {}^3A_{2g}$ $s = 1$	S = 0	RNiO ₃ (Li,Na,Ag)NiO ₂	
$3d^{9}(t_{2g}^{6}e_{g}^{3}): {}^{2}E$ Cu^{2+}, Ni^{+}	Окта	_	$\frac{e_g^2}{s} \cdot {}^3A_{2g}$ $s = 1$	A_{1g} $S=0$	CuF ₂ , KCuF ₃ , K ₂ CuF ₄	
$4d^9(t_{2g}^6e_g^3)$: 2E Pd $^+$, Ag $^{2+}$	Окта	_	$\frac{e^2_g \colon {}^3A_{2g}}{s=1}$	$A_{1g} \\ S = 0$	$AgO~(Ag^1 + Ag^{3+}O_2)$	
$3d^{9}(t_{2g}^{6}e_{g}^{3})$: ${}^{2}B_{1g}$ Cu^{2+} , Ni^{+}	Окта* квадр	_	$\frac{\underline{b}_{1g}^2}{s} : {}^1A_{1g}$ $s = 0$	$egin{array}{c} A_{1g} \ S=0 \end{array}$	HTSC cuprates CuO, RNiO ₂	
$4d^{9}(t_{2g}^{6}e_{g}^{3}): {}^{2}B_{1g}$ Pd^{+}, Ag^{2+}	квадр	_	$\frac{\underline{b}_{1g}^2 \colon {}^1 A_{1g}}{s = 0}$	A_{1g} $S = 0$	AgF ₂ , KAgF ₃ Cs ₂ AgF ₄ , LaPdO ₂ (?)	

известных "кандидатов" (Ca(Sr)FeO₃, RNiO₃, AgO) реализуется тот или иной спин-зарядовый порядок [2–5]. Модель, в частности, предполагает, что сверхпроводящие носители в соединениях FePn/FeCh состоят из e_g -дырок, а не из t_{2g} -электронов [2–5,10], как предсказывает одноэлектронная мульти-орбитальная зонная модель. Наиболее оптимальные условия для ВТСП с бесспиновыми локальными бозонами и бесспиновой решеткой могут быть достигнуты только для низкосимметричных квазидвумерных d^9 -систем, таких как 2D-купраты и никелаты.

В работах [11-20] для описания электронной структуры и фазовых диаграмм квазидвумерных купратов типа $La_{2-x}Sr_xCuO_4$ была предложена и развита модель зарядовых триплетов, в рамках которой удалось смоделировать сложные фазовые диаграммы CuO_2 -плоскостей, являющиеся результатом конкуренции ферми-металлического и антиферромагнитного диэлектрического состояния, зарядового упорядочения и спин-синглетной бозонной сверхпроводимости.

В данной работе мы представляем обобщенную модель эффективных зарядовых триплетов, позволяющую в наиболее общем виде учитывать конкуренцию зарядовых, спиновых, орбитальных и решеточных степеней свободы для так называемых однозонных ЯТ-магнетиков [3] типа редкоземельных никелатов $RNiO_3$ (R — редкая земля или иттрий) [21].

2. Модель зарядовых триплетов: $\Sigma=1$ псевдоспиновый формализм

Обобщенная модель эффективных зарядовых триплетов предполагает рассмотрение некоторой высокосимметричной "прародительской" конфигурации ЯТ-магнетика типа $\mathrm{RNiO_3}$ с идеальными октаэдрами $\mathrm{NiO_6}$, низкоэнергетическое состояние которой формируется зарядовым триплетом $[\mathrm{NiO_6}]^{10-,9-,8-}$ (номинально $\mathrm{Ni^{2+,3+,4+}})$ с различными спиновыми и орбитальными основными состояниями (см. табл. 2). В соответствии с идеей Райса—Снеддона, предложенной для описания

d-center	Nominal	Cluster	Charge $\Sigma = 1$ pseudospin projection	Conventional spin	Orbital state
Electron (d ⁸)	Ni ²⁺	$[\mathrm{NiO_6}]^{10-}$	$M_S=-1$	1	A_{2g}
Parent (d ⁷)	Ni ³⁺	$[{ m NiO_6}]^{9-}$	$M_S=0$	1/2	E_g
Hole (d^6)	Ni ⁴⁺	$[\mathrm{NiO_6}]^{8-}$	$M_S = +1$	0	A_{1g}

Таблица 2. Псевдоспиновая, спиновая и орбитальная структура трех зарядовых центров NiO₆ в ортоникелатах RNiO₃.

трех зарядовых состояний $\mathrm{Bi}^{3+,4+,5+}$ в $\mathrm{BaBiO_3}$ [22], и развитой в работах [11–20] для $\mathrm{BTC\Pi}$ купратов, три зарядовых состояния кластера $\mathrm{NiO_6}$ мы связываем с тремя проекциями псевдоспина $\Sigma=1$ и используем известные соотношения спиновой алгебры для описания зарядовой степени свободы.

Прежде всего отметим, что формально локальный псевдоспин $\Sigma=1$ предполагает наличие восьми (три "дипольных" и пять "квадрупольных") независимых операторов и соответствующих локальных параметров зарядового порядка (в неприводимых компонентах):

$$\hat{\Sigma}_0 = \hat{\Sigma}_z; \quad \hat{\Sigma}_{\pm} = \mp \frac{1}{\sqrt{2}} (\hat{\Sigma}_x \pm i \hat{\Sigma}_y); \quad \hat{\Sigma}_z^2; \quad \hat{\Sigma}_{\pm}^2;$$

$$\hat{T}_{\pm} = \frac{1}{2} \{ \hat{\Sigma}_z, \hat{\Sigma}_{\pm} \}. \tag{1}$$

Операторы

$$\hat{P}_0 = (1 - \hat{\Sigma}_z^2); \quad \hat{P}_{\pm} = \frac{1}{2} \hat{\Sigma}_z (1 \pm \hat{\Sigma}_z)$$
 (2)

фактически являются операторами проектирования на зарядовые состояния с проекцией псевдоспина $M=0,\pm 1$ соответственно, а средние $\langle \hat{P}_0 \rangle, \, \langle \hat{P}_\pm \rangle$ фактически представляют собой локальные плотности соответствующих зарядовых состояний.

Операторы $\hat{\Sigma}_{\pm}$ и \hat{T}_{\pm} изменяют проекцию псевдоспина на ± 1 . Оператор $\hat{\Sigma}_{\pm}^2$ изменяет проекцию псевдоспина на ± 2 , так что его можно рассматривать как оператор рождения/уничтожения композитного бозона. Соответствующие локальные средние $\langle \hat{\Sigma}_{\pm} \rangle$, $\langle \hat{T}_{\pm} \rangle$, $\langle \hat{\Sigma}_{\pm}^2 \rangle$ будут описывать различные варианты "недиагонального" зарядового порядка, в частности, когерентное металлическое и сверхпроводящее состояния.

С учетом спиновых и орбитальных состояний для зарядовых компонент мы должны расширить локальное гильбертово пространство до "псевдоспин-орбитально-спинового октета" $|1M;\Gamma\mu;Sm\rangle$ ($|10;E_g\mu;\frac{1}{2}\nu\rangle;|1-1;A_{1g}0;1m\rangle;|1+1;A_{1g}0;00\rangle$), где $\mu=0;2,\ \nu=\pm\frac{1}{2},\ m=0;\pm 1\ (|E_g0\rangle\propto d_{z^2},\ |E_g2\rangle\propto d_{x^2-y^2})$ и рассматривать ЯТ-магнетик в общем случае как систему таких "октетов". Такой подход позволит в наиболее общем виде учесть эффекты конкуренции различных степеней свободы.

3. Эффективный гамильтониан ЯТ-магнетика: "атомный" предел

В простейшем "атомном" пределе мы пренебрегаем эффектами одно- и двухчастичного переноса заряда, так что эффективный гамильтониан ЯТ-магнетика примет вид

$$\hat{H}_{at} = \hat{H}_{ch} + \hat{H}_{el-lat} + H_{lat} + \hat{H}_{spin}^{\text{eff}},$$
 (3)

где

$$\hat{H}_{ch} = \Delta \sum_{i} \hat{\Sigma}_{iz}^{2} + \sum_{i>j} V_{ij} \hat{\Sigma}_{iz} \hat{\Sigma}_{jz} - \mu \sum_{i} \hat{\Sigma}_{iz}$$
 (4)

— эффективный гамильтониан зарядовых взаимодействий (локальные и нелокальные корреляции), μ химический потенциал, определяемый из условия постоянства величины $\sum_i \langle \Sigma_{iz} \rangle$, в частности условия электроней тральности. Величина и знак параметра $\Delta = \frac{1}{2} U$, где U — эффективный параметр локальных корреляций, имеют принципиальное значение для ЯТ-магнетика. Большие положительные значения U делают диспропорционирование энергетически невыгодным и стабилизируют ЯТ-центр, приводя к локальному/кооперативному ЯТ упорядочению с орбитальным порядком (ОО) и, как правило, к состоянию магнитного изолятора. Большие отрицательные значения U (negative-U model) делают анти-ЯТ-диспропорционирование энергетически выгодным, приводя к формированию системы электронных и дырочных центров с широким набором возможных фазовых состояний.

Эффективный гамильтониан линейного электронрешеточного взаимодействия включает два принципиально важных вклада для зарядовых состояний с проекцией псевдоспина M=0, т.е. для ЯТ-центра, и $M=\pm 1$, то есть для электронного/дырочного центров соответственно

$$H_{el-lat} = V_E \sum_{i} \hat{P}_0(\hat{v}_i^E Q_i^E) \hat{P}_0 + a \sum_{i} (\hat{\Sigma}_{iz}^2 + \lambda \hat{\Sigma}_{iz}) Q_i^{A_{1g}},$$
(5)

где первое слагаемое — ян-теллеровский вклад взаимодействия с локальной модой смещений Q^E ($Q^{E0} \propto d_{z^2}$, $Q^{E2} \propto d_{x^2-y^2}$), V_E — константа ЯТ-взаимодействия, а матрицы \hat{v}^{E0} , \hat{v}^{E2} на базисе состояний $|E_g0\rangle$ и $|E_g2\rangle$ совпадают с матрицами Паули $\hat{\sigma}_z$ и $\hat{\sigma}_x$ соответственно [1]. Второе слагаемое в (5) — взаимодействие с

локальной полносимметричной (breathing) модой смещений для зарядовых состояний с проекцией псевдоспина $M=\pm 1, a$ и λ — константы электрон-решеточного взаимодействия. Именно взаимодействие с локальной полносимметричной модой позволяет объяснить как механизм, так и особенности перехода металл-изолятор в ортоникелатах $RNiO_3$ [23]. Естественно, что учет электрон-решеточного взаимодействия требует включения в гамильтониан RT-магнетика и упругой энергии

$$H_{lat} = \frac{1}{2} \sum_{i \Gamma \nu} K_{\Gamma} (Q_i^{\Gamma \nu})^2 + \dots, \tag{6}$$

где мы выделили только локальный вклад. Очевидно, что энергия ЯТ-стабилизации [1]

$$E_{JT} = \frac{V_E^2}{2K_E} \tag{7}$$

является важнейшим энергетическим фактором стабилизации ЯТ-центра в решетке.

Эффективный спин-гамильтониан ЯТ-магнетика в общем случае имеет сложную структуру. Многие особенности спиновых взаимодействий ЯТ-центров рассмотрены в известной работе Кугеля и Хомского [1]. Ниже мы рассмотрим вклад в эффективный спин-гамильтониан ЯТ-магнетика RNiO $_3$ зарядовых спин-триплетных состояний $[\mathrm{NiO}_6]^{10-}$ (номинально Ni^{2+}), соответствующий компоненте M=-1 зарядового псевдоспина, который можно представить как

$$\hat{H}_{spin}^{\text{eff}} = \hat{P}_{-1}\hat{H}_{spin}\hat{P}_{-1}, \tag{8}$$

где \hat{P}_{-1} — соответствующий оператор проектирования, а спин-гамильтониан

$$\hat{H}_{spin} = V_{md} + \sum_{i>j} J_{ij}(\hat{\mathbf{S}}_i \hat{\mathbf{S}}_j) + \sum_{i>j} j_{ij}(\hat{\mathbf{S}}_i \hat{\mathbf{S}}_j)^2 + K \sum_{i} (\mathbf{m}_i \hat{\mathbf{S}}_i)(\mathbf{n}_i \hat{\mathbf{S}}_i) - \sum_{i} (\mathbf{h} \, \hat{\mathbf{S}}_i)$$
(9)

включает типичные слагаемые, V_{md} — магнитодипольное взаимодействие, J_{ij} и j_{ij} — интегралы билинейного и биквадратичного изотропного обмена соответственно, K — константа одноионной анизотропии, а \mathbf{m} и \mathbf{n} — единичные векторы, определяющие в общем случае две характерные оси одноионной анизотропии второго порядка, \mathbf{h} — внешнее поле [3-5].

В целом эффективный гамильтониан модели зарядовых триплетов (3)-(9) может служить основой как для квантовомеханического, так и классического описания ЯТ-магнетиков типа ортоникелатов с применением методов типичных для традиционных спин-магнитных систем, в частности, теории эффективного поля [16,17].

4. Заключение

Для описания электронной структуры однозонных ЯТмагнетиков типа редкоземельных никелатов RNiO₃ нами предложена обобщенная модель эффективных зарядовых триплетов, в рамках которой NiO-подрешетка рассматривается как система "псевдоспин-орбитально-спиновых октетов". Эффективный гамильтониан модели может служить основой как для квантовомеханического, так и классического описания низкоэнергетических состояний и фазовых диаграмм ЯТ-магнетиков в рамках единого подхода, в наиболее общем виде учитывающего зарядовые, спиновые, орбитальные и решеточные степени своболы.

Финансирование работы

Работа выполнена при поддержке проекта FEUZ-2023-0017 Министерства образования и науки Российской Федерации

Конфликт интересов

Автор заявляет об отсутствии конфликта интересов.

Список литературы

- [1] К.И. Кугель, Д.И. Хомский. УФН 136, 621 (1982).
- [2] A.S. Moskvin. J. Phys.: Condens. Matter 25, 085601 (2013).
- [3] A.S. Moskvin. Magnetochemistry 9, 224 (2023).
- [4] А.С. Москвин, Ю.Д. Панов. ФТТ 65, 1129 (2023).
- [5] A.S. Moskvin. Ferroelectrics 618, 1179 (2024).
- [6] Hiroshi Katayama-Yoshida, Koichi Kusakabe, Hidetoshi Kizaki, Akitaka Nakanishi. Appl. PHYS. EXP. Jpn Soc. Appl. Phys. 1, 8, 081703 (2008).
- [7] E. Bousquet, A. Cano. Phys. Sci. Rev. 8, 479 (2023).
- [8] T. Kimura, Y. Sekio, H. Nakamura, T. Siegrist, A.P. Ramirez. Nature Mater. 7, 291 (2008).
- [9] G. Giovannetti, S. Kumar, D. Khomskii S. Picozz, J. van den Brink. Phys. Rev. Lett. 103, 156401 (2009).
- [10] A.S. Moskvin, I.L. Avvakumov. Proc. III Int. Conf. "Fundamental Problems of High-Temperature Superconductivity". Moscow, Zvenigorod (13–17 October 2008). 215 p.
- [11] A.S. Moskvin. Phys. Rev. B 79, 115102 (2009).
- [12] A.S. Moskvin. Phys. Rev. B 84, 075116 (2011).
- [13] A.S. Moskvin, Y.D. Panov. J. Supercond. Nov. Magn. **32**, 61
- [14] А.С. Москвин, Ю.Д. Панов. ФТТ 61, 1603 (2019).
- [15] A.S. Moskvin. Phys. Met. Metallogr. 120, 1252 (2019).
- [16] A. Moskvin, Y. Panov. Condens. Matter 6, 24 (2021).
- [17] A.S. Moskvin, Yu.D. Panov. JMMM 550, 169004 (2022).
- [18] А.С. Москвин. Оптика и спектроскопия 131, 491 (2023).
- [19] А.С. Москвин, Ю.Д. Панов. ФТТ 62, 1390 (2020).
- [20] A.S. Moskvin, Yu.D. Panov. J. Phys.: Conf. Ser. 2164, 012014 (2022).
- [21] M. Hepting. The Rare-Earth Nickelates. In: Ordering Phenomena in Rare-Earth Nickelate Heterostructures. Springer Theses. Springer, Cham. (2017).
- [22] T.M. Rice, L. Sneddon. Phys. Rev. Lett. 47, 689 (1981).
- [23] A.B. Georgescu, A.J. Millis. Commun. Phys. 5, 135 (2022).

Редактор Т.Н. Василевская