09

Сравнение динамики решеток разности населенностей, создаваемых в двухуровневой и трехуровневой средах полуцикловыми световыми импульсами

© Р.М. Архипов^{1,2}, М.В. Архипов^{1,2}, Н.Н. Розанов^{1,2}

¹ Санкт-Петербургский государственный университет,
 199034 Санкт-Петербург, Россия
 ² ФТИ им. А.Ф. Иоффе РАН,
 194021 Санкт-Петербург, Россия
 e-mail: arkhipovrostislav@gmail.com, mikhail.v.arkhipov@gmail.com, nnrosanov@mail.ru

Поступила в редакцию 27.02.2024 г. В окончательной редакции 27.02.2024 г. Принята к публикации 14.03.2024 г.

> На основе численного решения системы уравнений Максвелла-Блоха проведено сравнение динамики решеток разности населенностей и поляризации среды, моделированных в двух- и трехуровневом приближении. Показано, что решетки также возникают и в трехуровневой среде, однако их динамика качественно не отличается от двухуровневой среды при выбранных параметрах модели.

> Ключевые слова: решетки разности населенностей, полуцикловые импульсы, аттосекундные импульсы, когерентные эффекты, двухуровневая среда.

DOI: 10.61011/OS.2024.04.58223.6078-24

Введение

Прогресс в сокращении длительности электромагнитных импульсов привел к возможности получения структур излучения, содержащих всего несколько колебаний поля фемто- и аттосекундной длительности [1–3]. Получение таких импульсов сделало возможным изучение и управление динамикой электронов в веществе [4–6]. Достижения в этой области были отмечены Нобелевской премией по физике 2023 г. [7].

Наиболее короткая длительность в фиксированном спектральном интервале получится, если у обычного многоциклового импульса убрать все полуволны поля и оставить только одну полуволну. Получаемый в этом случае импульс является уже униполярным, полуцикловым импульсом [8–11]. Для таких полуцикловых импульсов важной характеристикой является их электрическая площадь, определяемая в заданной точке пространства, как интеграл от напряженности поля **E** по времени *t* [12–17]

$$\mathbf{S}_E = \int \mathbf{E}(t) dt. \tag{1}$$

Интерес к получению таких импульсов активно развивается в последнее время. Они способны быстро и однонаправленно воздействовать на заряды, что делает их перспективными для различных приложений. Показана возможность применения таких импульсов для сверхбыстрого управления свойствами различных квантовых систем — атомов, молекул, наноструктур [18– 24]. Последние результаты исследований в этой области можно найти в обзорах [12–17] и приведенной там литературе. Однако в случае полуцикловых импульсов, ввиду их малой длительности, стандартные теории взаимодействия излучения с веществом и традиционные приближения, применяемые для длинных многоцикловых импульсов, могут быть не применимы. Так, например, становится не применима теория фотоионизации Келдыша, когда длительность импульса короче орбитального электрона в атоме [25].

Другим традиционным приближением в оптике и лазерной физике, применяемым при анализе резонансного когерентного взаимодействия с веществом, является двухуровневое приближение, когда считается, что среда имеет только два уровня энергии, а остальные уровни не учитываются [26–29]. Полуцикловые импульсы не содержат несущей частоты и обладают широким спектром, который может накрывать одновременно несколько резонансных переходов среды. В этом случае актуальным является вопрос об использовании двухуровневого приближения в задачах когерентного распространения предельно коротких импульсов (ПКИ) в резонансных средах. На сегодняшний день когерентное распространение таких импульсов изучено в основном в двухуровневом приближении [30–35].

При когерентном взаимодействии ПКИ со средой, когда длительность импульсов и задержки между ними короче времени релаксации поляризации среды T_2 , в ней возможно создание и сверхбыстрое управление решетками разности населенностей [36–38]. Обзор последних и более ранних результатов по данной теме можно найти в [39,40] и цитируемой литературе. Когда короткий импульс покидает среду, он оставляет после себя бегущие волны поляризации, существующие в среде в течение

времени фазовой памяти среды T_2 . При этом, если в среду войдет второй импульс после первого, то в результате взаимодействия с этой волной поляризации в среде возможно создание решетки разности населенностей [36–38]. В приближении малой амплитуды поля в рамках теории возмущений формирование решеток может быть объяснено также на основе "интерференции" площадей импульсов [41].

Многие ранние исследования динамики таких решеток под действием полуцикловых импульсов проводились в двухуровневом приближении [36–38]. В работах [42,43] изучалась динамика решеток в трехуровневой среде, параметры которой соответствовали атомам водорода и рубидия. В настоящей работе проводится сравнение динамики решеток разности населенностей и динамики поляризации среды под действием полуцикловых аттосекундных импульсов в двух- и трехуровневой средах на основе численного решения системы уравнений Максвелла-Блоха. Рассматривается случай, когда импульсы одномоментно не перекрываются в среде.

Рассматриваемая система и постановка задачи

Анализ проводится следующим образом. Проводились численные расчеты динамики поляризации и населенностей в двухуровневой и трехуровневой средах. Параметры среды и возбуждения указаны в таблице. Величины времен релаксации лежат в наносекундном диапазоне, что на порядки превышает длительности импульсов возбуждения и интервалы между ними (фемтои аттосекунды). Поэтому их значения не критичны в рассматриваемых условиях и для простоты взяты одинаковыми для всех переходов.

Среда возбуждалась последовательностью встречных полуцикловых импульсов гауссовой формы, движущихся на встречу друг другу в форме

$$E(z=0,t) = E_{01}e^{-\frac{(t-\Delta_1)^2}{r^2}},$$
(2)

$$E(z = L, t) = E_{02}e^{-\frac{(t - \Delta_2)^2}{\tau^2}}.$$
 (3)

Здесь $\Delta_1 = 2.5\tau$, $\Delta_2 = 30.5\tau$ — задержки, значение которых подобрано так, чтобы импульсы не перекрывались в среде.

Для создания последовательности импульсов выбирались нулевые граничные условия на границах области интегрирования, имевшей длину $L = 12\lambda_0$. Среда располагалась в центре области интегрирования между точками $z_1 = 4\lambda_0$ и $z_2 = 8\lambda_0$. Схема распространения таких импульсов приведена на рис. 1.

Рис. 1. Схема движения импульсов по среде. Стрелки указывают направления их движения в момент вхождения импульса в среду. Цифры указывают номер импульса.

Динамика решеток разности населенностей и структур поляризации в двухуровневой среде

В данном разделе приводятся изучения динамики разности населенностей и поляризации двухуровневой среды. Система уравнений Максвелла-Блоха для двухуровневой среды имеет вид [44]

$$\frac{\partial \rho_{12}(z,t)}{\partial t} = -\frac{\rho_{12}(z,t)}{T_2} + i\omega_0 \rho_{12}(z,t) \\ -\frac{i}{\hbar} d_{12} E(z,t) n(z,t),$$
(4)

$$\frac{\partial n(z,t)}{\partial t} = -\frac{n(z,t) - n_0(z)}{T_1} + \frac{4}{\hbar} d_{12} E(z,t) \operatorname{Im} \rho_{12}(z,t),$$
(5)
$$P(z,t) = 2N_0 d_{12} \operatorname{Re} \alpha_{12}(z,t) \quad (6)$$

$$P(z,t) = 2N_0 d_{13} \operatorname{Re} \rho_{12}(z,t), \tag{6}$$

$$\frac{\partial^2 E(z,t)}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 E(z,t)}{\partial t^2} = \frac{4\pi}{c^2} \frac{\partial^2 P(z,t)}{\partial t^2}.$$
 (7)

Система уравнений (4)-(7) содержит следующие параметры: недиагональный элемент матрицы плотности двухуровневой среды ρ_{12} , $n = \rho_{11} - \rho_{22}$ — разность населенностей (инверсия) двухуровневой среды, P — поляризация среды, t — время, z — продольная координата, c — скорость света в вакууме, d_{12} — дипольный момент перехода, ω_0 — частота перехода, N_0 — концентрация двухуровневых частиц, \hbar — приведенная постоянная Планка, n_0 — разность населенностей среды при отсутствии электрического поля ($n_0 = 1$ для поглощающей среды). Волновое уравнение (7) описывает динамику напряженности электрического поля. Проводилось численное решение уравнений (4)-(7) с начальными условиями (2), (3).

Амплитуда импульсов	$E_{01} = E_{02} = 100000 \mathrm{ESU}$
Длительность импульсов возбуждения	$ au = 390 \mathrm{as}$
Частота перехода 12 (длина волны перехода)	$\omega_{12} = 2.69 \cdot 10^{15} \text{ rad/s} \ (\lambda_{12} = \lambda_0 = 700 \text{ nm})$
Дипольный момент перехода 12	$d_{12} = 20 \mathrm{D}$
Частота перехода 13	$\omega_{13}=4\omega_{12}$
Дипольный момент перехода 13	$d_{13} = d_{12}$
Частота перехода 23 в атоме водорода (длина волны перехода)	$\omega_{23}=\omega_{13}-\omega_{12}$
Дипольный момент перехода 23	$d_{23} = 0$
Концентрация атомов	$N_0 = 10^{13} \mathrm{cm}^{-3}$
Времена релаксации Т _{ік}	$T_{ik} = 1 \text{ ns}$

Параметры импульсов возбуждения и среды

Рис. 2. Пространственно-временная динамика разности населенностей двухуровневой среды $n(z, t) = \rho_{11} - \rho_{22}$.

Рисунки 2,3 иллюстрируют типичную пространственно-временную динамику разности населенностей и поляризации среды соответственно. Видно формирование гармонической решетки населенностей после прохождения второго импульса. Последующие импульсы управляют параметрами данных решеток — меняют их форму и мультиплицируют их пространственную частоту. Под действием импульсов происходит формирование как бегущих, так и стоячих волн поляризации. Подобная динамика наблюдалась ранее в двухуровневой среде [36–38].

Динамика решеток разности населенностей и структур поляризации в трехуровневой среде

Теперь учтем наличие третьего уровня среды. Оставляя все параметры падающих импульсов и среды, как

и в предыдущем разделе, рассмотрим динамику поляризации и разности населенностей в трехуровневой среде. Система уравнений для матрицы плотности трехуровневой среды имеет известный вид [44]

$$\frac{\partial}{\partial t}\rho_{21} = -\rho_{21}/T_{21} - i\omega_{12}\rho_{21} - i\frac{d_{12}}{\hbar}E(\rho_{22} - \rho_{11}) - i\frac{d_{13}}{\hbar}E\rho_{23} + i\frac{d_{23}}{\hbar}E\rho_{31},$$
(8)

$$\frac{\partial}{\partial t}\rho_{32} = -\rho_{32}/T_{32} - i\omega_{23}\rho_{32} - i\frac{d_{23}}{\hbar}E(\rho_{33} - \rho_{22}) -i\frac{d_{12}}{\hbar}E\rho_{31} + i\frac{d_{13}}{\hbar}E\rho_{21},$$
(9)

$$\frac{\partial}{\partial t}\rho_{31} = -\rho_{31}/T_{31} - i\omega_{13}\rho_{31} - i\frac{d_{13}}{\hbar}E(\rho_{33} - \rho_{11}) - i\frac{d_{12}}{\hbar}E\rho_{32} + i\frac{d_{23}}{\hbar}E\rho_{21},$$
(10)

Рис. 3. Пространственно-временная динамика поляризации двухуровневой среды P(z, t).

Рис. 4. Пространственно-временная динамика поляризации трехуровневой среды P(z, t).

$$\frac{\partial}{\partial t}\rho_{11} = -\frac{\rho_{22}}{T_{22}} + \frac{\rho_{33}}{T_{33}} + i\frac{d_{12}}{\hbar}E(\rho_{21} - \rho_{21}^*) - i\frac{d_{13}}{\hbar}E(\rho_{13} - \rho_{13}^*), \qquad (11)$$

$$\frac{\partial}{\partial t}\rho_{22} = -\frac{\rho_{22}}{T_{22}} - i\frac{d_{12}}{\hbar}E(\rho_{21} - \rho_{21}^*) - i\frac{d_{23}}{\hbar}E(\rho_{23} - \rho_{23}^*),$$
(12)

$$\frac{\partial}{\partial t}\rho_{33} = -\frac{\rho_{33}}{T_{33}} - i\frac{u_{13}}{\hbar}E(\rho_{13} - \rho_{13}^*) + i\frac{u_{23}}{\hbar}E(\rho_{23} - \rho_{23}^*),$$
(13)

$$P(z,t) = 2N_0 d_{12} \operatorname{Re} \rho_{12}(z,t) + 2N_0 d_{13} \operatorname{Re} \rho_{13}(z,t)$$

 $+ 2N_0 d_{23} \operatorname{Re} \rho_{32}(z, t). \tag{14}$

В этой системе уравнений ρ_{21} , ρ_{32} , ρ_{31} — недиагональные элементы матрицы плотности, ρ_{11} , ρ_{22} , ρ_{33} населенности 1-го, 2-го и 3-го состояний среды соответственно, определяющие динамику поляризации среды, ω_{12} , ω_{23} , ω_{13} — частоты резонансных переходов, а d_{12} , d_{13} , d_{23} — дипольные моменты этих переходов. Уравнения также содержат релаксационные члены T_{ik} .

Рисунки 4–7 иллюстрируют пространственно-временную динамику поляризации среды и разности населенностей на разных резонансных переходах трехуровневой среды. Видно, что эта динамика качественно совпадает с той, что наблюдалась в двухуровневой среде (рис. 2,3). Таким образом, введение дополнительного уровня не приводит к исчезновению эффекта создания решеток разности населенностей, несмотря на распространенное мнение.

Таким образом, результаты, полученные в рамках двухуровневой модели, остаются справедливыми при учете дополнительных уровней, что говорит в пользу двухуровневого приближения. Данный результат качественно согласуется с другими результатами когерентного взаимодействия предельно коротких импульсов с резонансными средами, в которых показано, что формирование диссипативных солитонов самоиндуцированной

Оптика и спектроскопия, 2024, том 132, вып. 4

Рис. 5. Пространственно-временная динамика разности населённостей $\rho_{11} - \rho_{22}$ трехуровневой среды.

Рис. 6. Пространственно-временная динамика разности населенностей $\rho_{22} - \rho_{33}$ трехуровневой среды.

прозрачности, изначально предсказанное в двухуровневых средах, сохраняется и в трехуровневой среде [45,46].

Заключение

В настоящей работе на основании численного решения системы уравнений Максвелла-Блоха проведено сравнение динамики решеток разности населенностей и поведения поляризации двухуровневой и трехуровневой резонансных сред, возбуждаемых последовательностью полуцикловых импульсов, одномоментно не перекрывающихся в среде. Показано, что динамика решеток разности населенностей и поляризации трехуровневой среды имеет качественно аналогичное поведение, что и в двухуровневой среде при выбранных параметрах расчета.

Представленные выше результаты для трехуровневой среды подтверждают полученные ранее результаты с использованием двухуровневой модели среды и тем

Рис. 7. Пространственно-временная динамика разности населенностей $\rho_{11} - \rho_{33}$ трехуровневой среды.

самым расширяют область применимости последней. Таким образом, формирование решеток разности населенностей с помощью ПКИ, изначально предсказанное в двухуровневой среде, по-видимому, является общим свойством, присущим и многоуровневым средам. В пользу данного утверждения следует также экспериментальное наблюдение осцилляций Раби (*carrier wave Rabi flopping*) под действием одноциклового импульса в полупроводниках [47], изначально предсказанных в двухуровневой среде [31]. Отметим, что приведенный выше пример аналогичности динамики системы в двухуровневом и многоуровневом приближениях отнюдь не единственный, результаты других работ также подтверждают данный вывод [48–51].

Физически сохранение решеток в многоуровневой среде легко понять из следующих простых соображений. Короткий полуцикловый импульс, пройдя сквозь среду, оставляет ее после себя в так называемом суперпозиционном состоянии. При этом недиагональные элементы матрицы плотности (когерентность среды) осциллируют на каждом резонансном переходе среды на частоте перехода в течение времени релаксации поляризации Т₂. Эти осцилляции будут всегда на каждом резонансном переходе среды в независимости от того, сколько уровней среды включено в рассмотрение в данной задаче. Каждый последующий импульс будет взаимодействовать с этими осцилляциями когерентности, что будет приводить к возникновению решеток населенностей на каждом резонансном переходе среды. Данный вывод согласуется с результатами численного решения уравнения Шредингера с учетом ионизации среды [52].

Финансирование работы

Исследования выполнены при финансовой поддержке РНФ в рамках научного проекта 21-72-10028 (расчет

динамики решеток разности населенностей в трехуровневой среде) и Государственным заданием ФТИ им. А.Ф. Иоффе, тема 0040-2019-0017 (расчет динамики решеток разности населенностей в двухуровневой среде).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] F. Krausz, M. Ivanov. Rev. Mod. Phys., 81, 163 (2009).
- [2] Е.А. Хазанов. Квант. электрон., **52**, 208 (2022). [Е.А. Khazanov. Quant. Electron., **52**, 208 (2022)].
- [3] K. Midorikawa. Nat. Photonics, 16, 267 (2022).
- [4] F. Calegari, G. Sansone, S. Stagira, C. Vozzi, M. Nisoli. J. Physics B: Atomic, Molecular and Optical Physics, 49, 062001 (2016).
- [5] M.T. Hassan, T.T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A.M. Zheltikov, V. Pervak, F. Krausz, E. Goulielmakis. Nature, 530, 66 (2016).
- [6] H.Y. Kim, M. Garg, S. Mandal, S. Mandal, L. Seiffert, T. Fennel, E. Goulielmakis. Nature, 613, 662 (2023).
- [7] NobelPrize.org, Nobel Prize Outreach AB 2023, Press release (accessed: 4 Oct. 2023). URL:
 - https://www.nobelprize.org/prizes/physics/2023/press-release
- [8] H.-C. Wu, J. Meyer-ter-Vehn. Nature Photon., 6, 304 (2012).
 [9] J. Xu, B. Shen, X. Zhang, Y. Shi, L. Ji, L. Zhang, T. Xu, W. Wang, X. Zhao, Z. Xu. Sci. Rep., 8, 2669 (2018).
- [10] S. Wei, Y. Wang, X. Yan, B. Eliasson. Phys. Rev. E, 106, 025203 (2022).
- [11] Q. Xin, Y. Wang, X. Yan, B. Eliasson. Phys. Rev. E, 107, 035201 (2023).
- [12] Н.Н. Розанов, Р.М. Архипов, М.В. Архипов. УФН, 188, 1347 (2018).
 [N.N. Romanov, R.M. Arkhipov, M.V. Arkhipov. Phys. Usp., 61, 1227 (2018)].
- [13] Р.М. Архипов, М.В. Архипов, Н.Н. Розанов. Квант. электрон., **50** (9), 801 (2020). [R.M. Arkhipov, M.V. Arkhipov, N.N. Rosanov. Quant. Electron., **50** (9), 801 (2020)].
- [14] Р.М. Архипов, М.В. Архипов, А.В. Пахомов, П.А. Образцов, Н.Н. Розанов. Письма в ЖЭТФ, 117 (1), 10 (2023).
 [R.M. Arkhipov, M.V. Arkhipov, A.V. Pakhomov, P.A. Obraztsov, N.N. Rosanov. JETP Letters, 117 (1), 8 (2023)].
- [15] Н.Н. Розанов. УФН, 193, 1127 (2023). [N.N. Rosanov. Phys. Usp., 66, 1059 (2023)].
- [16] Н.Н. Розанов, М.В. Архипов, Р.М. Архипов, А.В. Пахомов. Коллективная монография "Терагерцовая фотоника" под ред. В.Я. Панченко, А.П. Шкуринова (РАН, М., 2023), с. 360–393.
- [17] N.N. Rosanov, M.V. Arkhipov, R.M. Arkhipov, A.V. Pakhomov. Contemprorary Physics, in press.
- [18] P.H. Bucksbaum. AIP Conference Proc., 323 (1), (1994).
- [19] D. Dimitrovski, E.A. Solov'ev, J.S. Briggs. Physi. Rev. A, 72 (4), 043411 (2005).
- [20] R.M. Arkhipov, M.V. Arkhipov, I. Babushkin, A. Demircan, U. Morgner, N.N. Rosanov. Opt. Lett., 44, 1202 (2019).
- [21] N. Rosanov, D. Tumakov, M. Arkhipov, R. Arkhipov. Phys. Rev. A, **104** (6), 063101 (2021).
- [22] A. Pakhomov, M. Arkhipov, N. Rosanov, R. Arkhipov. Phys. Rev. A, **105**, 043103 (2022).

- [23] R. Arkhipov, P. Belov, A. Pakhomov, M. Arkhipov, N. Rosanov. JOSA B, 41 (1), 285 (2024).
- [24] Р.М. Архипов, М.В. Архипов, Н.Н. Розанов. Письма в ЖЭТФ, 111, 586 (2020). [R.M. Arkhipov, M.V. Arkhipov, N.N. Rosanov. JETP Lett., 111, 484 (2020)].
- [25] Л.В. Келдыш. УФН, 187, 1280 (2017). [L.V. Keldysh. Phys. Usp., 60, 1187 (2017)].
- [26] S.L. McCall, E.L. Hahn. Phys. Rev., 183, 457 (1969).
- [27] П.Г. Крюков, В.С. Летохов. УФН, 99, 169 (1969).
 [P.G. Kryukov, V.S. Letokhov. Sov. Phys.Usp., 12, 641 (1970)].
- [28] И.А. Полуэктов, Ю.М. Попов, В.С. Ройтберг. УФН, 114, 97 (1974). [I.A. Poluektov, Yu.M. Popov, V.S. Roitberg. Sov.Phys.Usp., 18, 673 (1975)].
- [29] Л. Аллен, Дж. Эберли. Оптический резонанс и двухуровневые атомы (Мир, М., 1978). [L. Allen, J.H. Eberly. Optical resonance and two-level atoms (Wiley, N.Y., 1975)].
- [30] X. Song, W. Yang, Z. Zeng, R. Li, Z. Xu. Phys. Rev. A, 82, 053821 (2010).
- [31] S. Hughes. Phys. Rev. Lett., 81, 3363 (1998).
- [32] A.V. Tarasishin, S.A. Magnitskii, V.A. Shuvaev, A.M. Zheltikov. Opt. Express, 8, 452 (2001).
- [33] D.V. Novitsky. Phys. Rev. A, 84, 013817 (2011).
- [34] D.V. Novitsky. Phys. Rev. A, 85, 043813 (2012).
- [35] R. Arkhipov, M. Arkhipov, I. Babushkin, A. Pakhomov, N. Rosanov. JOSA B, 38 (6), 2004 (2021).
- [36] R.M. Arkhipov, M.V. Arkhipov, I. Babushkin, A. Demircan, U. Morgner, N.N. Rosanov. Opt. Lett., 41, 4983 (2016).
- [37] R.M. Arkhipov, M.V. Arkhipov, I. Babushkin, A. Demircan, U. Morgner, N.N. Rosanov. Sci. Rep., 7, 12467 (2017).
- [38] R.M. Arkhipov, M.V. Arkhipov, A.V. Pakhomov, I. Babushkin, N.N. Rosanov. Laser Phys. Lett., 14, 1 (2017).
- [39] Е.И. Штырков. Опт. и спектр., **114**, 105 (2013). [Е.І. Shtyrkov. Opt. Spectrosc., **114**, 96 (2013)].
- [40] Р.М. Архипов. Письма в ЖЭТФ, **113**, 636 (2021). [R.M. Arkhipov. JETP Lett., **113**, 611 (2021)].
- [41] R.M. Arkhipov, M.V. Arkhipov, A.V. Pakhomov, N.N. Rosanov. Laser Physics., 32 (6), 066002 (2022).
- [42] R.M. Arkhipov. Laser Phys., 34, 065301 (2024).
- [43] R. Arkhipov, M. Arkhipov, A. Pakhomov, O. Diachkova, N. Rosanov. Phys. Rev. A, 109, 063113 (2024).
- [44] А. Ярив. *Квантовая электроника* (Сов. Радио, М., 1980). [A. Yariv. *Quantum Electronics* (Wiley, NY., 1975)].
- [45] Н.В. Высотина, Н.Н. Розанов, В.Е. Семенов. Письма в ЖЭТФ, 83 (7), 337 (2006). [N.V. Vysotina, N.N. Rozanov, V.E. Semenov. JETP Lett., 83 (7), 279 (2006)].
- [46] Н.Н. Розанов. Диссипативные оптические солитоны. От микро-к нано-и атто (Физматлит, М., 2011).
- [47] O.D. Mücke, T. Tritschler, M. Wegener, U. Morgner. Phys. Rev. Lett., 87 (5), 057401 (2001).
- [48] Р.М. Архипов, М.В. Архипов, А.В. Пахомов, О.О. Дьячкова, Н.Н. Розанов. Письма в ЖЭТФ, 117 (8), 580 (2023).
 [R.M. Arkhipov, M.V. Arkhipov, A.V. Pakhomov, O.O. Diachkova, N.N. Rosanov. JETP Lett., 117, 574 (2023)].
- [49] A. Pakhomov, N. Rosanov, M. Arkhipov, R. Arkhipov. J. Opt. Soc. Am. B, 41, 46 (2024).
- [50] A. de las Heras, C. Hernández-García, J. Serrano, T. Popmintchev, L. Plaja. In: *European Quantum Electronics Conference* (EQEC 2023), Technical Digest Series (Optica Publishing Group, 2023), p. ee_3_5.
- [51] S. Nandi, E. Olofsson, M. Bertolino et al. Nature, 608, 488 (2022).

[52] Р.М. Архипов, О.О. Дьячкова, П.А. Белов, М.В. Архипов, А.В. Пахомов, Н.Н. Розанов. ЖЭТФ, 166, 2 (8), 1–12 (2024).