02

Кристаллы YAI₃(BO₃)₄ : Сг для люминесцентной криотермометрии

© А.Д. Молчанова¹, М. Диаб^{1,2}, К.Н. Болдырев¹, М.Н. Попова¹

¹ Институт спектроскопии РАН, Троицк, Москва, Россия ² Московский физико-технический институт (национальный исследовательский университет), Долгопрудный, Московская обл., Россия

e-mail: nastyamolchanova@list.ru

Поступила в редакцию 19.04.2024 г. В окончательной редакции 26.04.2024 г. Принята к публикации 27.04.2024 г.

Зарегистрированы спектры люминесценции кристалла $YAl_3(BO_3)_4: Cr^{3+}$ в спектральном диапазоне запрещённых по спину электронных переходов ${}^2E \rightarrow {}^4A_2$ в ионах Cr^{3+} (14550—14700 cm⁻¹) с высоким спектральным разрешением при температурах 4—300 К. Температурные зависимости отношений интегральных интенсивностей линий R_2 и R_1 , а также N' и N (предположительно линий переходов ${}^2E \rightarrow {}^4A_2$ центра Cr^{3+} в искажённой вследствие близости некоторого дефекта позиции) хорошо соответствуют распределению Больцмана. На измерении этих отношений может быть реализован ратиометрический термометр с максимумами абсолютной чувствительности при температурах 40.3 и 21.6 К и относительной чувствительностью до 12% K⁻¹. Измерение ширины самой интенсивной спектральной компоненты — линии R_1 — может быть способом регистрации температуры в диапазоне от 100 К и выше.

Ключевые слова: люминесцентная криотермометрия, кристалл $YAl_3(BO_3)_4 : Cr^{3+}$, фурье-спектроскопия высокого разрешения.

DOI: 10.61011/OS.2024.04.58219.6314-24

Введение

При большом разнообразии соединений, легированных *d*-ионами, большинство исследований в области люминесцентной термометрии выполнено по соединениям с ионами Cr³⁺. Это обусловлено отличной светоизлучающей способностью ионов Cr³⁺, широким спектром поглощения и высокой чувствительностью спектра люминесценции к температуре. В основном термометрия на соединениях с ионами Cr³⁺ осуществляется в диапазоне температур, актуальном для биологических применений (> 0°C), и основана на измерении отношения интенсивностей полос переходов ${}^2E \rightarrow {}^4A_2$ и ${}^{4}T_{2} \rightarrow {}^{4}A_{2}$ [1–8]. В ряде работ для термометрии предлагались кристаллы, легированные одновременно ионами Cr³⁺ и различными редкоземельными ионами, такими как Eu³⁺ [9,10] и Yb³⁺ [11], при этом температура регистрировалась по отношению интенсивностей люминесценции ионов хрома и редкоземельных ионов. Лишь в нескольких работах предлагалось создание ратиометрических люминесцентных термометров на отношении интенсивностей R₁- и R₂-линий (переходы из расщеплённого орбитального дублета ²E на основной синглет ⁴A₂) [4,12–15]. Большинство исследований были выполнены для температур выше 80 К. Низкотемпературная (от 4К) термометрия исследовалась для легированных хромом соединений Al₂O₃, Ga₂O₃, Y₃Al₅O₁₂ и YAIO₃ [13]. Температура определялась тремя способами: по сдвигу линии R₁, по отношению интенсивностей линий R₁ и R₂ и по времени затухания этих линий. Также проводились низкотемпературные термографические исследования покрытий Al₂O₃:Cr, полученных методом плазменно-электролитического оксидирования [12]. На кристаллах YAl₃(BO₃)₄:Cr³⁺ (YAB:Cr³⁺) ранее было реализовано сочетание люминесцентной термометрии и оптического нагрева. Регистрация температуры осуществлялась по измерению отношения интенсивностей полос ${}^{2}E \rightarrow {}^{4}A_{2}$ и ${}^{4}T_{2} \rightarrow {}^{4}A_{2}$ в диапазоне температур –150–300°C [1]. Исследований термометрических свойств YAB:Cr³⁺ при криогенных температурах с помощью измерений параметров компонент тонкой структуры перехода ${}^{2}E \rightarrow {}^{4}A_{2}$ в ионе Cr³⁺ ранее не проводилось.

Для измерения низких температур бесконтактным методом наилучшим образом зарекомендовал себя метод больцмановской ратиометрической термометрии [16]. Температурные зависимости отношения равновесных населённостей $n_2(T)/n_1(T)$ и, следовательно, отношения интенсивностей люминесценции *LIR* (luminescence intensity ratio) с соответствующих двух выбранных уровней с энергиями E_2 и E_1 в этом случае подчиняются распределению Больцмана:

$$LIR(T) = \frac{I_2(T)}{I_1(T)} = \frac{W_2 n_2(T)}{W_1 n_1(T)} = C e^{(-\Delta E/kT)}, \quad (1)$$

где $C = W_2/W_1$ — отношение вероятностей переходов, не зависящее от температуры, $\Delta E = E_2 - E_1$, k — постоянная Больцмана. Абсолютная тепловая чувствительность при этом определяется как

$$S_a(T) = \frac{dLIR(T)}{dT} = \frac{\Delta E}{kT^2} LIR(T)$$
(2)

и достигает максимума при температуре $T_{\rm m} = \Delta E/2k$. Для сравнения термометров, основанных на различных принципах, используется относительная тепловая чувствительность

$$S_{\rm r}(T) = \frac{1}{LIR} \times \frac{dLIR(T)}{dT} = \frac{\Delta E}{kT^2}.$$
 (3)

В настоящей работе в качестве уровней E_1 и E_2 будут рассмотрены компоненты тонкой структуры спектров люминесценции кристалла иттрий-алюминиевого бората YAB:Cr³⁺ в области переходов ${}^2E \rightarrow {}^4A_2$ в ионе Cr³⁺. Кроме того, будет обсуждаться возможность измерения температуры по ширине наиболее интенсивной спектральной компоненты R_1 .

Методика эксперимента

Кристаллы YAl₃(BO₃)₄:Сг были получены растворрасплавным методом выращивания кристаллов в лаборатории Л.Н. Безматерных в Институте физики имени Л.В. Киренского Сибирского отделения Российской академии наук в Красноярске. Специального легирования хромом не проводилось. Вхождение в структуру YAB ионов Cr³⁺ обусловлено их наличием в составе реагента Al₂O₃ (отмеченная в сертификате концентрация составляет 0.001%). Спектры люминесценции были зарегистрированы со спектральным разрешением $0.1 \,\mathrm{cm}^{-1}$ на фурье-спектрометре Bruker IFS 125 HR в спектральном диапазоне перехода ${}^2E \rightarrow {}^4A_2$ в ионах Cr^{3+} (14550–14700 сm⁻¹). Для регистрации спектров использовались светоделитель CaF2 и детектор InGaAs с высоким коэффициентом усиления. Охлаждение образца производилось в криостате замкнутого гелиевого цикла Sumitomo SRP096 до температуры 4K.

Спектры люминесценции были зарегистрированы в температурных диапазонах $4 \text{ K} \rightarrow 10 \text{ K}, 10 \text{ K} \rightarrow 40 \text{ K},$ $40\,K \rightarrow 70\,K$ и $70\,K \rightarrow 300\,K,$ при этом величина шага по температуре составляла 0.5, 2, 4 и 10К соответственно. Для снижения тепловой нагрузки на образец был установлен двойной полированный холодный экран с небольшими отверстиями для ввода и вывода излучения. Образец был приклеен серебряной пастой к медному пальцу криостата. Температура измерялась с использованием калиброванного диодного температурного датчика LakeShore DT-670, установленного в непосредственной близости от образца, контролировалась и регистрировалась ПИД-регулятором температуры модели LakeShore 335. Контроль температуры обеспечивался с точностью ±0.05 К. Для возбуждения люминесценции использовался диодный

Рис. 1. Проекции элементарной ячейки $YAl_3(BO_3)_4$ вдоль оси b(a). Проекции тригональной призмы YO_6 и искаженного октаэдра AlO_6 в элементарной ячейке $YAl_3(BO_3)_4$ вдоль осей c(b) и a(c).

лазер мощностью 75 mW с длиной волны 450 nm и шириной спектра 15 nm, фокусное пятно имело диаметр 1 mm.

Результаты и обсуждение

Кристаллы иттрий-алюминиевого бората YAl₃(BO₃)₄ имеют структуру минерала хантита CaMg₃(CO₃)₄ с нецентросимметричной пространственной группой тригональной системы R32 [17]. На рис. 1, а показана элементарная ячейка кристалла ҮАВ. Кристаллическая структура образована слоями, перпендикулярными кристаллографической оси с и состоящими из искаженных призм YO₆, октаэдров AlO₆ и групп BO₃ двух типов $(B1O_3 \text{ и } B2O_3)$. Ионы Y^{3+} в призмах YO_6 окружены шестью ионами кислорода одного типа и занимают позиции с точечной группой симметрии D₃ (рис. 1, *b*, *c*). Точечная группа позиции ионов Al^{3+} в октаэдрах $AlO_6 - C_2$ (рис. 1, b, c). Октаэдры AlO₆, соединенные между собой ребрами, образуют спиральные цепочки, идущие вдоль оси с. Ионы Y³⁺ располагаются между тремя такими цепочками и связывают их между собой. Призмы YO₆ изолированы друг от друга и не имеют общих атомов кислорода. В существующих работах по спектроскопии YAB:Cr полагалось, что ионы Cr³⁺ занимают позиции Al³⁺. Ионы Al³⁺ и Cr³⁺ имеют близкие ионные радиусы: 0.54 и 0.62 Å соответственно, в то время как ионный радиус Y³⁺ составляет 0.9 Å [18]. Также по результатам исследования методом электронного парамагнитного резонанса (ЭПР) было установлено, что ионы Cr³⁺ занимают октаэдрические позиции в структуре YAB [19], т.е. замещают ионы Al³⁺.

Рис. 2. Спектры фотолюминесценции кристалла YAB: Сг в частотном диапазоне $14550-14700 \,\mathrm{cm}^{-1}$ при температурах 4, 10, 20, 40, 80, 200 и 300 К. Длина волны возбуждающего света $\lambda_{\mathrm{ex}} = 450 \,\mathrm{nm}$. На вставках показаны слабые линии в увеличенном масштабе.

Описание спектров в области R-линий иона Cr^{3+} в YAB:Cr ранее приводилось в различных работах [20–22], однако не было подробного исследования температурной зависимости структуры этих спектров. Такая информация необходима для понимания возможности создания ратиометрических термометров на основе измерений параметров R-линий.

В красной области спектра люминесценции YAB:Сг при низких температурах наблюдается ряд узких линий и прилегающая широкая полоса. Такой спектр связан с бесфононными линиями переходов из возбуждённого орбитального дублета ²E на основной синглет ⁴A₂ иона Cr³⁺ и соответствующими вибронными крыльями. В настоящей работе мы сосредоточимся на бесфононных линиях перехода ²E \rightarrow ⁴A₂. Более подробный вид спектра, включающий вибронную полосу, приведён, например, в нашей недавней работе [23], посвящённой спектроскопии кристалла YAB:Мп с неконтролируемой примесью ионов Cr³⁺. Спектр люминесценции кристалла YAB:Сг, исследуемого в настоящей работе, в диапазоне бесфононных и вибронных переходов ${}^{2}E \rightarrow {}^{4}A_{2}$ имеет такой же вид. На рис. 2 приведены спектры люминесценции кристалла YAB:Сг в спектральном диапазоне 14500-14700 сm⁻¹. Расщепление дублета ${}^{2}E$ низкосимметричными компонентами кристаллического поля приводит к появлению в спектре линий, обозначаемых в литературе как R_1 и R_2 . Положения зарегистрированных линий при 4 К составляют 14633 и 14689 cm⁻¹ соответственно, что согласуется с положениями линий R_1 и R_2 , определёнными в других работах [20-22]. В низкочастотной части спектра можно увидеть линию N с частотой максимума 14588 ст⁻¹ при 4 К. Подобные линии ранее наблюдались в ряде других кристаллов, легированных хромом, и идентифицировались авторами как линии парных центров Cr³⁺ (*N*-линии) [24–26] либо как линии одиночных центров Cr³⁺ в позициях, искажённых вследствие влияния близкого дефекта в кристаллической решётке [27]. Кроме того, с низкочастотной стороны линии R₁ наблюдается слабая линия N' с частотой максимума 14618 cm⁻¹ при 4 К. Спектральные полосы

Рис. 3. Структура линий люминесценции иона Cr³⁺ в YAB: Cr: $R_1(a)$, $R_2(b)$, N(c), N'(d). Экспериментальные спектры (красные кривые) представлены в виде суммы (штрихи) двух контуров.

 R_1, R_2, N и N' имеют сложную форму. На рис. 3 показано их разложение на составляющие. Видно, что эти полосы состоят из отстоящих друг от друга на частотный промежуток около 1 сm⁻¹ двух линий, контуры которых перекрываются. По данным исследований методом ЭПР расщепление основного состояния Cr³⁺ в YAB составляет 1.05±0.04 сm⁻¹ при комнатной температуре [19]. Для парных центров ионов Cr³⁺ вследствие сильного обменного взаимодействия характерны значительно большие значения расщепления основного состояния. Например, для различных парных центров ионов хрома в рубине величина такого расщепления составляет от 43 до 69 сm⁻¹ [28].

Таким образом, линии N и N', по всей видимости, соответствуют не парным центрам Cr^{3+} , а одиночным центрам Cr^{3+} в искажённой вследствие близости некоторого дефекта позиции, а наблюдаемые дублеты связаны со спин-орбитальным расщеплением основного

состояния ${}^{4}A_{2}$, на которое осуществляются переходы из состояний ${}^{2}E$.

Рисунок 4 отображает температурную динамику спектров люминесценции YAB:Сг в области *R*-линий Cr³⁺. Все линии при понижении температуры сдвигаются в более высокочастотную область и сужаются. Ниже 75 К ширина и положение линий практически не меняются. Линия R₁ — самая интенсивная линия в спектре теряет в интенсивности при нагреве от 4 К до комнатной температуры. Это связано с термическим перераспределением заселённостей компонент расщеплённого уровня ${}^{2}E$. При этом интенсивность линии R_{2} при нагреве возрастает вплоть до 75 К и затем убывает, что, по всей видимости, свидетельствует об уменьшении заселённости верхней компоненты ²Е из-за перераспределения заселённостей уровней ²Е в пользу вибронных уровней. Температурная динамика у линий N и N' такая же, как у линий R_1 и R_2 соответственно.

Рис. 4. Спектры фотолюминесценции кристалла YAB: Сг в частотном диапазоне 14550–14700 сm⁻¹ при температурах 4–300 К (шкала волновых чисел изменена по сравнению с рис. 2 и 3: от больших значений к меньшим).

Линии люминесценции R_1 и R_2 начинаются с уровней, разделенных энергетическим интервалом $\Delta E = 56 \text{ cm}^{-1}$. На рис. 5, *а* показана температурная зависимость отношения LIR(T) интегральных интенсивностей линий R_2 и R_1 . Видно, что эта зависимость соответствует распределению Больцмана для интервала $\Delta E = 56 \text{ cm}^{-1}$. На рис. 5, *b* приведены абсолютная и относительная чувствительности в зависимости от температуры. Максимальная абсолютная чувствительность достигается при $T_m = \Delta E/2k = 40.3$ K, а относительная чувствительность при этой температуре $S_r(T_m)$ составляет 5% K⁻¹. Таким образом, термометр, основанный на измерении соотношения интегральных интенсивностей линий R_2 и R_1 , будет наиболее эффективен для низких температур вблизи 40 K.

Измерение более высоких температур может осуществляться с помощью регистрации ширины линии R_1 . Ширина всех линий практически не меняется в диапазоне температур 4–75 K, затем начинает заметно расти из-за увеличения вклада фононных процессов. Мы остановимся на самой интенсивной линии в спектре. На рис. 6, *а* показана температурная зависимость полуширины (полной ширины на уровне половины высоты) линии R_1 . В диапазоне температур 4–75 K ширина составляет 2.3 сm⁻¹ и практически не меняется, что обусловливает почти нулевую абсолютную чувствительность при этих температурах (рис. 6, *b*). В диапазоне температур 75–300 K ширина плавно увеличивается от

Характеристики люминесцентных термометров на основе $YAl_3(BO_3)_4{:}Cr^{3+}$

Оптический параметр	λ , nm	$\Delta E,$ cm ⁻¹	T _m , K	$S_{\rm r}(T_{\rm m}),$ % K ⁻¹
$LIR [R_2/R_1]$ $LIR [N'/N]$ $\Delta v (R_1)$	680-684	56	40.3	5
	684-686	30	21.6	9.2
	683-684	-	300	2

2.3 до 32 сm $^{-1}$. Максимальная относительная чувствительность в регистрируемом диапазоне температур не достигает пика и составляет $2\%\,K^{-1}$ при 300 K.

Расширение измеряемого диапазона в область более низких температур возможно путём измерения относительной интенсивности линий люминесценции N' и N, спектральный интервал между которыми составляет $\Delta E = 30 \text{ cm}^{-1}$. На рис. 7, a показана температурная зависимость отношения LIR(T) интегральных интенсивностей линий N' и N. Экспериментальная кривая также хорошо соответствует распределению Больцмана для интервала $\Delta E = 30 \text{ cm}^{-1}$. Из этого можно сделать вывод, что линии N и N' принадлежат одному и тому же центру Cr^{3+} . Рисунок 7, b иллюстрирует абсолютную и относительную чувствительности в зависимости от температуры. Максимальная абсолютная чувствительность достигается при $T_{\rm m} = 21.6 \text{ K}$, относительная чув-

Рис. 5. Отношение интенсивностей линий люминесценции R_2 и R_1 . Экспериментальные данные приведены красными точками. Чёрная пунктирная кривая — распределение Больцмана для $\Delta E = 56 \text{ cm}^{-1}$ (*a*). Абсолютная чувствительность S_a (оранжевая кривая *1*) и относительная чувствительность S_r (зеленая кривая 2) для $\Delta E = 56 \text{ cm}^{-1}$ (*b*).

ствительность при этой температуре составляет $S_{\rm r}(T_{\rm m})$ 9.2% K $^{-1}$.

Обобщение всех данных и исследованных характеристик потенциальных термометров на основе YAB:Cr приведены в таблице.

Заключение

Было проведено исследование кристалла YAB:Сг как материала для люминесцентной термометрии в области низких температур. В качестве способа регистрации температуры было предложено измерение параметров *R*-линий иона Cr^{3+} (переход ${}^{2}E \rightarrow {}^{4}A_{2}$). Была проведена идентификация линий люминесценции YAB:Сг в области *R*-линий. Дополнительные зарегистрированные линии *N* и *N'* были приписаны переходам ${}^{2}E \rightarrow {}^{4}A_{2}$ в центре Cr^{3+} в искажённой вследствие близости некоторого дефекта позиции. Температурные зависимости отношений интегральных интенсивностей LIR(T) линий R_{2} и R_{1} и линий

Рис. 6. Температурные зависимости полуширины Δv люминесцентной линии R_1 (14633 cm⁻¹) (*a*), абсолютной S_a (розовая кривая *I*) и относительной S_r (зеленая кривая *2*) чувствительностей при измерении $\Delta v(R_1)$ (*b*).

N' и N хорошо соответствуют распределению Больцмана $LIR(T) = Ce^{(-\Delta E/kT)}$ для $\Delta E = 56$ сm⁻¹ и $\Delta E = 30$ сm⁻¹ соответственно. На измерении этих отношений могут быть реализованы ратиометрические люминесцентные криотермометры с максимумами абсолютной чувствительности при температурах 40.3 и 21.6 К соответственно. Относительные чувствительности при этих температурах составляют 5 и 9.2% K⁻¹ соответственно. Измерение ширины самой интенсивной спектральной компоненты — линии R_1 — может быть способом регистрации температуры в диапазоне от 100 К и выше.

Финансирование работы

Работа выполнена при финансовой поддержке Российского научного фонда (грант № 19-72-10132П). М.Н.П. благодарит Министерство науки и высшего образования РФ за поддержку (проект FFUU-2022-0003 Госзадания ИСАН).

Рис. 7. Отношение интенсивностей линий люминесценции N'и N. Экспериментальные данные приведены синими точками. Чёрная пунктирная кривая — распределение Больцмана для $\Delta E = 30 \text{ cm}^{-1}$ (*a*). Абсолютная чувствительность S_a (оранжевая кривая *1*) и относительная чувствительность S_r (зеленая кривая 2) при интервале $\Delta E = 30 \text{ cm}^{-1}$ (*b*).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- K. Elzbieciak-Piecka, L. Marciniak. Sci. Rep., 12, 16364 (2022). DOI:10.1038/s41598-022-20821-4
- [2] M. Back, J. Ueda, M.G. Brik, S. Tanabe. ACS Appl. Mater. Interfaces, 12, 38325 (2020). DOI: 10.1021/acsami.0c08965
- [3] M. Back, J. Ueda, M.G. Brik, T. Lesniewski, M. Grinberg, S. Tanabe. ACS Appl. Mater. Interfaces, 10, 41512 (2018). DOI: 10.1021/acsami.8b15607
- M. Back, E. Trave, J. Ueda, S. Tanabe. Chem. Mater., 28, 8347 (2016). DOI: 10.1021/acs.chemmater.6b03625
- [5] A. Mondal, J. Manam. Ceram. Int., 46, 23972 (2020).
 DOI: 10.1016/j.ceramint.2020.06.174
- [6] M. Back, J. Ueda, H. Nambu, M. Fujita, A. Yamamoto, H. Yoshida, H. Tanaka, M.G. Brik, S. Tanabe. Adv. Opt. Mater., 9, 2100033 (2021). DOI: 10.1002/adom.202100033

- [7] X. Zhang, X. Chen, C. Zhou, J. Fan, W. Zhou, J. Luo, L. Liu, Q. Pang, P. Chen, L. Zhou. Ceram. Int., 48, 19484 (2022). DOI: 10.1016/j.ceramint.2022.03.252
- [8] J. Ueda, M. Back, M.G. Brik, Y. Zhuang, M. Grinberg, S. Tanabe. Opt. Mater., 85, 510 (2018).
 DOI: 10.1016/j.optmat.2018.09.013
- [9] D. Chen, S. Liu, Z. Wan, Z. Ji. J. Phys. Chem. C, 120, 21858 (2016). DOI: 10.1021/acs.jpcc.6b08271
- [10] Y. Zhu, C. Li, D. Deng, H. Yu, H. Li, L. Wang, C. Shen, X. Jing, S. Xu. J. Lumin., 237, 118142 (2021).
 DOI: 10.1016/j.jlumin.2021.118142
- [11] L. Marciniak, A. Bednarkiewicz. Sens. Actuators B Chem., 243, 388 (2017). DOI: 10.1016/j.snb.2016.12.006
- [12] A. Ćirić, S. Stojadinović, Z. Ristić, Ž. Antić, M.D. Dramićanin. Sens. Actuators Phys., **331**, 112987 (2021).
 DOI: 10.1016/j.sna.2021.112987
- [13] V. Mykhaylyk, H. Kraus, Y. Zhydachevskyy, V. Tsiumra, A. Luchechko, A. Wagner, A. Suchocki. Sensors, 20, 5259 (2020). DOI: 10.3390/s20185259
- [14] B. Zhu, N. Li, S. Ren, Y. Liu, D. Zhang, Q. Wang, Q. Shi, Q. Wang, S. Li, B. Zhang, W. Wang, C. Liu. Spectrochim. Acta. A: Mol. Biomol. Spectrosc., 264, 120321 (2022). DOI: 10.1016/j.saa.2021.120321
- [15] M. Back, J. Ueda, J. Xu, K. Asami, M. G. Brik, S. Tanabe. Adv. Opt. Mater., 8, 2000124 (2020).
 DOI: 10.1002/adom.202000124
- [16] M. Suta, A. Meijerink. Adv. Theory Simul., 3, 2000176 (2020). DOI: 10.1002/adts.202000176
- [17] N.I. Leonyuk, L.I. Leonyuk. Prog. Cryst. Growth Charact. Mater., 31, 179 (1995). DOI: 10.1016/0960-8974(96)83730-2
- [18] R.D. Shannon. Acta Crystallogr. Sect. A, 32, 751 (1976).
 DOI: 10.1107/S0567739476001551
- [19] J.-P.R. Wells, M. Yamaga, T.P.J. Han, M. Honda. J. Phys. Condens. Matter., 15, 539 (2003).
 DOI: 10.1088/0953-8984/15/3/318
- [20] G. Wang, H.G. Gallagher, T.P.J. Han, B. Henderson. J. Cryst. Growth, 153, 169 (1995).
- DOI: 10.1016/0022-0248(95)00157-3
 [21] G. Wang, H.G. Gallagher, T.P.J. Han, B. Henderson. Radiat. Eff. Defects Solids, 136, 43 (1995).
- DOI: 10.1080/10420159508218789
 [22] G. Dominiak-Dzik, W. Ryba-Romanowski, M. Grinberg, E. Beregi, L. Kovacs. J. Phys. Condens. Matter., 14, 5229 (2002). DOI: 10.1088/0953-8984/14/20/318
- [23] A. Molchanova, K. Boldyrev, N. Kuzmin, A. Veligzhanin, K. Khaydukov, E. Khaydukov, O. Kondratev, I. Gudim, E. Mikliaeva, M. Popova. Materials, 16, 537 (2023). DOI: 10.3390/ma16020537
- [24] G.F. Imbusch. Phys. Rev., 153, 326 (1967).DOI: 10.1103/PhysRev.153.326
- [25] S.P. Jamison, G.F. Imbusch. J. Lumin., 75, 143 (1997).
 DOI: 10.1016/S0022-2313(97)00117-8
- [26] B. Malysa, A. Meijerink, T. Jüstel. J. Lumin., 171, 246 (2016).
 DOI: 10.1016/j.jlumin.2015.10.042
- [27] W. Mikenda, A. Preisinger. J. Lumin., 26, 53 (1981).
 DOI: 10.1016/0022-2313(81)90169-1
- [28] P. Kisliuk, W.F. Krupke. J. Appl. Phys., 36, 1025 (1965).
 DOI: 10.1063/1.1714084