
Physics of the Solid State, 2024, Vol. 66, No. 4

01,14

Fourth-Order Elastic Moduli for Polycrystal: Isotropic Aggregate

of Hexagonal Single Crystals

© O.M. Krasilnikov, Yu.Kh. Vekilov

National University of Science and Technology MISiS,

Moscow, Russia

E-mail: omkras@mail.ru

Received March 18, 2024

Revised March 18, 2024

Accepted March 19, 2024

The investigation of non-linear elasticity of solids is performed. The Gibbs free energy of a polycrystalline solid at

given pressure P and temperature T is decomposed over the invariants of the Lagrange finite deformations tensor,

including fourth-order contributions of deformation components. Based on this, we define the fourth-order elastic

moduli for polycrystal (fourth-order Lamé coefficients) under arbitrary pressure (the corresponding coefficients

of the second and third order are well known). The linear invariants of the fourth-order elastic constants tensor

are used to obtain the relations that define the fourth-order Lamé coefficients through the fourth-order elastic

constants of single crystal grains with hexagonal symmetry, which form a polycrystal. The data for the second,

third, and fourth-order Lamé coefficients for magnesium and erbium are obtained using the available data for the

corresponding order elastic constants of single crystals.
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1. Introduction

Higher-order elastic constants play an important role

in solid state physics. The higher-order elastic constants

represent anharmonic effects from an atomic point of

view, in the language of lattice dynamics. They can be

used to calculate the derivative frequencies of phonons

by deformation (Grüneisen parameters) and the scattering

cross sections of these phonons. First of all, this concerns

elastic constants of the third and fourth order (TOEC and

FOEC, respectively).
On the other hand, TOEC and FOEC determine the

nonlinear response of a solid to a finite deformation,

the dependence of the speed of sound on the applied

load [1,2], the distortion of the shape of an ultrasonic wave

of finite amplitude during its propagation in a solid and

the amplitudes of the second and third harmonics [3–6],
also allow evaluating the ideal strength and ductility of

metals [7]. They are important for understanding the

patterns of wave propagation in materials under very high

pressure, when the pressure becomes comparable to elastic

constants. An example is the thermoelastic properties of the

Earth’s interior [8,9].
Polycrystalline materials are important from a practical

point of view. The most convenient way to describe the

elastic properties of these materials is to use an isotropic

media model. Elastic moduli of a polycrystal (Laḿe

coefficients) can be obtained by averaging elastic constants

of various orders of a single crystal over all orientations

of single crystal grains [10–13]. The relations between the

second-order Lamé coefficients (SOLC), third-order Lamé

coefficients (TOLC) and elastic constants of a single crystal

at normal pressure are given in [11–15]. A generalization

of these relations for a polycrystal at arbitrary hydrostatic

pressure P is given in [16]. The relations between the

fourth-order Lamé coefficients (FOLC) and FOEC of a

single crystal with a cubic lattice at arbitrary pressure are

obtained in [17].

These relations allow modeling the nonlinear elastic

properties of polycrystals ab initio, since density functional

theory (DFT) allows calculating the elastic constants of the

highest order of a single crystal at arbitrary pressure [18–20].
We can determine the nonlinear elastic modulus of a

polycrystal at a given P using the relations between the

Lamé coefficients and higher-order elastic constants, which

are important for understanding the structural behavior and

physical properties of materials under load.

We consider in this paper the case when the monocrys-

talline grains forming a polycrystal have a hexagonal

structure, since this structure, together with the cubic one,

is characteristic of metals. The relations between FOLC

and FOEC of a hexagonal crystal, which are important for

technical applications, are given. The Lamé coefficients

of the second, third and fourth orders of polycrystalline

magnesium and erbium are calculated as an example.

2. Basic definitions and ratios

Let’s consider a preloaded single crystal. We select the

equilibrium state at temperature T and pressure P as the

initial state. Given P and T , the state of the system is

described by the Gibbs free energy G. Let the single

crystal undergo a small but finite deformation described by
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the Lagrange tensor with components ηi j . The isothermal

effective elastic constants of the second and higher order of

a preloaded crystal are determined by the ratio [18]:

C i jkl... =
1

V0

(

∂nG
∂ηi j∂ηkl...

)

T

, n ≥ 2, (1)

where V0 — the volume in the initial state. Elastic

constants (1) directly enter into the relations connecting the

Cauchy stress tensor (true stresses) with the components

ηi j [21]. When P = 0 the ratio (1) coincides with the

standard definition of elastic constants of the n-the order

of the unloaded crystal [22].
The value G for a deformed isotropic body given P and

T is invariant with respect to rotations and displacements of

the body as a whole, and does not depend on the choice of

coordinate system. Therefore, the Gibbs free energy shall

be a function of the invariants of the strain tensor. The

strain tensor has three main invariants of the first, second

and third degree in the components ηi j [1]:

I1 = tr(η) = η11 + η22 + η33, (2a)

I2 =
1

2

[

(trη)2 − trη2
]

= (η11η22 − η212) + (η11η33 − η213)

+ (η22η33 − η223),
(2b)

I3 = det η

= η11η22η33 + 2η23η13η12 − η11η
2
23 − η22η

2
13 − η33η

2
12.

(2c)
Together with the main invariants, their combinations can

be used:

Ī1 = I1, Ī2 = trη2 = I21 − 2I2,

Ī3 = trη3 = 3I3 + I31 − 3I1I2. (3)

Let’s decompose G near the equilibrium state according

to the invariants of the strain tensor, including fourth-

order contributions by components ηi j . The coefficients

of this decomposition are the Lamé coefficients of the

corresponding order. The Gibbs free energy has a minimum

in the equilibrium state, therefore ∂G/∂I1|0 = 0, and the

decomposition begins with a quadratic contribution over de-

formation. Two quadratic scalars (I21, I2), three cubic ones

(I31, I1I2, I3) and four fourth order scalars (I41, I21I2, I1I3, I22)
can be created from the main invariants (2). The same is

possible for the invariants Ī1, Ī2, Ī3.
The decomposition of the energy of a deformed isotropic

solid, taking into account third-order contributions, has been

considered in a number of papers [1,4,10,23–25]. Various

definitions of TOLC have been used, which is related to

the decomposition of invariants (2) or (3). Here are the

three most well-known definitions: Murnaghan (l, m, n —
decomposition by invariants (2)); Toupin and Bernstein

(ν1, ν2 and ν3 invariant decomposition (3)); Landau and

Lifshitz (A, B and C — invariant decomposition (3)). The
definition of TOLC by Toupin and Bernstein is more con-

venient (νi coincide with the independent elastic constants

of an isotropic solid), therefore we will give ratios linking

them with other definitions of TOLC [24,25]:

ν1 = 2(l − m) + n = 2C

ν2 = m − 1/2 n = B

ν3 = n/4 = A/4



















. (4)

The expression for the Gibbs free energy for the given

P and T per unit volume V0 in the initial state, taking into

account the fourth-order contribution of ηi j , is represented

as follows

1G
V0

=
λ + 2µ

2
I21 − 2µI2 +

ν1 + 6ν2 + 8ν3

6
I31

− 2(ν2 + 2ν3)I1I2 + 4ν3I3 +
1

24
ξ1I41

−

(

ξ1−ξ2

8
+
ξ4

3

)

I21I2+

(

ξ1−ξ2

8
+

ξ4

3
−ξ3

)

I1I3+
2

3
ξ4I22,

(5)
where 1G = G(P, T, η) − G(P, T, 0), λ and µ — SOLC,

νi — TOLC, ξi — FOLC.

With this determination of the Lamé coefficients, they

coincide with the elastic constants of an isotropic solid. For

the second and third order [11,24]

λ = C∗

12, µ = C∗

44, ν1 = C∗

123, ν2 = C∗

144, ν3 = C∗

456. (6)

For the fourth order [17]

ξ1 = C∗

1111, ξ2 = C∗

1122, ξ3 = C∗

1144, ξ4 = C∗

4444. (7)

The elastic constants of an isotropic solid are given here

in the Vogt notation (11 — 1, 22 — 2, 33 — 3, 23 — 4,

13 — 5, 12 — 6).
The decomposition of the elastic strain energy, including

the fourth-order contribution (η4), is given in [6,26,27],
where sound propagation in nonlinear isotropic solids was

considered, and in [28,29] for estimating fourth-order shear

modulus in metallic glasses. The invariants determined by

equations (3) were used in this case. In the first case, FOLC

were designated as E, F, G, H , in the second case they were

designated as γ1, γ2, γ3, γ4. We present the relations linking

these FOLC with the parameters ξ1, ξ2, ξ3, ξ4, which are

used in this paper

H =
1

24
γ1 =

1

6

( ξ2

4
− ξ3 +

ξ4

3

)

F =
1

2
γ2 =

1

2

(

ξ3 −
2

3
ξ4

)

E =
4

3
γ3 =

1

3

(ξ1 − ξ2

8
− ξ3 +

ξ4

3

)

G =
1

2
γ4 =

1

6
ξ4























































. (8)

It can be seen that the Lamé coefficients defined in these

paper are expressed in terms of combinations of elastic
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constants of an isotropic body, which is not convenient for

practical application.

A polycrystal can be considered as an isotropic aggregate

of monocrystalline grains. The grains are arbitrarily

oriented, their sizes are infinitely small compared to the

size of the sample, but large enough to have volume-elastic

properties. The Vogt averaging method [12,13] is used

to calculate the elastic constants of an isotropic material

(Lamé coefficients). Following Vogt, we believe that all

monocrystalline grains in a polycrystal are in the same

deformed state, so the elastic constants of such a material

are equal to the tensor of elastic constants averaged in all

directions

CV
i jkl... = (C i jkl...)Av . (9)

This procedure is usually called
”
homogenization“.

3. Calculation method and details

It is convenient to use the method of linear invariants

of the tensor of elastic constants used in [12,14,30,31] for

calculation of
”
the homogenized“ values (9) in calculating

the Vogt averages for TOEC. The relations between ξi and

FOEC for random grain orientation can be obtained from

the condition of equality of linear invariants of two tensors

representing a single crystal and a polycrystal.

The derivation of linear invariants of FOEC for a

hexagonal crystal is given in the Appendix. Expressions

for linear invariants of an isotropic body are given in [17]
(formulas (19))

Lis
1 = 3(3ξ1 + 24ξ2 − 24ξ3 − 16ξ4)

Lis
2 = 6ξ1 + 3ξ2 + 12ξ3 + 28ξ4

Lis
3 = (33ξ1 − 21ξ2 − 24ξ3 + 64ξ4)/4

Lis
4 = 3(57ξ1 − 9ξ2 + 24ξ3 − 104ξ4)/16



































. (10)

Let’s find the relations determining the Lamé coefficients

of the fourth order through the FOEC of a hexagonal crystal

from the resulting system of equations by equating the

corresponding invariants (10) and (A3a)−(A3d) from the

Appendix

ξ1 =
1

315

(

64C1111 + 64C2222 + 35C3333 + 128C4444

+ 32C1113 + 48C1133 + 192C1155 + 40C1333

+ 384C1355 + 32C2223 + 192C2244 + 240C3344

)

,

(11a)

ξ2 =
1

105

(

C1111 + C2222 + C3333 +
64

3
C4444 −

8

3
C6666

+ 22C1122 + 16C1113 + 24C1123 + 40C1133 + 48C1144

+ 8C1333 + 16C1344 − 48C1355 − 8C2223 − 16C2244

− 8C3366 + 32C4466

)

, (11b)

ξ3 =
1

315

(

0.5C1111 + 0.5C2222 + C3333 + 32C4444

+ 16C6666 + 15C1122 − 14C1113 − 39C1123 + 9C1133

+ 2C1333 + 132C1144 + 72C1155 − 72C1355 + 72C1344

+ 25C2223 − 84C2244 + 6C3344 + 69C3366 − 24C4466

)

,

(11c)

ξ4 =
1

105

(7

8
C1111 +

7

8
C2222 + C3333 + 24C4444 + 23C6666

− 0.75C1122 + 6C1133 − 2C1113 + 6C1144 − 24C1155

+ 3C1123 − 4C1333 − 12C1344 − 12C1355 − 5C2223

+ 30C2244 + 12C3344 + 6C3366 + 60C4466

)

. (11d)

4. Numerical results and discussion

The choice of materials with a hexagonal structure with

a known complete set of FOEC is very limited. We analyze

the homogenized moduli of the second, third and fourth

order (Lamé coefficients) of magnesium and erbium with a

random orientation of grains having a hexagonal structure

with known necessary elastic constants. Data on elastic

constants of the second-fourth order Mg and Er are given

in [34]. The values of SOEC and TOEC were determined

experimentally (normal pressure, room temperature). The

complete set of FOEC is obtained from the analysis of data

on elastic constants of the second and third order. The va-

lues of the elastic constants C2222,C2244,C3366,C4466,C6666,

which are not provided in [34], are found from the ratios

between the FOEC of the hexagonal crystal (see [33]).
The ratios for calculating the second and third order Lamé

coefficients are given in [16] (formulas (24)−(28)), the

formulas (11a)−(11d) are used for calculating the fourth

order Lamé coefficients.

The results of our calculations using data of elastic

constants Mg and Er are listed in Table 1.

The Lamé coefficients of the third order have mostly neg-

ative values, the Lamé coefficients of the fourth order have

mostly positive values.

Table 1. The results of calculations of the Lamé coefficients

Metal λ µ ν1 ν2 ν3 ξ1 ξ2 ξ3 ξ4

Mg 23.7 17.4 −35.2 −20.2 −61 7665 861 311 659

Er 25.8 28.3 368 −253 102 6480 742 271 556

No t e. All values are given in GPa (P = 0, T = 300K).

Table 2. Values C∗

11,C∗

111 and C∗

1111 (GPa)

Metal C∗

11 = λ + 2µ C∗

111 = ν1 + 6ν2 + 8ν3 C∗

1111 = ξ1

Mg 58.5 −644 7665

Er 82.4 −334 6480
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The values of C∗

11,C∗

111 and C∗

1111 are listed in Table 2

for the analysis of the changes of the elastic constants of the

second-fourth order of an isotropic solid.

It can be seen that during the transition from the second

to the fourth order, the elastic constant modulus increases

about an order of magnitude with each transition.

5. Conclusion

The determination of the fourth-order elastic modulus

of polycrystals (fourth-order Lamé coefficients) at arbitrary

pressure and temperature is given by decomposing the

Gibbs free energy by invariants of the Lagrange finite strain

tensor. The case of a polycrystal with arbitrarily oriented

grains of hexagonal symmetry is considered. The relations

determining the Lamé coefficients of the fourth order of

such a polycrystal through the elastic constants of the

fourth order of monocrystalline grains are obtained. The

Lamé coefficients of the second, third and fourth orders of

polycrystalline magnesium and erbium are calculated using

available data on the elastic constants of single crystals of

these materials.
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Appendix

Linear invariants of the FOEC tensor of a hexagonal

crystal.

The components of the eighth-rank tensor are trans-

formed according to the following law in case of transition

from one orthonormal basis to another [32]:

C′

i jklmnop = a iqa jr aksa ltamuanvaowa pxCqrstuvwx , (A1)

where a iq,... — the guiding cosines between the coordinate

axes. The FOEC tensor has four linear invariants that do not

change with any orthogonal transformation of the vector

basis. The rotation matrices in equation (A1) should be

taken in pairs to obtain these invariants and their indices

should be changed so that the product of each of these

pairs becomes δ-Kronecker function (δi j = 1 if i = j , and 0

if i 6= j) [32].
For example, if i = j , k = l, m = n and o = p is selected,

the following is obtained

L1 = C′

iikkmmpp

= (a iqa ir)(aks akt)(amuamv)(a pwa px)Cqrstuvwx

= δqrδstδuvδwxCqrstuvwx . (A2a)

We get the second invariant taking i = m, j = n, k = o and

l = p:

L2 = C′

i jkli jkl = δquδrvδswδtxCqrstuvwx . (A2b)

Then, putting i = k, j = m, l = o, n = p, we find

L3 = C′

i jil jnln = δqsδruδtwδvxCqrstuvwx , (A2c)

and for i = l, j = n, k = m, o = p

L4 = C′

i jkik joo = δqtδrvδsuδwxCqrstuvwx . (A2d)

The repeated indexes are summed from 1 to 3 as usual.

For the case of hexagonal symmetry (Laue group HI :
point groups 6̄2m, 6mm, 622, 6

m
2
m

2
m , 19 independent

FOEC [33]) expressions for linear invariants (equa-
tions (A2))have the following form

LH
1 = 2(C1111 + C2222) + C3333 + 12C1122 + 16C1113

+ 24C1133+24C1123+8C1333−8C2223−24C3366−16C6666,

(A3a)

LH
2 = 1.5(C1111 + C2222) + C3333 +

32

3
C4444 +

20

3
C6666

+ C1122 + 4C1133 + 8C1144 + 8C2244

+ 4C3366 + 8C3344 + 16C4466, (A3b)

LH
3 =

7

4
(C1111 + C2222) + C3333 +

16

3
C4444 +

10

3
C6666

− 1.5C1122 − 4C1144 + 12C2244 − 4C1344

+ 12C1355 + 8C3344 + 8C4466, (A3c)

LH
4 = 2(C1111 + C2222) + C3333 − 4C6666 + C1113

− 1.5C1123 + 2C1333 + 12C1155 + 3C1344

+ 15C1355 + 2.5C2223 + 6C3344 − 12C4466. (A3d)

Here Cαβγδ — isothermal elastic constants of the fourth

order with given P and T in the Vogt notation.
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