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The investigation of non-linear elasticity of solids is performed. The Gibbs free energy of a polycrystalline solid at
given pressure P and temperature T is decomposed over the invariants of the Lagrange finite deformations tensor,
including fourth-order contributions of deformation components. Based on this, we define the fourth-order elastic
moduli for polycrystal (fourth-order Lamé coefficients) under arbitrary pressure (the corresponding coefficients
of the second and third order are well known). The linear invariants of the fourth-order elastic constants tensor
are used to obtain the relations that define the fourth-order Lamé coefficients through the fourth-order elastic
constants of single crystal grains with hexagonal symmetry, which form a polycrystal. The data for the second,
third, and fourth-order Lamé coefficients for magnesium and erbium are obtained using the available data for the

corresponding order elastic constants of single crystals.
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1. Introduction

Higher-order elastic constants play an important role
in solid state physics. The higher-order elastic constants
represent anharmonic effects from an atomic point of
view, in the language of lattice dynamics. They can be
used to calculate the derivative frequencies of phonons
by deformation (Griineisen parameters) and the scattering
cross sections of these phonons. First of all, this concerns
elastic constants of the third and fourth order (TOEC and
FOEC, respectively).

On the other hand, TOEC and FOEC determine the
nonlinear response of a solid to a finite deformation,
the dependence of the speed of sound on the applied
load [1,2], the distortion of the shape of an ultrasonic wave
of finite amplitude during its propagation in a solid and
the amplitudes of the second and third harmonics [3-6],
also allow evaluating the ideal strength and ductility of
metals [7]. They are important for understanding the
patterns of wave propagation in materials under very high
pressure, when the pressure becomes comparable to elastic
constants. An example is the thermoelastic properties of the
Earth’s interior [8,9].

Polycrystalline materials are important from a practical
point of view. The most convenient way to describe the
elastic properties of these materials is to use an isotropic
media model.  Elastic moduli of a polycrystal (Larhe
coefficients) can be obtained by averaging elastic constants
of various orders of a single crystal over all orientations
of single crystal grains [10-13]. The relations between the
second-order Lamé coefficients (SOLC), third-order Lamé
coefficients (TOLC) and elastic constants of a single crystal
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at normal pressure are given in [11-15]. A generalization
of these relations for a polycrystal at arbitrary hydrostatic
pressure P is given in [16]. The relations between the
fourth-order Lamé coefficients (FOLC) and FOEC of a
single crystal with a cubic lattice at arbitrary pressure are
obtained in [17].

These relations allow modeling the nonlinear elastic
properties of polycrystals ab initio, since density functional
theory (DFT) allows calculating the elastic constants of the
highest order of a single crystal at arbitrary pressure [18-20].
We can determine the nonlinear elastic modulus of a
polycrystal at a given P using the relations between the
Lamé coefficients and higher-order elastic constants, which
are important for understanding the structural behavior and
physical properties of materials under load.

We consider in this paper the case when the monocrys-
talline grains forming a polycrystal have a hexagonal
structure, since this structure, together with the cubic one,
is characteristic of metals. The relations between FOLC
and FOEC of a hexagonal crystal, which are important for
technical applications, are given. The Lamé coefficients
of the second, third and fourth orders of polycrystalline
magnesium and erbium are calculated as an example.

2. Basic definitions and ratios

Let’s consider a preloaded single crystal. We select the
equilibrium state at temperature 7 and pressure P as the
initial state. Given P and T, the state of the system is
described by the Gibbs free energy G. Let the single
crystal undergo a small but finite deformation described by
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the Lagrange tensor with components 7;;. The isothermal
effective elastic constants of the second and higher order of
a preloaded crystal are determined by the ratio [18]:

1 "G
Cirt... =5 |lg7m=——) , n>2, 1
o Vo <3ﬂij377k1...)T L
where Vy — the volume in the initial state. Elastic

constants (1) directly enter into the relations connecting the
Cauchy stress tensor (true stresses) with the components
nij [21]. When P =0 the ratio (1) coincides with the
standard definition of elastic constants of the n-the order
of the unloaded crystal [22].

The value G for a deformed isotropic body given P and
T is invariant with respect to rotations and displacements of
the body as a whole, and does not depend on the choice of
coordinate system. Therefore, the Gibbs free energy shall
be a function of the invariants of the strain tensor. The
strain tensor has three main invariants of the first, second
and third degree in the components 7;; [1]:

Iy = tr(n) = nu + N2 + 3, (2a)
1
I, = 3 [(trn)2 - trrﬂ = (Ninxn — Tlfz) + (nums — 77%3)
+ (m2n33 — ’753)’
(2b)
I3 = detn

= MuiM2an33 + 202311302 — MMy — N2Nis — M33nia-
(2¢)
Together with the main invariants, their combinations can
be used:
1_1211, I_zztI'T[ZZI%—zlz,

1_3:t1'7’[3:313 +I%—311]2. (3)

Let’s decompose G near the equilibrium state according
to the invariants of the strain tensor, including fourth-
order contributions by components 7;;. The coefficients
of this decomposition are the Lamé coefficients of the
corresponding order. The Gibbs free energy has a minimum
in the equilibrium state, therefore dG/dI;|p = 0, and the
decomposition begins with a quadratic contribution over de-
formation. Two quadratic scalars (13, I,), three cubic ones
(I3, 111, I5) and four fourth order scalars (I, I312, 1113, 13)
can be created from the main invariants (2). The same is
possible for the invariants I, I, I.

The decomposition of the energy of a deformed isotropic
solid, taking into account third-order contributions, has been
considered in a number of papers [1,4,10,23-25]. Various
definitions of TOLC have been used, which is related to
the decomposition of invariants (2) or (3). Here are the
three most well-known definitions: Murnaghan (I, m,n —
decomposition by invariants (2)); Toupin and Bernstein
(v1,v2 and v; invariant decomposition (3)); Landau and
Lifshitz (A, B and C — invariant decomposition (3)). The
definition of TOLC by Toupin and Bernstein is more con-
venient (v; coincide with the independent elastic constants

of an isotropic solid), therefore we will give ratios linking
them with other definitions of TOLC [24,25]:

vi=2(l-m)+n=2C
v,=m—1/2n=8B : (4)
Vs =n/d=A/4

The expression for the Gibbs free energy for the given
P and T per unit volume Vj in the initial state, taking into
account the fourth-order contribution of 7;;, is represented
as follows

AG  A+2u
Vo @ 2

V1 + 6v) + 8vs
A oun, ¢ WO B

1
—2(va +2u3) 11 + 43l + 24 éll?

_ (51;$2+$?4>I%12+<$1;$2 n é_;_

2
53)1113+§£41§,
(5)
where AG = G(P,T,n) — G(P,T,0), 2 and u — SOLC,
v; — TOLC, & — FOLC.
With this determination of the Lamé coefficients, they

coincide with the elastic constants of an isotropic solid. For
the second and third order [11,24]

A =Clyu =Chy,v1 = Clp, 12 = Clyq, V3 =Ciss. (6)
For the fourth order [17]

& = CT111, & = Clez, & = CT144’ &= CZ444- (7)

The elastic constants of an isotropic solid are given here
in the Vogt notation (11 — 1, 22 — 2, 33 — 3, 23 — 4,
13 — 5,12 —6).

The decomposition of the elastic strain energy, including
the fourth-order contribution (n*), is given in [6,26,27),
where sound propagation in nonlinear isotropic solids was
considered, and in [28,29] for estimating fourth-order shear
modulus in metallic glasses. The invariants determined by
equations (3) were used in this case. In the first case, FOLC
were designated as E, F, G, H, in the second case they were
designated as y1, y2, ¥3, ya. We present the relations linking
these FOLC with the parameters &;, &, &3, &, which are
used in this paper

Feapm=g (6 28)
1

_4 s -& &

E=gn=3(*57-6+3)
1 1

G=5r=rca

It can be seen that the Lamé coefficients defined in these
paper are expressed in terms of combinations of elastic
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constants of an isotropic body, which is not convenient for
practical application.

A polycrystal can be considered as an isotropic aggregate
of monocrystalline grains.  The grains are arbitrarily
oriented, their sizes are infinitely small compared to the
size of the sample, but large enough to have volume-elastic
properties. The Vogt averaging method [12,13] is used
to calculate the elastic constants of an isotropic material
(Lamé coefficients). Following Vogt, we believe that all
monocrystalline grains in a polycrystal are in the same
deformed state, so the elastic constants of such a material
are equal to the tensor of elastic constants averaged in all
directions

Clini.. = (Cijur.)av- 9)
This procedure is usually called ,,homogenization®.

3. Calculation method and details

It is convenient to use the method of linear invariants
of the tensor of elastic constants used in [12,14,30,31] for
calculation of ,the homogenized values (9) in calculating
the Vogt averages for TOEC. The relations between &; and
FOEC for random grain orientation can be obtained from
the condition of equality of linear invariants of two tensors
representing a single crystal and a polycrystal.

The derivation of linear invariants of FOEC for a
hexagonal crystal is given in the Appendix. Expressions
for linear invariants of an isotropic body are given in [17]
(formulas (19))

LS = 3(3&) + 24& — 24& — 16&;)

L5 = 681 + 38 + 1245 + 284 »
10
Ly = (338 — 21& — 24 + 644,) /4

i =3(57& — 9& + 244 — 10444)/16

Let’s find the relations determining the Lamé coefficients
of the fourth order through the FOEC of a hexagonal crystal
from the resulting system of equations by equating the
corresponding invariants (10) and (A3a)—(A3d) from the
Appendix

1
&1 = 315 (64C1111 + 64C220 + 35C3333 + 128C 4444
+32C1113 + 48C1133 + 192C1155 + 40C 1333

+ 384C 1355 + 32C 2223 + 192C 44 + 240c3344),
(11a)

1 64 8
- (c c c 2 Cagaa — 2 C
& 105( 111 + Caop + Cz333 + 3 Caaaa — 3 Coseo

4+ 22C1122 + 16C 1113 + 24C 1123 + 40C 1133 + 48C 1144
+ 8C1333 + 16C 1344 — 48C 1355 — 8C2223 — 16C2244

— 8C3366 + 32C4466)’ (11b)
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1
- 315

+ 16Ce666 + 15C1122 — 14C 1113 — 39C 1123 + 9C 1133

& (0-5C1111 +0.5C2220 + C3333 + 32C 4444

+ 2C1333 + 132C 1144 + 72C 1155 — T2C1355 + T2C 1344

+ 25C2223 — 84C 2044 + 6C3344 + 69C 3366 — 24C4466)a

(11c)
£ = L (ZC L Coms + Crans + 24C s + 23C
4= 105 \g S + g € 3333 4444 6666
—0.75C1122 + 6C1133 — 2C1113 + 6C 1144 — 24C 1155
+3C1123 —4C 1333 — 12C1344 — 12C1355 — 5C2223
+ 30C 2244 + 12C3344 + 6C3366 + 60C4466). (11d)

4. Numerical results and discussion

The choice of materials with a hexagonal structure with
a known complete set of FOEC is very limited. We analyze
the homogenized moduli of the second, third and fourth
order (Lamé coefficients) of magnesium and erbium with a
random orientation of grains having a hexagonal structure
with known necessary elastic constants. Data on elastic
constants of the second-fourth order Mg and Er are given
in [34]. The values of SOEC and TOEC were determined
experimentally (normal pressure, room temperature). The
complete set of FOEC is obtained from the analysis of data
on elastic constants of the second and third order. The va-
lues of the elastic constants C»222, C2244, C3366, Ca466> Ce6665
which are not provided in [34], are found from the ratios
between the FOEC of the hexagonal crystal (see [33]).
The ratios for calculating the second and third order Lamé
coefficients are given in [16] (formulas (24)—(28)), the
formulas (11a)—(11d) are used for calculating the fourth
order Lamé coefficients.

The results of our calculations using data of elastic
constants Mg and Er are listed in Table 1.

The Lamé coefficients of the third order have mostly neg-
ative values, the Lamé coeflicients of the fourth order have
mostly positive values.

Table 1. The results of calculations of the Lamé coefficients

Metal | 2 | u Vi v | v | & | & | & | &

Mg |23.7|174|—-352|—-202|—61 7665|861 311|659
Er |258]283| 368 | —253 | 102 | 6480|742 | 271|556

Note. All values are given in GPa (P =0, T = 300K).

Table 2. Values Cj;, C7; and C7;; (GPa)

Metal | C;, =2+4+2u | Cijp =vi +6v2+8vs | Clyyy =&
Mg 58.5 —644 7665
Er 82.4 —334 6480
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The values of Cj, C};; and C7,,; are listed in Table 2
for the analysis of the changes of the elastic constants of the
second-fourth order of an isotropic solid.

It can be seen that during the transition from the second
to the fourth order, the elastic constant modulus increases
about an order of magnitude with each transition.

5. Conclusion

The determination of the fourth-order elastic modulus
of polycrystals (fourth-order Lamé coefficients) at arbitrary
pressure and temperature is given by decomposing the
Gibbs free energy by invariants of the Lagrange finite strain
tensor. The case of a polycrystal with arbitrarily oriented
grains of hexagonal symmetry is considered. The relations
determining the Lamé coefficients of the fourth order of
such a polycrystal through the elastic constants of the
fourth order of monocrystalline grains are obtained. The
Lamé coefficients of the second, third and fourth orders of
polycrystalline magnesium and erbium are calculated using
available data on the elastic constants of single crystals of
these materials.
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Appendix

Linear invariants of the FOEC tensor of a hexagonal
crystal.

The components of the eighth-rank tensor are trans-
formed according to the following law in case of transition
from one orthonormal basis to another [32]:
l/'jklmn()p = aiqajrakxaltamuanvaowapxcqmtuvwxa (Al)
where a,,,... — the guiding cosines between the coordinate
axes. The FOEC tensor has four linear invariants that do not
change with any orthogonal transformation of the vector
basis. The rotation matrices in equation (Al) should be
taken in pairs to obtain these invariants and their indices
should be changed so that the product of each of these
pairs becomes §-Kronecker function (§;; = 1 ifi = j, and 0
ifi # j) [32].

For example, if i = j, k =1, m = n and o = p is selected,
the following is obtained

o
Ll - Ciikkmmpp

- (ai air)(aksakt)(amuamv)(a wd )X)C rstuvwx
q P P q

== Sqrdvtauvawx qustuvwx . (Aza)

We get the second invariant taking i = m, j = n, k = o and
l=p:

L2 = Cz/'jklijkl = 5qu5rv5xw5txcqmmvwx- (Azb)
Then, putting i =k, j =m,l = o0, n = p, we find

Ly = Cz/‘jiljnln = 845 6rubrwSux C grstuvwx s (A2c)
andfori=1[,j=nk=mo=p

L4 = Cll'jkjkjgo = q1‘6rv65u§wxcqrstuvwx- (AZd)

The repeated indexes are summed from 1 to 3 as usual.

For the case of hexagonal symmetry (Laue group HI:
point groups 62m, 6mm, 622, &2 2 19independent
FOEC [33]) expressions for linear invariants (equa-
tions (A2))have the following form

L = 2(Ci111 + Cap2) + Ci333 + 12C 1122 + 16C1113

+ 24C1133+24C 1123+ 8C 1333 —8C 2223 — 24C 3366 — 16Cl666 »

(A3a)
32 20
LY = 1.5(C1111 + C2) + C3333 + ?C4444 + ?Cssss
+ Ci122 +4C 1133 + 8C1144 + 8C2044
+ 4C3366 + 8C3344 + 16C 4466, (A3b)

7 16 10
LY = 2 (Cr111 + Caam) + C3333 + 3 Cagas + 3 Cee66

— 1.5C 11220 — 4C 1144 + 12C2044 — 4C 1344

4 12C 1355 + 8C3344 + 8C 4466, (A3c)
LY = 2(Cy111 + C2222) + C3333 — 4Co666 + C1113
— 1.5C1123 + 2C1333 + 12C1155 + 3C1344
+ 15C 355 + 2.5C203 + 6C3344 — 12Casg6.  (A3d)

Here Copys — isothermal elastic constants of the fourth
order with given P and T in the Vogt notation.
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