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Propagation of unipolar impulsive disturbances in crystalline solids
with Granato—Lucke dislocation hysteresis
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A theoretical study of the nonlinear propagation of unipolar pulse perturbations in crystalline solids with
dislocation hysteresis of Granato—Lucke is carried out. An exact analytical solution has been obtained describing the
propagation and evolution of the initial disturbance — the half-period of a sinusoidal oscillation in such medium.
The dependences of the parameters of the disturbance in the medium, namely, the amplitude and duration on
its initial amplitude and the distance traveled, are determined. Numerical and graphical analysis of the obtained

solution is carried out.
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1. Introduction

The theory of wave processes in ideal (without dis-
sipation) homogeneous media with power (quadratic or
cubic) elastic nonlinearity is developed to a fairly complete
extent [1-4]. When unipolar pulse perturbations propagate
in such media, they are subjected to a nonlinear distortion.
At first, the perturbation front is twisted (front or rear, —
depending on the sign of the nonlinearity parameter of the
medium), and then an ambiguity or ,overlap“ is formed
in its profile. Due to the physical unrealizability of the
woverlap®, a gap — shock front is artificially introduced
into the perturbation profile. As a result, the shape of the
perturbation in the medium becomes sawtoothed, while its
duration increases, and the amplitude and energy decrease
(due to nonlinear discontinuity losses), but the amount of
movement of the perturbation remains.

The studies of amplitude-dependent internal friction
(ADIF) in crystalline solids (metals, alloys and rocks)
containing dislocations indicate that such materials are
characterized by hysteresis nonlinearity that significantly
exceeds the weak elastic nonlinearity of homogeneous
media (without defects). The patterns of wave processes in
hysteresis media differ from similar patterns for media with
power-law elastic nonlinearity, in particular, twisting of the
fronts and ,,overlap® in the wave profile may not occur, but
the wave is nonlinearly distorted and attenuated (because
of hysteresis losses) [5]. The theoretical study of nonlinear
wave processes in hysteresis media is an urgent task of
solid state physics because of the widespread availability
of such materials, which constitutes the basis for studying
the dynamics of dislocations under the action of alternating
elastic stresses and determination of the mechanisms of
hysteresis nonlinearity of crystalline solids [6-8].
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To date, the dislocation theory of Granato-Lucke absorp-
tion is the only microscopic theory defining the hysteresis
equation of state of crystalline solids, i.e. the dependence
o =o0(g, &), where o, ¢ and ¢ — the stress, strain and
velocity strain [9-11]. The hysteresis of the crystal equation
of state in this theory is associated with the separation
of dislocation segments from impurity atoms and their
different behavior at the loading and unloading stages. The
area of the hysteresis loop determines the nonlinear losses
of the wave, and the derivatives o, (e, &) determine the
propagation velocities of the leading and trailing wave fronts.
The expression for hysteresis losses in the Granato-Lucke
theory is obtained in the non-wave approximation, when
the sample length is much less than the wavelength, and
the amplitude of the stress in the medium is equal to the
amplitude of the harmonic voltage at the boundary of the
medium. Theoretical studies of the nonlinear propagation of
elastic waves in hysteresis solids were not conducted within
the framework of the Granato-Lucke dislocation theory.
Meanwhile, the patterns of the ADIF wave effects in media
with hysteresis nonlinearity will differ from the patterns
of the same effects in their non-wave description, since
manifestations of the hysteresis properties of the medium
accumulate in nonlinear distortions of the wave during its
propagation. The identification of patterns of wave effects
can be aimed at determining the mechanisms of hysteresis
nonlinearity of crystalline solids and studying the dynamics
of dislocations in various crystals, as well as to create
methods for their nonlinear acoustic diagnostics and non-
destructive testing.

It should be noted that the amplitude dependences of the
effects of ADIF for many crystalline solids [5,6,8,12] do not
correspond to the Granato—Lucke hysteresis. Nevertheless,
the solution of the problem of nonlinear propagation of elas-



Propagation of unipolar impulsive disturbances in crystalline solids with Granato-Lucke dislocation hysteresis 485

tic waves and pulsed perturbations in solids with Granato—
Lucke dislocation hysteresis is of particular interest, since it
gives a correct qualitative understanding of nonlinear wave
processes in such media. Such a solution is also useful
as a reference for analyzing and comparing the patterns
of nonlinear wave processes in solids with other types of
hysteresis nonlinearity.

The propagation of unipolar pulsed perturbations in
crystalline solids with Granato-Lucke dislocation hysteresis
nonlinearity is theoretically studied in this paper. The
specificity of such a problem lies in the fact that it is
not possible to represent the Granato-Lucke hysteresis as
a power series — Taylor series, and thus obtain a solution
to the wave problem from solutions for media with power
hysteresis [5]. Here all the wave effects of the ADIF will also
be associated with the manifestation of hysteresis within
the framework of the Granato-Lucke dislocation theory, but
their patterns will be different, different from the patterns
for media with power-law hysteresis nonlinearity.

2. Main equations

It follows from the dislocation theory of Granato-
Lucke [9,10] that the hysteresis equation of state of a crys-
talline solid (for shear stresses ¢ = o;, and deformations
& = 98U, /9dx) has the following form

o (e, &) = Gole — f(e, &), (1)

[1+(e/B)] exp(=B/e), £€2>0,¢>0,

fle,é)=D (1+(em/B)](€/Em) exp(—B/em), € > 0, <0,
’ —[1— (¢/B)] exp(B/e), £<0,8<0,
(1+(em/B)](€/Em) exp(—B/m), € <0,&E>0,

(2)

where U, = U, (x, t) — y-displacement component,
Go=G/(1+QG), D=9TQ/6, y=Ly/L. > 1,
T =afn./4al., fm=~U]a,
Q = 484’ AL /7*C = 24(1 —v)L*A/7°G,
C =2Ga*/n(1-v), B=T/G,

G — the shear modulus of a dislocation-free crystal, a —
the modulus of the Burgers vector, Uy — the binding
energy of a dislocation with an impurity atom, A — the
dislocation density, L, — the distance between impurity
atoms along the dislocation axis, Ly — the dislocation
length, v — the Poisson’s ratio, f (e, &) — the hysteresis
function, |f(e, &) < |e] <1, f(e=0,€) =0, &,/8 < 1,
&n — the strain amplitude.

We give characteristic estimates for the parameters of Gy,
P and D of the hysteresis equation of state (1), (2). Assu-
ming that G = 4 - 101%kg/m-s?, v = 0.25,a =4 - 10" m,
L.=5-10"%m, A=10?m™2, y =50, Up=2-10"%],
we get:

0G =24(1 —v)L2A/7° ~ 151073 « 1,

Physics of the Solid State, 2024, Vol. 66, No. 4

Go~G, fm~5-10"""kg-m/s’, D=~ 1073,
B=T/Gy~25-107°.

It should be noted that the amplitude ¢, in the expres-
sion (2) is not the initial amplitude of the strain & set
at the polycrystal boundary (as in [9,10]), i.e. &, # €.
The amplitude ¢, is determined by the maximum strain of
the wave in the medium; the amplitude &, decreases as
the wave propagates (along the axis x) and its nonlinear
attenuation, therefore €, = €, (€9, x) # &.

Generally speaking, it is necessary to take into account
the linear dissipative term né in the equation of state (1),
where n — the coefficient of linear dissipation of the
medium, however, it can be neglected if we consider
sufficiently strong and slow perturbations for which the
following inequality holds: Gol|f (&, £)| > n|¢| [1]. In this
case, it is possible to obtain accurate solutions for simple
waves [1,3]. (Taking into account the linear dissipative term
prevents the formation of ,overlap® and smoothes ,sharp
corners” in the profile of a nonlinear wave, but it is not
possible to obtain an analytical expression for the wave
itself))

It should be noted that a similar hysteresis occurs
for longitudinal stresses and strains. So-called orientation
multipliers are used in the Granato—Lucke theory [9,10] for
the transition from shear stresses and strains to longitudinal
ones, taking into account the direction of propagation of the
longitudinal wave with respect to the planes and directions
of sliding in the crystal and the distribution of dislocations
over all sliding systems, and the shear modulus G should
be replaced in the equation (1) by K +4G/3 (K — the all-
round compression modulus) — for a limitless environment
or by a Young’s modulus — for a rod. Thus, the hysteresis
equation of state for longitudinal stresses and strains will
be the same as for shear stresses in the Granato—Lucke
dislocation theory, with an accuracy of up to constant
coefficients.

We obtain a single-wave equation for simple shear strain
waves &(x, 7) = 0U,(x, 7)/0x spreading along the axis x
by substituting the equation of state (1) into the equation of
motion pU, = oy (€, &) [13], and proceeding to the accom-
panying coordinate system 7 =t — x/Co, x’ =x > 0 [1]:

de 1 3f(e, &)
== == 3)
0x 2y ot

where U, = U,(x,7) — y-the displacement component,

p — density, Co = (Go/p)"/? — the linear wave velocity.
The boundary condition is given in the form of a unipolar
perturbation — a half-period of a sinusoidal oscillation with
a frequency of w:
e(x =0,1) =gsinwt, 0< ot <, (4)
where ¢y and T = 7/w — the initial amplitude and duration

of the perturbation. We will assume for the sake of certainty
that gy > 0.
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The wave equation (3) and the boundary condition (4)
for the normalized strain e(z, 6) = €(z, 0)/gy > 0 have the
following form in dimensionless variables:

2
e (1—1—%4—8?7) exp(—s%)g—g, eo(z,0) > 0,
& - Jde
(1 + Soei(z)) exp(_fofn(z)) 36> ee(Z, 6) <0,
e(z=0,0)=sin0, 0<6 <, (6)
where

Dox v30Gokx
28Cy 12

sz(t—x/Co) =wT, 7 =

de(z, 6) €m(2)

s> Em - S 1,

a6 )= g,

k =w/Co, €0/B < 1. It is noteworthy that the equation (5)
and its solution in dimensionless variables depend only on
the ratio of the initial amplitude of the perturbation ¢ to

the parameter S.

eg(z,0) =

3. Evolution of unipolar deformation
pulses

For solving the equation (5) we will use the method of
,stitching® of simple waves corresponding to each branch
of the hysteresis (2) [5]. Such ,stitching“ occurs in
case of deformation of e(z,0) equal to the amplitude
em(z) of perturbation at 6 = 6,,(z). The exact solution of
the equation (5) with boundary condition (6) is written
implicitly and has the following form:

sin(@ — (1 + £—e + 8?%) exp(—s%)z),

. 69(279) >0,
e(z,0) = Sin(e_z(”ﬁw)exp(_mfm)dm)’
eo(z,0) < 0.

(7)
Figure 1 shows the evolution of the shape of the pulse
perturbation (6) at &/B = 1/5 and various values of z.
It can be seen from Figure 1 that the shape of the
perturbation (7), its amplitude e,(z) and duration 6*(z)
strongly change with the growth of z: at the beginning,
the peak of the perturbation sharpens, then its shape
tends to trapezoidal, at the same time, the amplitude
en(z) decreases, and the duration 0*(z) increases. (The
perturbation duration 6*(z) is determined from the equation
e(z,0%(z)) =0 at eg(z, 0) < 0). All this is associated with
the fact that the distortion of the leading (eg(z, 0) > 0) and
trailing (eg(z, 0) < 0) edge of perturbation are determined
by different branches of hysteresis (2), while the velocity
of the leading edge of the perturbation is greater than the
velocity of its trailing edge.
The amplitude e,,(z) is determined from the equation (7)
at the point 8 = 6,,(z) of the intersection of the leading
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Figure 1. Evolution of the shape of perturbation e(z, ) at
& /B = 1/5 and various values of z: line ] —z =0,2 —z =2,
3—z=44—2=10,5—2=2-10,6 —z=4-10, 7 —
z=10,8—2z=2-10%9—2z=10°, 10—z =2-10°, 11 —
=10 12 —7z=2-104,13 —z=6-10*, 14 — 7 =2-10°,
15—z =10°%

(eo(z,0) >0, 0<0<6,(z)) and trailing (eg(z,0) <0,
0n(z) <0 < 0*(z)) edges of perturbation, i.e. at its vertex,
when e(z, 0,(2)) = em(z):

em(z):
. 2
s1n(9m(z) - (1+£oeﬁ(z)+£56ﬁ’%‘(z)) exp(— soei(z))z)’

sin(@m(z) - z(l + #@1)) exp(—ﬁw)dzl).
(8)

We obtain the equation for z = z(e,,) from this expression:

2,2
dz_<1_ ﬂ>i+ 2e2e2, exp<[3>_
dem &0lm ) em ﬂz\/ 1-— e,zn &olm

We find a transcendental solution for z = z(e,,) from the
equation (9) and expressions for 6,,(z) and 6*(z) are found
from the equation (8):

. 2en(2)VT= A exp< B ) o)

p? go0em(2)
On(z) = arcsine,,(z) + %(Ze)fn(z)
" <1 N eoe;(z) N sgelznz(z)>, an
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2y/1—e%(z)

0*(z) = 2arcsine,(z) +
em(z)

€oem(2) é‘ge,zn(z)>
x(l—i— o tEs ) 12
solutions of equation (10) have
the following form: em(z) @ 1—(z/z0)> — at
(z/z0) < 1, where zo=2%?¢}exp(B/e0)/B?  and
em(z) = (B/eo)/ In(B? z/2e) <1 — at z>2elp%
or &y(z) ~ e[l — (z/z0)"] x &0 — at (z/z) < 1, and
em(z) ~ B/ In(B%z/2€3) < &0 — at z > 2¢3 /B>

Figure 2 shows the dependences of the perturbation
amplitude e,,(z) and duration 6*(z) on z at different values
of gf. It follows from the expressions (10)—(12) that the
area S(z) under the curve e = ¢(z, 0) is preserved:

The asymptotic

o*
S(z) = /e(z,@)d9:2:const.
0

More informative manifestations of the hysteresis nonlin-
earity of the medium are the dependences of the shape
of the perturbation e = e(z, 0), its amplitude e,(z) and
duration 6*(z) on the initial amplitude &y (at z = const),
since it is difficult for the body to change the position of the
receiver in a solid (coordinate z, i.e. x), but the amplitude
of &y can be easily changed. Figure 3 shows the evolution
of the shape of the perturbation e = e(z,0) depending
on &/B at z =3-10* Here the qualitative behavior of
e = e(z, 0) is the same as in Figure 1.

Figure 4 shows the dependences of the perturbation
amplitude ¢,(z) — (I) and the duration 6*(z) — (II)

Figure 2. The dependences of amplitude e,(z) — (I) and
duration of perturbation 6" (z) — (II) on z at different values &o/8:
line I — &/B=1/10, 2 — 1/7, 3 — 1/5, 4 — 1/3, 5 — 1/2,
6 —2/3.
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Figure 3. Evolution of the shape of perturbation e = ¢(z, 0)
depending on &/B at z =3-10% line I — &/B <3-1072,
2—&/B=7-10"23 —&/8=10"", 4 —e/B=15-10"",
5—eo/B=2-1001, 6 —e/p=3-10"1,7—e/B=4-10"",
8 —e/Bf=5-10"1, 9 —g/8=7-10"1.
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Figure 4. Dependences of amplitude &,(z) — (I) and duration
of disturbance 8* — (II) on & at z = 10° and various values j:
line/ —B=2-105,2—B=3-1053—B=5-10"°4—
B=7-107°5—pB=10""*

on & at z = 10% and various values of parameter 3. The
amplitude of the disturbance ¢,(z) initially grows linearly
(em(z) x &) with an increase of &), then — logarithmically
slowly (en(z) ~ B/In(B%2/2e}) < &), ie. there is a
tendency to saturation of the amplitude &,(z), and the
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duration 0*(z) at the beginning 6*(z) = const, and then —
0*(z) o &.

4. Conclusion

It should be noted in conclusion that experiments on
the propagation of unipolar disturbances were conducted in
of [14,15], where the evolution of longitudinal compression
pulses in rods made of unannealed and annealed poly-
crystalline aluminum was studied. The above-mentioned
patterns were observed in these studies with an increase of
the initial amplitude of the perturbation, namely, a change
of the shape of the perturbation (from bell-shaped — close
to (4) to trapezoidal) without twisting of the leading and
trailing edges, as well as saturation of the amplitude of
the perturbation and an increase in its duration. It was
also found that the acoustic nonlinearity of polycrystalline
aluminum increases with an increase of the annealing
temperature, accompanied by an increase of grain size (and,
accordingly, a decrease of the dislocation density [16]).
Qualitative explanations of the observed effects in [14] were
provided within the framework of elastic quadratic nonlin-
earity characteristic of homogeneous solids [1], and within
the framework of phenomenological hysteresis in [15], for
which € 20 and f(e,&) #0 with 0 =0. The latter
corresponds to the fact that irreversible plastic strains
occur after the passage of the first (and each subsequent)
perturbation in a solid. As a result, after exposure to
each subsequent disturbance, the hysteresis equation of state
must change, which, apparently, can occur at high stresses
exceeding the elastic limit of a solid, but not for acoustic
disturbances of moderate amplitude. The developed theory
of nonlinear propagation of unipolar pulsed disturbances
within the framework of the Granato-Lucke dislocation
hysteresis explains all the observed patterns without the
occurrence of plastic strains in a crystalline solid, since
e=0and f(e,¢) =0atoc =0.
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